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The Eshelby Tensors in a Finite
Spherical Domain—Part I:
Theoretical Formulations
This work is concerned with the precise characterization of the elastic fields due to a
spherical inclusion embedded within a spherical representative volume element (RVE).
The RVE is considered having finite size, with either a prescribed uniform displacement
or a prescribed uniform traction boundary condition. Based on symmetry and group
theoretic arguments, we identify that the Eshelby tensor for a spherical inclusion admits
a unique decomposition, which we coin the “radial transversely isotropic tensor.” Based
on this notion, a novel solution procedure is presented to solve the resulting Fredholm
type integral equations. By using this technique, exact and closed form solutions have
been obtained for the elastic disturbance fields. In the solution two new tensors appear,
which are termed the Dirichlet–Eshelby tensor and the Neumann–Eshelby tensor. In
contrast to the classical Eshelby tensor they both are position dependent and contain
information about the boundary condition of the RVE as well as the volume fraction of
the inclusion. The new finite Eshelby tensors have far-reaching consequences in applica-
tions such as nanotechnology, homogenization theory of composite materials, and defects
mechanics. �DOI: 10.1115/1.2711227�
Introduction
One of the corner stones of contemporary micromechanics and

anomechanics is Eshelby’s inclusion theory �1–3�. Eshelby’s el-
ipsoidal inclusion solution was obtained based on the assumption
hat an inclusion is embedded in unbounded ambient space. This
s a good approximation if the size effect of the inclusion is neg-
igible, i.e., the size of the inclusion is small compared to the size
f the representative volume element. In engineering applications,
he size of the representative volume element �RVE� is finite.
herefore, certain approximations have to be made in order to
tilize Eshelby’s classical solution in homogenization. This limi-
ation becomes obvious, when size effects and interfacial bound-
ry effects of a second phase in a composite, or the size effect and
oundary effects of an inhomogeneity, become prominent issues,
hich is one of main focuses of the nanocomposite mechanics and
aterials, e.g., Refs. �4,5�. Today, there is a call for the solution of

he inclusion problem in a finite domain.
Inclusion problems in a finite domain have been considered

efore, e.g., Refs. �6–9�. A common approach adopted is to first
nd the Green’s function of Navier’s equation for a finite domain,
nd then to find the solution of the corresponding inclusion prob-
em. However, attempts based on this approach have been futile,
e believe, because of the mathematical difficulties involved in
btaining a closed form solution of the finite Green’s function.
his is true even for a highly symmetrical spherical domain. In

act, the Green’s function of Navier’s equation for a finite spheri-
al domain has not been found yet. To the best of the authors’
nowledge, there has never been any exact, closed form solution
f the inclusion problem in a finite domain published in the litera-
ure. A solution has been obtained by Luo and Weng �10�, which
oincides with our solution in a special case. Their solution, how-
ver, is not in closed form and lacks expressions for the Eshelby
ensors.

In this paper, which is the first part of a series, we present the
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exact solution of the finite Eshelby tensors of a spherical inclusion
embedded concentrically within a finite spherical RVE. The fol-
lowing section illustrates the two boundary value problems
�BVPs� we are considering and their resulting integral equations.
In Sec. 3 the notion of a transversely isotropic tensor is discussed,
which is used in Sec. 4 to solve the two integral equations. Section
5 concludes this part. The Eshelby tensors derived in this paper
have some profound consequences for both homogenization and
the study of inhomogeneities in finite elastic solids. In the second
part of this work, applications to homogenization of composites
are discussed �11�.

2 The Inclusion Problem
We consider Eshelby’s homogeneous inclusion problem in a

finite domain. Figure 1 shows a spherical inclusion �I with radius
a embedded at the center of a spherical representative volume
element � with radius A. Consider two arbitrary points x��, y
��, and let r=y−x. Each vector x, y, r can be expressed as its
length multiplied by a unit direction vector. We shall denote them
as x= �x�x̄, y= �y�ȳ and r=rr̄, with r= �r�. Note that if y��� we
have �y�=A and ȳ=n, i.e., the direction of y is equal to the out-
ward surface normal n. Furthermore we define the ratios �
=a / �x�, �0=a /A and t= �x� /A=�0 /� to allow for a nondimensional
description. Suppose that a constant eigenstrain field is prescribed
inside the inclusion

�ij
* �x� = ��ij

* , x � �I

0, x � �E = �/�I
� �1�

The infinitesimal elastic strain equals the total strain subtracting
the eigenstrain

eij = �ij − �ij
*

with

�ij = 1
2 �ui,j + uj,i� �2�

where ui,j denotes the spatial differentiation �ui /�xj. We assume

that the RVE is a linear elastic medium, i.e.,
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�ij = Cijk�ek�, ∀ x � � �3�

here �ij are the components of the Cauchy stress tensor, and
ijk� is the elasticity tensor.
On the boundary of the RVE, two types of boundary conditions

BC�, a prescribed displacement �Dirichlet� or a prescribed trac-
ion �Neumann� boundary condition, are considered

Dirichlet BC

ui = �ij
0 xj, ∀ x � �� �4�

Neumann BC

ti = �ij
0 nj, ∀ x � �� �5�

here �ij
0 and �ij

0 are the background strain and stress fields. The
lastic fields inside the RVE can be decomposed into the back-
round field from the remote boundary loads and a disturbance
eld, which arises due to the presence of the inclusion. Thus the
isplacement and traction can be written as

ui = ui
0 + ui

d, ti = ti
0 + ti

d �6�
o that we obtain the following two homogeneous boundary con-
itions

Dirichlet BC

ui
d = 0, ∀ x � �� �7�

Neumann BC

ti
d = 0, ∀ x � �� �8�

or the disturbance fields. The solution for the background field
epends on the macro problem. Here we are concerned with the
olution of the disturbance fields. Considering the equilibrium
quations � ji,j

d =0, we obtain either the Dirichlet–Eshelby BVP

Cijk�uk,�j
d �x� − Cijk��k�,j

* �x� = 0, ∀ x � �

ui
d�x� = 0, ∀ x � �� �9�

r the Neumann–Eshelby BVP

Cijk�uk,�j
d �x� − Cijk��k�,j

* �x� = 0, ∀ x � �

ti
d�x� = njCijk�uk,�

d �x� = 0, ∀ x � �� �10�

et us denote the Green’s function, Gmi
� �x−y�, as the solution of

ig. 1 A spherical representative element containing a spheri-
al inclusion
he following Navier’s equation in unbounded space

ournal of Applied Mechanics
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Cijk�Gmk,�j
� �x − y� + �mi��x − y� = 0, ∀ x,y � R3, i = 1,2,3

