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Summary. This is the first paper in a series concerned with the precise characterization of the elastic fields
due to inclusions embedded in a finite elastic medium. A novel solution procedure has been developed to
systematically solve a type of Fredholm integral equations based on symmetry, self-similarity, and
invariant group arguments. In this paper, we consider a two-dimensional (2D) circular inclusion within a
finite, circular representative volume element (RVE). The RVE is considered isotropic, linear elastic and is
subjected to a displacement (Dirichlet) boundary condition. Starting from the 2D plane strain Navier
equation and by using our new solution technique, we obtain the exact disturbance displacement and
strain fields due to a prescribed constant eigenstrain field within the inclusion. The solution is characterized
by the so-called Dirichlet-Eshelby tensor, which is provided in closed form for both the exterior and
interior region of the inclusion. Some immediate applications of the Dirichlet-Eshelby tensor are discussed
briefly.

1 Introduction

One of the most significant contributions to micro-mechanics in the twentieth century is
Eshelby’s inclusion solution and the equivalent eigenstrain theory (Eshelby [1], [2], [3], and
[14]). It has become an indispensable part of the theoretical foundation of contemporary
composite mechanics and materials, and it has many applications in today’s nano-science and
nano-technologies.

Eshelby’s ellipsoidal inclusion solution is derived based on the assumption that an inclusion
is embedded in an unbounded ambient space. This is a good approximation only if the size of
an inclusion is small compared to the size of the representative volume element (RVE). In real
applications, there is no infinite representative volume element, and the size of every RVE is
finite. Therefore, certain approximations have to be made in order to utilize Eshelby’s solution.
This limitation becomes obvious in applications of the Hashin-Shtrikman variational principle
[4], [5] because the Hashin-Shtrikman variational principles are essentially developed for elastic
composites with a finite volume, and a solution of the inclusion problem in a finite domain is
needed (see Weng [19] and Mori and Tanaka [13]). To circumvent this incompatibility, addi-
tional approximations have to be made in homogenization procedures (e.g., Willis [20], [21] or
Walpole [17]).

Kréner [9], [10], maybe Mazilu [12] as well, are among the first to attempt to study the
inclusion problem in a finite domain. Their approach is to seek a Green’s function of Navier’s
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equations in a finite domain. The attempt was abandoned, we believe, because of the mathe-
matical difficulty involved in obtaining a closed form solution of Green’s function in a finite
domain. Another attempt to solve this problem was made by Kirchner and Ni [8], and they
were examining the effect of domain influence on the Green’s function.

Generally speaking, to study the inclusion problem in a finite domain involves solving a pair
of integral equations in the interior of the inclusion as well as in the exterior of the inclusion. To
the best of the authors’ knowledge, there has never been any exact solution published in the
literature, which is related to finding Green’s function of Navier’s equation in a finite domain.

This paper is the first part of a series systematically studying inclusion problems in a finite
elastic domain. Based on symmetry, self-similarity, and invariant group arguments, a new
solution has been developed to solve a Fredholm type integral equation. In this paper, we first
report an exact and closed form solution of the elastic fields due to a circular inclusion
embedded in a two-dimensional (2D), isotropic, finite, circular domain, which is subjected to
prescribed displacement boundary conditions. We term the algebraic operator that links the
disturbance strain field with the eigenstrain as the Dirichlet-Eshelby tensor. It is shown that the
Dirichlet-Eshelby tensor obtained for a circular inclusion within a circular RVE has some
remarkable properties.

2 Inclusion problem

Figure 1 shows a circular inclusion Q, with radius a embedded at the center of a circular
representative volume element Q with radius Hy. Consider two arbitrary points x € Q and
y € 0Q and let R =y — x. Each vector x, y, R can be expressed as its length multiplied by a
unit direction vector. We shall denote this as x = |x|r, y = Hyn and R = R/, with R = |R]|.
Furthermore we define the ratios p = a/|x|, py = a/Hy and t = |x|/Hy = p,/p to allow for a
dimensionless description.