�11�

For an isotropic linear elastic space, the Green’s function is �e.g.,
Ref. �12��

Gij
��x − y� =

1

16�	�1 − 
�� �xi − yi��xi − yi�
r3 + �3 − 4
�

�ij

r
	

�12�

where r=
�xi−yi��xi−yi�; 	 is the shear modulus; and 
 is Pois-
son’s ratio. By using Somigliana’s identity �12�, the displacement
field solution of BVPs Eqs. �9� and �10� may be expressed as

um
d �x� = −�

�

Cijk�Gim,j
� �x − y��k�

* �y�d�y

+�
��

Cijk�uk,�
d �y�Gim

� �x − y�nj�y�dSy

+�
��

Cijk�uk
d�y�Gim,j

� �x − y�n��y�dSy �13�

where we have denoted Gim,j
�

ª�Gim
� /�xj =−�Gim

� /�yj. For the
Dirichlet–Eshelby problem, this integral equation becomes

um
d �x� = −�

�

Cijk�Gim,j
� �x − y��k�

* �y�d�y

+�
��

Cijk�uk,�
d �y�Gim

� �x − y�nj�y�dSy �14�

and for the Neumann–Eshelby problem, Eq. �13� reduces to

um
d �x� = −�

�

Cijk�Gim,j
� �x − y��k�

* �y�d�y

+�
��

Cijk�uk
d�y�Gim,j

� �x − y�n��y�dSy �15�

In case of the Dirichlet–Eshelby BVP, the disturbance strain field
follows from the displacement Eq. �14� as

�ij
d �x� = −

1

2
�mn

* �
�I

Ck�mn�Gki,�j
� �x − y� + Gkj,�i

� �x − y��d�y

+
1

2�
��

Ck�pq�pq
d �y��Gki,j

� �x − y� + Gkj,i
� �x − y��n��y�dSy

�16�

For the Dirichlet–Eshelby BVP we solve Eq. �16� which is an
integral equation for the unknown strain field �ij

d . In case of the
Neumann–Eshelby BVP we can directly solve Eq. �15� which is
an integral equation for the unknown displacement field ui

d. In
passing, we note that Eq. �16� becomes a hypersingular integral
equation if x���.

To illustrate our solution procedure, we re-examine the classical
Eshelby tensors. For inclusion problems in unbounded space, the
boundary term in Eqs. �14�–�16� drops out. One can then find the
disturbance strain fields in terms of the Eshelby tensors �1,2�,

�ij
d �x� = Sijk�

·,� �x��k�
* , ∀ x � R3 �17�

where the superscript · represents the interior solution �·= I� or the
exterior solution �·=E�, depending on the location of x, i.e.,

Sijk�
·,� �x� = �Sijk�

I,� �x� , ∀x � �I
E,� 3 � �18�
Sijk��x� , ∀x � R /�I
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For spherical inclusions in an infinite elastic medium, the Es-
elby tensors have the elementary form �e.g., Refs. �13,14�

1. Interior solution

Sijmn
I,� �x� =

�5
 − 1�
15�1 − 
�

�ij�mn +
�4 − 5
�
15�1 − 
�

��im� jn + �in� jm�, x � �I

�19�
2. Exterior solution

Sijmn
E,� �x� =

�3

30�1 − 
�
��3�2 + 10
 − 5��ij�mn + �3�2 − 10
 + 5�

���im� jn + �in� jm� + 15�1 − �2��ijx̄mx̄n + 15�1 − 2


− �2��mnx̄ix̄j + 15�
 − �2���imx̄jx̄n + � jmx̄ix̄n + �inx̄jx̄m

+ � jnx̄ix̄m� + 15�7�2 − 5�x̄ix̄ jx̄mx̄n�, x � R3/�I �20�

here �ªa / �x� and �x�=
xixi , i=1,2 ,3.
Inspired by Eq. �17�, we postulate the following form of the

wo considered BVPs

�ij
d �x� = Sijk�

·,� �x��k�
* , ∀ x � � �21�

here Sijk�
·,� �x� is an unknown fourth-order tensor �the finite Es-

elby tensor�, we are seeking to obtain. As before the superscript
represents the interior solution �·= I� or the exterior solution

·=E�. The superscript � stands for the Dirichlet–Eshelby tensor
�=D� or the Neumann–Eshelby tensor ��=N�. As a special case
e expect to obtain the original infinite Eshelby tensor ��=��.
In principle, one may be able to use spherical harmonics to

epresent the general solution of Eqs. �14� and �15� based on
ymmetry, but the solution procedure is very much involved. In
act, no explicit solution has been found as shown in a particular
ase worked out by Luo and Weng �10�.

The Radial Isotropic Tensor
To solve Eqs. �14� and �15�, we first introduce a novel concept

f the radial transversely isotropic tensor, or in short, the radial
sotropic tensor.

It may be observed from the expressions of Sijmn
I,� �x� and

ijmn
E,� �x� above that there appear six independent tensorial bases,
hich can be arranged in an array as follows

�ijmn�x̄� ª �
�ij�mn

�im� jn + �in� jm

�ijx̄mx̄n

�mnx̄ix̄j

�imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n + � jnx̄ix̄m

x̄ix̄jx̄mx̄n


 �22�

e term this array as the circumference basis of the Eshelby
ensor. By using �ijmn�x̄�, both the original interior and exterior
shelby tensor can be recast into a canonical form, the dot product
f two arrays, i.e.,

Sijmn
·,� �x� = S1

·,��t��ij�mn + S2
·,��t���im� jn + �in� jm� + S3

·,��t��ijx̄mx̄n

+ S4
·,��t��mnx̄ix̄j + S5

·,��t���imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n

+ � jnx̄ix̄m� + S6
·,��t�x̄ix̄ jx̄mx̄n

= �ijmn
T �x̄�S·,��t� . �23�

he arrays, SI,��t� and SE,��t�, are termed the radial basis of the
nfinite Eshelby tensor. In accordance to Eqs. �19� and �20� they

re given as

72 / Vol. 74, JULY 2007
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SI,��t� =
1

15�1 − 
��
5
 − 1

4 − 5


0

0

0

0


 ,

SE,��t� =
�0

3/t3

30�1 − 
��
3�0

2/t2 + 10
 − 5

3�0
2/t2 − 10
 + 5

15�1 − �0
2/t2�

15�1 − 2
 − �0
2/t2�

15�
 − �0
2/t2�

15�7�0
2/t2 − 5�


 �24�

where t= �x� /A=�0 /�, with �=a / �x�, and �0=a /A.
The above heuristic discussion reveals an important fact, that

the Eshelby tensor is a so-called “radial isotropic tensor,” which is
a generalization of an isotropic tensor. Here, we define the radial
isotropic tensor as a transversely isotropic tensor along a given
radial direction, i.e., a tensor whose properties in all directions
perpendicular to the radial direction, x̄, are the same. In general,
the radial isotropic tensor, depending on x= tAx̄, can be expressed
in the following canonical form

Sijmn�x� = S1�t��ij�mn + S2�t���im� jn + �in� jm� + S3�t��ijx̄mx̄n

+ S4�t��mnx̄ix̄j + S5�t���imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n

+ � jnx̄ix̄m� + S6�t�x̄ix̄ jx̄mx̄n

= �ijmn
T �x̄�S�t� �25�

This canonical form decomposes Sijmn into the circumference ba-
sis �ijmn, which is only a function of the direction vector x̄, and
into the radial basis S, which is only a function of the dimension-
less radial distance t.

It is well known that a transversely isotropic tensor has the
similar symmetric properties �e.g., Ref. �15��. Using the definition

aij ª �ij − rirj �26�

bij ª rirj �27�
which are the idempotent parts of a second-order unit tensor,

�ij = aij + bij �28�
one can show that the following six bases �15�

Eijmn
1 = 1

2aijamn �29�

Eijmn
2 = bijbmn = rirjrmrn �30�

Eijmn
3 = 1

2 �aimajn + ajmain − aijamn� �31�

Eijmn
4 = 1

2 �aimbjn + ajnbjm + ajnbim + ajmbin� �32�

Eijmn
5 = aijbmn �33�

Eijmn
6 = bijamn �34�

form a finite non-Abelian group. Furthermore

Ep:Eq = Ep if p = q, Ep:Eq = 0 if p � q, p,q = 1,2,3,4

�35�

where Ep=Eijmn
p ei � e j � em � en. Subsequently, for p

=1,2 ,3 ,4 ,5 ,6, one can find the “less congenial multiplication
table” shown in Ref. �15�.

Nevertheless, to the best of the authors’ knowledge, we are the

first to show that the circumference basis �ijmn of a spherical
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nclusion in a finite domain is a transversely isotropic tensor.2

nstead of using the partially idempotent canonical form to repre-
ent the circumference basis �ijmn of a radial transversely isotro-
ic tensor, we use an equivalent but different description intro-
uced in Eq. �22�.

Based on the symmetry of the problem, we now postulate that
he Eshelby tensor for a finite RVE, Sijmn

·,� , should also be a radial
sotropic tensor. It therefore admits the following multiplicative
ecomposition

Sijmn
·,� �x� = �ijmn

T �x̄�S·,��t� �36�

ith the superscripts, ·= I or E and �=D or N. Here �ijmn�x̄� is
he circumference basis according to Eq. �22� and S·,��t� is the
adial basis given as

S·,��t� = �S1
·,��t�,S2

·,��t�,S3
·,��t�,S4

·,��t�,S5
·,��t�,S6

·,��t��T �37�

he scalar entries SJ
·,��t�, J=1,2 ,3 ,4 ,5 ,6, are unknown functions

f the nondimensional radial variable t= �x� /A, which are to be
etermined.

The postulate above is motivated by the following two consid-
rations. Due to the concentric and spherical symmetry of inclu-
ion and RVE the tensorial basis of the finite Eshelby tensor can
nly depend on the radial direction vector x̄i �and the second-order
dentity �ij�. Therefore its tensorial basis, can only consist of com-
inations of zeroth-, second-, and fourth-order homogeneous
unctions of x̄. Furthermore due to the symmetry of the strain
ensor the finite Eshelby tensor must have minor symmetries. Its
ensorial basis can therefore only admit the six tensorial bases
isted in �ijmn�x̄�. We note that one should expect more than six
ases for problems described by more that one vector, such as
llipsoidal inclusions or non-concentrically placed inclusions
ithin the RVE. Such problems may also be solvable with a simi-

ar procedure to ours. Due to the postulate the search for the finite
shelby tensors reduces to the search for their radial basis S·,��t�.
e will see in the subsequent section, that the two solutions we

btain satisfy the governing equations exactly, thereby justifying
ostulate Eq. �36�.

In analogy to Eq. �21�, we can express the disturbance displace-
ent field as

ui
d�x� = �Uimn

I,� �x��mn
* , ∀x � �I

Uimn
E,��x��mn

* , ∀x � �E
� �38�

here Uimn
I,� �x� is a third-order radial isotropic tensor, whose rela-

ion to Sijmn
I,� �x� is discussed next. The disturbance strain is linked

o the displacement field by the relation

�ij
d �x� = 1

2 �ui,j
d �x� + uj,i

d �x�� = 1
2 �Uimn,j

·,� �x� + U jmn,i
·,� �x���mn

*

= Sijmn
·,� �x��mn

* �39�

t can be shown that Uimn
·,� �x� can only admit the following multi-

licative decomposition, so that the related Eshelby tensors

ijmn
I,� �x� are radial isotropic tensors

Uimn
I,� �x� = �imn

T �x̄�UI,��t�, ∀ x � �I �40�

Uimn
E,��x� = �imn

T �x̄�UE,��t�, ∀ x � �E �41�

ith the appearing arrays defined as

UI,��t� = �U1
I,��t�

U2
I,��t�

U3
I,��t�


, UE,��t� = �U1
E,��t�

U2
E,��t�

U3
E,��t�



nd

2We first derived the result in a 2004 manuscript that was submitted to Proceed-

ngs of Royal Society of London.

ournal of Applied Mechanics
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�imn�x̄� = � x̄i�mn

x̄m�in + x̄n�im

x̄ix̄mx̄n

 �42�

Here UI,��t� and UE,��t� are the radial basis arrays of the displace-
ment field. �imn�x̄� is the circumference basis array of the dis-
placement field, whose third-order tensorial entries can only be
first- or third-order homogeneous function of x̄. Hence the distur-
bance displacement field has the following canonical form

ui
d�x� = ui

d�x̄,t� = � �mn
* �imn

T �x̄�UI,��t� , ∀x � �I

�mn
* �imn

T �x̄�UE,��t� , ∀x � �E
� �43�

Furthermore, the kinematic relation �39� yields the following dif-
ferential mapping, which uniquely determines the relationship be-
tween the radial basis array of the strain field and the radial basis
array of the displacement field

S·,��t� = D�t�U·,��t� �44�

where D�t� is a differential operator that is defined in matrix form

D�t� =
1

A�
1

t
0 0

0
1

t
0

0 0
1

t

−
1

t
+

d

dt
0 0

0 −
1

2t
+

1

2

d

dt

1

2t

0 0 −
3

t
+

d

dt



6�3

�45�

Likewise, if S is given U can be determined from

U·,��t� = I�t�S·,��t� �46�

where I�t� is the integration operator

I�t� = tA�1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



3�6

�47�

We note that the displacements are only uniquely determinable up
to the rigid body motion, which is set to zero here.

4 Eshelby Tensors for Finite Domains
For simplicity, in the rest of the paper, we term the Eshelby

tensor for a finite domain as the finite Eshelby tensor.

4.1 The Dirichlet–Eshelby Tensor. We first consider the Di-
richlet BVP Eq. �9� in which case �=D. Substituting Eq. �21� into
Eq. �16�, one obtains a tensorial integral equation for the unknown
finite Eshelby tensor

Sijmn
·,D �x� = Sijmn

·,� �x� +
1

2�
��

�Gik,j
� �x − y� + Gjk,i

� �x − y��

�n��y�Ck�pqSpqmn
E,D �y�d�y �48�

This integral equation has two different forms, depending on
whether x is inside or outside the inclusion

Sijmn
I,D �x� = Sijmn

I,� �x� +
1

2�
��

�Gik,j
� �x − y� + Gjk,i

� �x − y��

E,D
�n��y�Ck�pqSpqmn�y�d�y ∀ x � �I �49�

JULY 2007, Vol. 74 / 773
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Sijmn
E,D �x� = Sijmn

E,� �x� +
1

2�
��

�Gik,j
� �x − y� + Gjk,i

� �x − y��

�n��y�Ck�pqSpqmn
E,D �y�d�y ∀ x � �E �50�

ince y lies on the boundary, y���, and since y= tAȳ with t=1,
=n, we can use Eq. �36� to write Sijmn

E,D �y�=�ijmn
T �n�SE,D�1�. The

ostulate, that the circumference basis of the Eshelby tensors for a
nite spherical RVE is the same as for the Eshelby tensors in an

nfinite domain, is true only if the circumference basis is invariant
nder the boundary integral in Eqs. �49� and �50�. This means that
he Dirichlet boundary integral, which we denote by Sijmn

B,D , can be
xpressed in terms of the canonical form

Sijmn
B,D �x� =

1

2�
��

Ck�st�Gik,j
� �x − y�

+ Gjk,i
� �x − y��n��y��stmn

T �n�SE,D�1�dSy

=�
��

Gijmn�x,y�dSy = �ijmn
T �x̄�SB,D�t� �51�

ere Gijmn is the integrand of the boundary integral which follows
s

Gijmn�x,y� =
1

2
Ck�st�Gik,j

� �x − y� + Gjk,i
� �x − y��

�n��y��stmn
T �n�SE,D�1�

=
− 1

16��1 − 
�	r2 �T1r̄knk�ij�mn + T1�2
 − 1��r̄inj

+ r̄ jni��mn + T2�r̄mnn + r̄nnm��ij + T2�2
 − 1���imr̄jnn

+ �inr̄jnm + � jmr̄inn + � jnr̄inm� − 3T1r̄ir̄ jr̄knk�mn

+ T3r̄knknmnn�ij − 3T2�r̄ir̄ jr̄mnn + r̄ir̄ jr̄nnm� + T3�2


− 1��r̄injnmnn + r̄ jninmnn� − 3T3r̄ir̄ jr̄knknmnn� �52�

here r̄i= �yi−xi� /r, r= �y−x� and ni�y�=yi / �y� for y���. The
oefficient vector

T = �T1,T2,T3�T �53�

s a stress projection vector �see Sec. 4.3�, which follows as T
K1SE,D�1� where

K1 = 	�
2 + 2


1 − 2


4


1 − 2

0

2�1 − 
�
1 − 2


0 0

0 2 0 0 2 0

0 0
2 + 2


1 − 2

0

4

1 − 2


2�1 − 
�
1 − 2




�54�

ith the aid of the following integrals �see the Appendix�

�I� �
��

1

r2 r̄knk dSy = 4� �55�

�I� �
��

1

r2 r̄inj dSy =
4�

3
�ij �56�

�III� � 1

r2 r̄ir̄ jr̄knk dSy =
4�

3
�ij �57�
��
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�IV� �
��

1

r2 r̄knknmnn dSy =
4�

15
�5 − 3t2��mn +

12�

5
t2x̄mx̄n

�58�

�V� �
��

1

r2 r̄ir̄ j�r̄mnn + r̄nnm�dSy =
8�

15
��ij�mn + �im� jn + � jm�in�

�59�

�VI� �
��

1

r2 �r̄inj + r̄ jni�nmnn dSy

=
�

105
��56 − 24t2���ij�mn + �im� jn + � jm�in� + 120t2�ijx̄mx̄n

− 48t2x̄ix̄ j�mn + 36t2��imx̄jx̄n + �inx̄jx̄m

+ � jmx̄ix̄n + � jnx̄ix̄m�� �60�

�VII� �
��

1

r2 r̄ir̄ jr̄knknmnn dSy

=
�

105
��28 − 20t2���ij�mn + �im� jn + � jm�in� + 100t2�ijx̄mx̄n

+ 16t2x̄ix̄ j�mn − 12t2��imx̄jx̄n + �inx̄jx̄m

+ � jmx̄ix̄n + � jnx̄ix̄m�� �61�
we obtain the boundary contribution by explicit integration as

Sijmn
B,D �x� = �ijmn

T �x̄�SB,D�t� �62�

with

SB,D�t� = K2�t�K1SE,D�1�
and

K2�t� =
− 1

420�1 − 
�

��
70�2
 − 1� 28 4
�7 − 3t2�

0 28�5
 − 4� 7�4
 − 5� + 3t2�7 − 4
�
0 0 6t2�10
 − 7�
0 0 − 24
t2

0 0 18
t2

0 0 0



�63�

The integral Eqs. �49� and �50� can then be reduced to a pair of
algebraic evolution equations,

�ijmn
T �x̄�SI,D�t� = �ijmn

T �x̄��SI,��t� + K3�t�SE,D�1�� �64�

�ijmn
T �x̄�SE,D�t� = �ijmn

T �x̄��SE,��t� + K3�t�SE,D�1�� �65�

where K3�t�ªK2�t�K1. The matrix K2�t� maps the effect of the
boundary traction onto the domain of the RVE.

Eliminating the circumference basis from Eqs. �64� and �65�,
we derive the following parametric algebraic equations

SI,D�t� = SI,��t� + K3�t�SE,D�1�, 0 � t 
 �0 �66�

SE,D�t� = SE,��t� + K3�t�SE,D�1�, �0 � t 
 1 �67�

Let us assume that SE,D�t� continuously depends on t so that

lim
t→1

SE,D�t� → SE,D�1� �68�

Now let t→1 in Eq. �67�, so that we can obtain SE,D�1� by solving

Eq. �67�, i.e.,
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SE,D�1� = �I − K3�1��−1SE,��1�

= �0
3�

0

0

0

7 − 28
 + 20
2 − 7�1 − 2
��0
2

2�1 − 
��7 − 10
�
10
 − 7�0

2

2��7 − 10
�
7�0

2 − 5

2�1 − 
�


 �69�

he boundary contribution SB,D�t�=K3�t�SE,D�1� then becomes

SB,D�t� = −
�0

3

15�1 − 
��
5
 − 1

4 − 5


0

0

0

0



+

�0
3�1 − �0

2�
20�1 − 
��7 − 10
��

2�7 − 10
t2�
7�5t2 − 3� − 20
t2

− 10t2�7 − 10
�
− 40
t2

30
t2

0


 �70�
ith this the considered Dirichlet–Eshelby problem of a spherical

38�, �40�, and �41�, i.e.,

ournal of Applied Mechanics
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RVE is fully solved. The radial basis arrays of the Dirichlet–
Eshelby tensors is given by

SI,D�t� = SI,��t� + SB,D�t�, 0 � t 
 �0 �71�

SE,D�t� = SE,��t� + SB,D�t�, �0 � t � 1 �72�

and from Eq. �36� we finally obtain the Dirichlet–Eshelby tensors.
The interior solution is

Sijmn
I,D �x� =

1

1 − 

��5
 − 1

15
�1 − �0

3� +
7 − 10
t2

10�7 − 10
�
�0

3�1 − �0
2�	�ij�mn

+ �4 − 5


15
�1 − �0

3� +
7�5t2 − 3� − 20
t2

20�7 − 10
�
�0

3�1 − �0
2�	

���im� jn + �in� jm� −
t2

2
�0

3�1 − �0
2��ijx̄mx̄n −

2
t2

7 − 10

�3�1

− �0
2��mnx̄ix̄j +

3
t2

2�7 − 10
�
�0

3�1 − �0
2���imx̄jx̄n + �inx̄jx̄m

+ � jmx̄ix̄n + � jnx̄ix̄m�� �73�
and the exterior solution is
Sijmn
E,D �x� =

�0
3

1 − 

��3�0

2/t2 + 10
 − 5

30t3 −
5
 − 1

15
+

7 − 10
t2

10�7 − 10
�
�1 − �0

2�	�ij�mn

+ �3�0
2/t2 − 10
 + 5

30t3 −
4 − 5


15
+

7�5t2 − 3� − 20
t2

20�7 − 10
�
�1 − �0

2�	��im� jn + �in� jm�

− ��0
2/t2 − 1

2t3 +
t2

2
�1 − �0

2�	�ijx̄mx̄n − ��0
2/t2 + 2
 − 1

2t3 +
2
t2

7 − 10

�1 − �0

2�	�mnx̄ix̄j

− ��0
2/t2 − 


2t3 −
3
t2

2�7 − 10
�
�1 − �0

2�	��imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n + � jnx̄ix̄m� +
7�0

2/t2 − 5

2t3 x̄ix̄ jx̄mx̄n� �74�
e can see that both the interior and the exterior Dirichlet Es-
elby tensor are neither constant nor isotropic. The dependency on
he position x is captured by the dependency on x̄ and t. Further-
ore, both tensors depend explicitly on the ratio �0 between in-

lusion and RVE. If we let �0→0 we recover the original infinite
shelby tensors exactly since the boundary contribution then van-

shes. To visualize the Dirichlet–Eshelby tensors the profiles of
he components of the radial basis arrays S·,��t�, S·,D�t� and
B,D�t� are shown in Fig. 2. Here the relative size of the inclusion

s chosen as �0=0.4, so that the volume fraction becomes �0
3

0.064. Poisson’s ratio of the matrix phase is picked as 
=0.3.
ne can clearly observe that the boundary term SB,D, which can
e understood as a correction of Eshelby’s original result, is sub-
tantial. It can also be noted that there is a discontinuity across the
nterface between the inclusion and the matrix.

The disturbance displacement field ui
d�x� is now given by Eqs.
ui
d�x� = �imn

T �x̄�U·,D�t��mn
* , ∀ x � � �75�

where the arrays �imn�x̄�, UI,D�t�, and UE,D�t� follow from Eqs.
�42� and �46�. Applying operator �47� to Eqs. �71�, �72�, �24�, and
�70� we easily obtain

UI,D�t� = UI,��t� + UB,D�t�, 0 � t 
 �0 �76�

UE,D�t� = UE,��t� + UB,D�t�, �0 � t � 1 �77�

with

UI,��t� =
tA

15�1 − 
��5
 − 1

4 − 5
 
 �78�

0
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UE,��t� =
�0

3A

30t2�1 − 
��3�0
2/t2 + 10
 − 5

3�0
2/t2 − 10
 + 5

15 − 15�0
2/t2 
 �79�

nd

UB,D�t� = −
�0

3tA

15�1 − 
��5
 − 1

4 − 5


0



+
�0

3�1 − �0
2�tA

20�1 − 
��7 − 10
�� 2�7 − 10
t2�
7�5t2 − 3� − 20
t2

− 10t2�7 − 10
�

 �80�

ere UI,��t� and UE,��t� are the radial basis array of Eshelby’s
lassical solution in unbounded space and UB,D�t� is the radial
asis contribution from the Dirichlet boundary of the RVE.

d

Fig. 2 The components of the ra
We remark that ui given by the equations above satisfies the
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Fredholm-type integral equation of the Dirichlet BVP Eq. �14�
exactly. Furthermore it is readily verified that when t=1

UE,D�1� = �0

0

0

 → ui

d�y� = �mn
* �imn

T �n�UE,D�1� = 0, ∀ y � ��

�81�

This confirms that the obtained displacement solution does indeed
satisfy the Dirichlet boundary condition. The coefficients of the
radial bases U·,�, UB,D, and U·,D are displayed in Figs. 3�a�, 3�c�,
and 3�e�, where we have chosen �0=0.4 and 
=0.3. Again, we
observe that the boundary correction is substantial. Further, one
can see that the Dirichlet solution satisfies the zero displacement
boundary condition exactly.

4.2 The Neumann–Eshelby Tensor. The solution of the

l basis arrays S·,�, SB,D, and S·,D
Neumann–Eshelby problem �now �=N� is different from the
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irichlet–Eshelby problem tensor; here the solution is based on
he displacement field. For the Neumann BVP Eq. �10�, the dis-
lacements on the boundary of the RVE �t=1� are nonzero and
ccording to Eq. �43� we have

uk
d�y� = �mn

* �kmn
T �n�UE,N�1�, ∀ y � �� �82�

y substituting Eq. �82� into the integral equation corresponding
o the Neumann BVP Eq. �15�, we obtain an equation for the
nknown radial basis, U·,N�t�

mn
* �imn

T �x̄�U·,N�t�

= − �mn
* �

�e

CpqmnGpi,q
� �x − y�d�y

+ �mn
* � Cpqk�Gpi,q

� �x − y��kmn
T �n�UE,N�1�n��y�dSy �83�

Fig. 3 The components of the radial b
��

ournal of Applied Mechanics

ded 20 Jul 2007 to 169.229.157.231. Redistribution subject to ASM
where ·= I, or E. Depending on whether x is inside or outside the
inclusion, the domain integral in Eq. �83� has two different forms,
which can be expressed in the canonical form

−�
�e

CpqmnGpi,q
� �x − y�d�y = ��imn

T �x̄�UI,��t� , ∀x � �I

�imn
T �x̄�UE,��t� , ∀x � �E

�
�84�

Here UI,��t� and UE,��t� are the radial basis arrays of Eshelby’s
classical solution for unbounded space �see Eqs. �78� and �79��. In
analogy to the Dirichlet case �see Eq. �51��, we stipulate that a
similar canonical form holds for the Neumann boundary contribu-

is arrays U·,�, UB,D, U·,D, UB,N, and U·,N
tion in Eq. �83�
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�
��

Cpqk�Gpi,q
� �x − y��kmn

T �n�UE,N�1�n��y�dSy

= �imn
T �x̄�UB,N�t�, ∀ x � � �85�

here UB,N�t� denotes the radial basis array arising from the Neu-
ann boundary. Substituting Eqs. �84� and �85� into Eq. �83� and

liminating �mn
* and the circumference basis �imn

T �x̄�, one may
educe Eq. �83� into a pair of parametric, algebraic equations for
he radial basis arrays, U·,N�t�, i.e.,

UI,N�t� = UI,��t� + UB,N�t�, 0 � t � �0 �86�

UE,N�t� = UE,��t� + UB,N�t�, �0 � t � 1 �87�

ere UI,��t� and UE,��t� are the radial basis vectors of Eshelby’s
lassical solution of unbounded space �see Eqs. �78� and �79��.
he boundary contribution, UB,N�t� follows directly from Eq. �85�
s

�imn
T �x̄�UB,N�t� =�

��

Himn�x,y�dSy �88�

ith the integrand

imn = Cpqk�Gpi,q
� �x − y��kmn

T �n�UE,N�1�n��y�

=
1

8��1 − 
�r2 �U1
E,N�1���1 − 2
��2ninpr̄p�mn − r̄i�mn�

+ 3r̄inpr̄pnqr̄q�mn� + U2
E,N�1���1 − 2
��nmnpr̄p�in + nnnpr̄p�im

+ ninmr̄n + ninnr̄m − 2nmnnr̄i� + 3nmr̄ir̄nnpr̄p + 3nnr̄ir̄mnpr̄p�

+ U3
E,N�1���1 − 2
��2ninmnnr̄pnp − nmnnr̄i�

+ 3nmnnr̄inpr̄pnqr̄q�� �89�

ith the aid of following integrals �see the Appendix�

�VIII� �
��

1

r2 r̄i dSy = 0 �90�

�IX� �
��

1

r2ninkr̄k dSy =
8�

3
tx̄i �91�

�X� �
��

1

r2ninjr̄k dSy =
4�

15
t�3x̄i� jk + 3x̄j�ik − 2x̄k�ij� �92�

�XI� �
��

1

r2nir̄jr̄knpr̄p dSy =
4�

15
t�4x̄i� jk − x̄j�ik − x̄k�ij� �93�

�XII� �
��

1

r2ninjnknpr̄p dSy =
�

105
�t�56 − 48t2��x̄i� jk + x̄j�ik

+ x̄k�ij� + 240t3x̄ix̄ jx̄k� �94�

�XIII� �
��

1

r2 r̄inpr̄pnqr̄q dSy = 0 �95�

�XIV� �
��

1

r2ninjr̄knpr̄pnqr̄q dSy =
�

105
�t�84 − 80t2��x̄i� jk + x̄j�ik�

− t�56 − 32t2�x̄k�ij + 64t3x̄ix̄ jx̄k� �96�

q. �88� can be integrated exactly. After some manipulations, the

nal result can be expressed in a succinct form
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UB,N�t� = K4�t�UE,N�1� �97�

where

K4�t� =
t

1 − 
�
2�1 − 2
�

3

2�1 − 5
�
15

− 2
�7 − 4t2�
35

0
7 − 5


15

7�5 − 
� + 6t2�4
 − 7�
105

0 0
4�7 − 10
�t2

35



�98�

Equation �97� represents the boundary contribution or “the image
contribution” to the disturbance displacement field inside the
RVE. Now, the parametric algebraic equations are solely in terms
of the displacement radial basis array U·,N�t�

UI,N�t� = UI,��t� + K4�t�UE,N�1�, 0 � t � �0 �99�

UE,N�t� = UE,��t� + K4�t�UE,F�1�, �0 � t 
 1 �100�

We assume that the radial basis array, UE,N�t�, depends continu-
ously on t so that

lim
t→1

UE,N�t� = UE,N�1� �101�

One can then solve for UE,N�1� by letting t=1 in Eq. �100�, i.e.,

UE,N�1� = �I − K4�1��−1UE,��1� �102�

which gives

UE,N�1� =
�0

3A

2�7 + 5
�� 7��0
2 − 1�

5
 + 7�0
2

35�1 − �0
2�

 �103�

Substituting Eq. �103� into Eq. �97�, one can evaluate the radial
basis array due to the boundary or image contribution

UB,N�t� =
�0

3tA

30�1 − 
��2 − 10


7 − 5


0



−
�0

3�1 − �0
2�tA

5�1 − 
��7 + 5
�� 2�7 − 10
t2�
7�5t2 − 3� − 20
t2

− 10t2�7 − 10
�

 �104�

Note the similarity between the two boundary contributions
UB,N�t� and UB,D�t� �see Eq. �80��. With the above result we can
now find UI,N�t� and UE,N�t� from Eqs. �86� and �87�.

With the radial basis arrays of the displacement field given, one
can apply the differential operator Eq. �45� to obtain the radial
basis array of the strain field, i.e.,

SI,��t� = D�t�UI,��t�, SE,��t� = D�t�UE,��t�

and

SB,N�t� = D�t�UB,N�t� �105�

SI,��t� and SE,��t� follow as given in Eq. �24�; furthermore by

differentiation we find
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SB,N�t� =
�0

3

30�1 − 
��
2 − 10


7 − 5


0

0

0

0



−

�0
3�1 − �0

2�
5�1 − 
��7 + 5
��

2�7 − 10
t2�
7�5t2 − 3� − 20
t2

− 10t2�7 − 10
�
− 40
t2

30
t2

0


 �106�

n analogy to Eqs. �86� and �87�, the radial basis arrays S·,N of the
eumann–Eshelby tensors now follows from

SI,N�t� = SI,��t� + SB,N�t�, 0 � t � � �107�
0

ere are functions of the position vector x, the dilatational part of

ournal of Applied Mechanics
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SE,N�t� = SE,��t� + SB,N�t�, �0 � t � 1 �108�
The Neumann–Eshelby tensors for a spherical inclusion embed-
ded in a spherical RVE under the prescribed traction boundary
condition can now be obtained from Eq. �22� which yields the
following exact and elementary expressions. The interior solution
is

Sijmn
I,N �x� =

1

1 − 

��5
 − 1

15
�1 − �0

3� −
2�7 − 10
t2�

5�7 + 5
�
�0

3�1 − �0
2�	�ij�mn

+ �1 − 


2
+

5
 − 7

30
�1 − �0

3� −
7�5t2 − 3� − 20
t2

5�7 + 5
�
�0

3�1

− �0
2�	��im� jn + �in� jm� +

2t2�7 − 10
�
7 + 5


�0
3�1 − �2��ijx̄mx̄n

+
8
t2

7 + 5

�3�1 − �0

2��mnx̄ix̄j −
6
t2

7 + 5

�0

3�1 − �0
2���imx̄jx̄n

+ �inx̄jx̄m + � jmx̄ix̄n + � jnx̄ix̄m�� �109�

and the exterior solution is
Sijmn
E,N �x� =

�0
3

1 − 

��3�2/t2 + 10
 − 5

30t3 +
5
 − 1

15
−

2�7 − 10
t2�
5�7 + 5
�

�1 − �0
2�	�ij�mn

+ �3�0
2/t2 − 10
 + 5

30t3 +
7 − 5


30
−

7�5t2 − 3� − 20
t2

5�7 + 5
�
�1 − �0

2�	��im� jn + �in� jm�

− ��0
2/t2 − 1

2t3 −
2t2�7 − 10
�

7 + 5

�1 − �0

2�	�ijx̄mx̄n − ��0
2/t2 + 2
 − 1

2t3 −
8
t2

7 + 5

�1 − �0

2�	�mnx̄ix̄j

− ��0
2/t2 − 


2t3 +
6
t2

7 + 5

�1 − �0

2�	��imx̄jx̄n + �inx̄jx̄m + � jmx̄ix̄n + � jnx̄ix̄m� +
7�0

2/t2 − 5

2t3 x̄ix̄ jx̄mx̄n� �110�
igure 4 shows a comparison of the Neumann–Eshelby tensor
ith the original Eshelby tensor for �0=0.4 and 
=0.3. Here we
isplay the six coefficients of the radial basis arrays of the finite
shelby tensors, S·,N and the original Eshelby tensors, S·,�. One
an see that there are significant differences in the first three
oefficients.

A display of the displacement bases, U·,N, U·,�, and UB,N for
=0.3, is shown in Figs. 3�b�, 3�d�, and 3�f�. One can observe that

he difference between the Neumann and the original solution is
arge, even though the volume fraction is only �0

3=0.43=0.064.
igure 3 also illustrates different characters of the Dirichlet and

he Neumann solution.
Remark 4.1. The volumetric part of the disturbance strain �ij

d is
elated to the volumetric part of the eigenstrain �ij

* by a scalar
oefficient

Siij j
·,� �x� = �iij jS

·,��t�

ith

�iij j = �9,6,3,3,4,1�T �111�

rom this, one can find some interesting relationships of the finite
shelby tensors. First we have

Siij j
·,� �x� = 9S1

·,� + 6S2
·,� + 3S3

·,� + 3S4
·,� + 4S5

·,� + S6
·,� = const. ∀ x � �

�112�

his implies that even though the finite Eshelby tensors derived
the Eshelby tensor is a constant. In particular, the following dila-
tational contractions have elementary forms,

Siij j
I,D =

�1 − f��1 + 
�
1 − 


, Siij j
E,D = −

f�1 + 
�
1 − 


�113�

Siij j
I,N =

�1 + 
� + 2f�1 − 2
�
1 − 


, Siij j
E,N =

2f�1 − 2
�
1 − 


�114�

where f =�0
3 is the volume fraction of the inclusion phase. Second

it is interesting to note that the Dirichlet and the Neumann Es-
helby tensors follow the ordering

Siij j
I,N � Siij j

I,D, Siij j
E,N � Siij j

E,D, “ = ” holds iff f = 0 �115�

and that the difference between interior and exterior solution is

Siij j
I,D − Siij j

E,D = Siij j
I,N − Siij j

E,N =
1 + 


1 − 

= Siij j

I,� �116�

In classical theory, the dilatational eigenstrain has some special
properties, e.g., the dilatational eigenstrain due to a dilating inclu-
sion is constant. It appears that some of these properties are still
preserved in the finite spherical inclusion solution. This not only
validates the present theory, but also indicates that the present
theory may have some important applications, because dilatational
eigenstrains are usually associated with, for example, thermal ex-
pansion, lattice mismatch in quantum dots, and misfit strain in

phase transformation.
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4.3 Traction Distributions. Next, we examine the radial pro-
ection of the disturbance stress field. The physical meaning of
uch a stress projection field is a set of parametric traction fields
n the surfaces of successive concentric spheres. Any point, x,
nside the spherical RVE lies on a spherical surface whose normal

is along the direction of the position vector x. Thus the para-
etric traction field is defined as

ti
d�x� = � ji

d �x�x̄j�x� �117�
hich can be expressed in terms of the eigenstrain

ti
d�x� = �x̄j�x�Cijk��Sk�mn

I,� �x� − Ik�mn
s ��mn

* , ∀x � �I

x̄j�x�Cijk�Sk�mn
E,� �x��mn

* , ∀x � �E
�

�118�

ere Ik�mn
s is the fourth-order symmetric identity tensor, which

lso falls into our definition of a fourth-order radial isotropic ten-

Fig. 4 The components of the ra
or, i.e.,
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Ik�mn
s = �k�mn

T �r�Is �119�

where Is= �0,1 /2 ,0 ,0 ,0 ,0�T. One may then rewrite Eq. �118� as

ti
d�x� = �x̄j�x�Cijk��k�mn

T �x̄��SI,��t� − Is��mn
* , ∀x � �I

x̄j�x�Cijk��k�mn
T �x̄�SE,��t��mn

* , ∀x � �E
�
�120�

In analogy to the displacement field �see Eq. �43�� the disturbance
traction can also be written as

ti
d�x� = �imn

T �x̄�T·,��t��mn
* �121�

where T·,� is the radial basis array of the traction field and �imn is
given by Eq. �42�. The preceding two equations establishes a re-
lation between the arrays T·,� and S·,�. We find that

I,� I,� s

l basis arrays S·,�, SB,N, and S·,N
T �t� = K1�S �t� − I � �122�
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TE,��t� = K1SE,��t� �123�

here K1 is given by Eq. �54�. In view of Eqs. �71� and �72� we
an write

TI,��t� = TI,��t� + TB,��t� − T*�t�, 0 � t 
 �0 �124�

TE,��t� = TE,��t� + TB,��t�, �0 � t � 1 �125�
here the individual pieces are as follows. Corresponding to the
riginal Eshelby problem we have

TI,��t� = K1SI,��t� =
2	

15�1 − 
���1 − 12
 + 5
2�/�2
 − 1�
4 − 5


0


�126�

TE,��t� = K1SE,��t� =
	�0

3/t3

15�1 − 
��− 12�0
2/t2 + 10�1 − 
�

− 12�0
2/t2 + 5�1 + 
�

60��0
2/t2 − 1�



�127�

nd the Dirichlet and Neumann boundary contributions are

TB,D�t� = K1SB,D�t� = −
2	�0

3

15�1 − 
���1 − 12
 + 5
2�/�2
 − 1�
4 − 5


0



+
	�0

3�1 − �0
2�

10�1 − 
��7 − 10
�� 2�7 + 5
t2�
7�5t2 − 3� + 10
t2

10t2�7 − 5
�

 �128�

TB,N�t� = K1SB,N�t� = −
	�0

3

15�1 − 
��2�1 + 5
�
7 − 5


0



−
2	�0

3�1 − �0
2�

5�1 − 
��7 + 5
�� 2�7 + 5
t2�
7�5t2 − 3� + 10
t2

10t2�7 − 5
�

 �129�

he final contribution, arising from the eigenstrains, is

T*�t� = K1Is = �2
/�1 − 2
�
1

0

 �130�

t is readily verified that for t=1 the traction basis corresponding
o the Neumann–Eshelby problem is

TE,N�1� = �0

0

0

 �131�

hich assures ti�x��0 for ∀x���. Therefore the prescribed
eumann boundary condition is indeed satisfied by the solution
resented. This fact can also be clearly observed in Fig. 5, which
hows the three components of T·,�, T·,� and TB,� for both the
irichlet problem �a�,�c�,�e�, and the Neumann problem

b�,�d�,�f�. Here we choose �0=0.4 and 
=0.3. We observe that the
omponents of TE,N�t� go to zero at the boundary of the RVE �t
1�. It can also be seen that the boundary corrections TB,D and
B,N are substantial even though the volume fraction is small, i.e.,

0
3=0.064.

Closure
In this paper, the elastic fields due to a spherical inclusion sub-

ected to prescribed eigenstrains and embedded in a finite spheri-

al RVE are studied. On the outer surface of the RVE, uniform

ournal of Applied Mechanics
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boundary conditions are prescribed, which are either a displace-
ment �Dirichlet� boundary condition or a prescribed traction �Neu-
mann� boundary condition.

The notion of a radial isotropic tensor is introduced, which is a
generalization of the isotropic tensor. It has been argued that if a
spherical inclusion is placed concentrically within a spherical
RVE, the finite Eshelby tensors, which map the prescribed eigen-
strain to the disturbance strain field, are radial isotropic tensors. In
other words, the tensorial circumference basis for the finite Es-
helby tensors is the same as the basis for the Eshelby tensors in
unbounded space.

By utilizing this property, we have solved a pair of Fredholm
type integral equations, and we have obtained, for the first time,
the exact, closed form solutions for both the interior and exterior
Eshelby tensors for an inclusion in a finite, three-dimensional
RVE. It has been revealed that the finite Eshelby tensors depend
on both the location and the volume fraction of the inclusion,
which accurately captures both the size effect of the inclusion
and the boundary image contribution to the original inclusion
problem.

One of advantages of the present solution procedure is that it
circumvents the use of a finite Green’s function. As a matter of
fact, the solution of Green’s function of Navier’s equation for a
finite spherical domain is a more difficult problem, which is still
open. On the other hand, we hope that this work may shed some
light on the search for the finite Green’s function, however, we
believe, not without some added difficulties. We further note that,
by using our solution technique, one may be able to extend the
present solution to the elliptical inclusion problem in a finite do-
main. The difficulty then will be how to find the symmetry group
of the circumference basis of the elliptical geometry, which has to
be also invariant under the integral equation that involves the
boundary integrals Eqs. �51� and �85�.

We also would like to mention that the spherical RVE may be
subjected to general boundary conditions. Nevertheless, the two
fundamental solutions corresponding to the Dirichlet and the Neu-
mann boundary conditions form a basis for the finite Eshelby
tensors under a general boundary value problem. This issue will
be further discussed in detail in a separate paper �16�. It should
also be pointed out that even though the two basic finite Eshelby
tensors obtained here are the solutions of the homogeneous inclu-
sion problems, they are two fundamental elements for the finite
Eshelby tensors of a general RVE with more complex microstruc-
tures. By using superposition, they can be readily used to con-
struct the solutions for the n-inclusion �n�2� problem, and they
can be used to solve various homogenization problems as well as
the problem of inhomogeneity induced elastic fields in a finite
spherical domain.

To illustrate such applications, in the second part of this work
�11�, we apply the finite Eshelby tensors to evaluate the effective
material properties of composites. It has been shown that the
method employing the finite Eshelby tensor provides remarkably
accurate predictions in simple homogenization procedures. Fur-
thermore they furnish new variational bounds, and lead to a new
class of general homogenization methods.
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Appendix: Integration Formulas
In this Appendix the solution of the fourteen integrals listed in

Eqs. �55�–�61� and �90�–�96� is given. The procedure is similar to
the two dimensional case reported in Li et al. �17� and Wang et al.

¯
�18�. Considering x+rr=y, where y���, we have
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r̄i =
A

r
�ni − tx̄i� �A1�

r

ni =
r

A
r̄i + tx̄i.

ecall that t= �x � /A. The relations defined in Eq. �A1� are illus-
rated in both Figs. 1 and 6�a�.

The surface integration over the RVE is performed w.r.t. the
urface of a unit sphere, S2, centered at point x. According to Fig.
, we define a new basis êi at x such that ê3= x̄ Vector r̄ is then
escribed by the spherical coordinates � and �, i.e., r̄
�cos � sin � sin � sin � cos ��T.
Denote dS as the surface element of �� �the outer surface of

he RVE�. The projection of dS to the perpendicular direction of r̄

s denoted by dŜ, and is given by dŜ=r2 sin � d� d�. It is related

Fig. 5 The components of the radial
o dS by
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dS =
dŜ

cos �
=

r2

cos �
sin �d� d� =

r2

cos �
dS2 �A2�

where dS2=sin � d� d� is the surface element on the unit sphere
S2. Considering the shaded triangle �0xy� in Fig. 6, we find that

A

r
=

1

1 − 2t cos � + t2

�A3�

and

cos � = 
1 − t2 sin2 � �A4�

Furthermore from yiyi=A2, one can derive the relation

r = A�− t cos � + 
1 − t2 sin2 �� �A5�

Figure 6�b� shows that for every point P on the surface of the unit
sphere there exists a point P* such that r̄�P�=−r̄�P*�. Thus any

o ¯ ¯ ¯¯ ¯¯ ¯ ¯

is arrays T·,�, TB,D, T·,D, TB,N, and T·,N
bas
function, L �r�=ri ,rirj ,rirjrm , . . ., which is odd in r, satisfies
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o�r̄�P��=−Lo�r̄�P*��, and therefore the integration of an odd
unction of r̄, i.e., Lo�r̄�, over the surface of the sphere will be
ero. In particular, by applying Eqs. �A2� and �A4�, we find that

�
��

Lo�r̄�
r2 dS =�

S2

A
Lo�r̄�


1 − t2 sin2 �
dS2 = 0 �A6�

ote that sin2 � is an even function in r̄, i.e., sin2 ��r̄�
sin2 ��−r̄�. Further, we denote an even function of r̄ as Le�r̄�, if
e�r̄�P��=Le�r̄�P*��. Then, by virtue of Eqs. �A3�–�A5�, it fol-

ows that

�
��

Le�r̄�
r

dS =�
S2

A�1 −
t cos �


1 − t2 sin2 �
�Le�r̄�dS2

= A�
S2

Le�r̄�dS2 �A7�

ecause cos � is an odd function in r̄. Using Eqs. �A7� and �A6�
e obtain the following seven elemental integrals

�1� �
��

1

r
dSy = 4�A �A8�

�2� �
��

r̄i

r2dSy = 0 �A9�

�3� �
��

r̄ir̄ j

r
dSy = A�

S

r̄ir̄ j dSu =
4�

3
A�ij �A10�

ig. 6 „a… Relation between dS, d�, and d�; and „b… unit
phere.
2
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�4� �
��

r̄ir̄ jr̄m

r2 dSy = 0 �A11�

�5� �
��

r̄ir̄ jr̄mr̄n

r
dSy = A�

S2

r̄ir̄ jr̄mr̄n dSu =
4�

15
A��ij�mn + �im� jn

+ �in� jm� �A12�

�6� �
��

r̄ir̄ jr̄mr̄nr̄r

r2 dSy = 0 �A13�

�7� �
��

r̄ir̄ jr̄mr̄nr̄rr̄s

r
dSy = A�

S2

r̄ir̄ jr̄mr̄nr̄rr̄s dSu =
4�

105
A��ij�mn�rs

+ �im� jn�rs + �in� jm�rs + �ir�mn� js

+ �is�mn� jr�ij�mr�ns + �im� jr�ns

+ �in� jr�ms + �ir�mj�ns

+ �is�mj�nr�ij�ms�nr + �im� js�nr

+ �in� js�mr + �ir�ms�nj + �is�mr�nj�
�A14�

Using these seven elemental integrals and Eq. �A1� we obtain all
the integrals listed in Eqs. �55�–�61� and �90�–�96�.
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