Within the inclusion a constant eigenstrain field is prescribed, i.e.,

€, X€Q,,
=9 1)
0, xeQ/Q..
)
n
y
Hy

Fig. 1. A circular representative element contain-
ing a circular inclusion
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On the boundary of the RVE, the following displacement boundary conditions are prescribed:
U; (X) = €%, Vx € 09, (2)
where €; is a constant strain tensor. Based on Saint-Venant’s principle, €; should be the
dominant strain field at the remote region far away from the inclusion, whereas for the region
near the inclusion there is an additional disturbance displacement field »¢ due to the presence
of the inclusion. The total infinitesimal strain field may be viewed as the superposition of the
remote strain field and the disturbance strain field,

€j = € + 6?7 (3)
Accordingly, the total displacement field may be viewed as the superposition of the remote
displacement field and the disturbance field,

ui(x) = &) + ug (x). (4)
The infinitesimal elastic strain equals the total strain subtracting the eigenstrain,

€y = €5 — 62} (5)
Assume that the medium is linear elastic,

oy = Cijreere, (6)

where Cyj is the elasticity tensor and oy; is the Cauchy stress tensor. The equilibrium equation,
0ji,; = 0, leads to the following boundary value problem (BVP):

Ciertit g — Ciecry; = 0, VX €Q, (7)
ul =0, Vx€o. (8)

Denote Green’s function, G5, (x — y), as the solution of Navier’s equation in an infinite elastic

domain:
CirtGrpeyj(X —¥) + 0pmid(x —y) =0, Vx,y €R", 9)

where 7 is the dimension of the space. In this paper, we are only considering the case 7 = 2.
The 2D Green’s function of Navier’s equation under the plane strain condition is

GZC(X - Y) = 8713#(1 — v) {(‘T@ — y@})eng — yj) - (8 - 4‘))571]' lnR}7 (10)

where v is Poisson’s ratio, u is the shear modulus, and R = \/(xl — yl)z—f—(xz — y2)2.
Using Somigliana’s identity [16], the disturbance displacement field may be expressed as the
integral representation

ul (x) = 7{) Cuunt (3)G7 (x =y ()5,
+ fi) ) Cyretss, (¥) Gy, 1 (X — ¥)ne(y)dS, — /Q CieG5y, (X = ¥) e (¥) ALY,
- 7@ Court (3167 (% = ¥y ()45, - /Q CoG, (% — ¥)el,(¥)AQ. (11)

In the last line, the boundary condition (8) is used. By considering (1), the disturbance strain
field of the BVP (7), (8) can be written as
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l * o0 o0
EZ(X) = g Emn [L Cretmn (Gki,éj (X - Y) + ij,&’ (X - y))de

1 .
5 Cunnt ) (67 (x=9) + G, (x =) (9)dS,. (12

where x € Q. One may note that Eq. (12) becomes a hyper-singular integral equation if x € 9Q.
If Q is unbounded, i.e., @ = R?, Eshelby [1], [2] found that the disturbance strain field is related
to the value of the constant eigenstrain prescribed inside the inclusion,

e%(x) = Sy (X) € 13)
where S, denotes the Eshelby tensor in an infinite domain, which is defined as

oo 1 - .
§ijmn(x) = - E/Q Cromn (Gki,éj(x -y)+ ij.’&_(x _ y))de. (14)

For isotropic linear elastic solids, i.e.,

Cijmm = ;x.éijém’n + 2#(5im5jn + 5in5jm)7 (15)
the tensor, S7},,,(x), was given by Eshelby for an ellipsoidal inclusion in an unbounded three-
dimensional (3D) space [1], [2].

In particular, for spherical inclusions in 3D and circular inclusions in 2D as a special case, the
Eshelby tensor can be expressed in elementary forms (e.g., Mura [14], Ju and Sun [7]). For
convenience, we list here the plane strain Eshelby tensor for a circular inclusion in an infinite

elastic medium:

(i) Interior solution:

I,00 - (3*4\)) ) . Y (4\)71) -
Simn(®) = grr—y) Gimdin + dindim) + g3 00mn, X € Qo (16)
(ii) Exterior solution:
2
E.00 14
Siimn () = gy [(0° + 4v =250 + (07~ 4v +2)

(BimOm + SinGjm) + 4(1 = p*) 87t + 4(1 = 2v — p*) Spri7
+ 4(V - p2) (51m7:/VrL + OjmTi¥n + Oin¥i¥m + 5jn7ﬂi7m)
+8(3p% = 2)rirrary], x € RY/Q, (17)

where p :=a/|x| and |x| = /2% + 2. Note that the superscript (/,00) denotes the interior

Eshelby tensor in an infinite domain and the superscript (£, o) denotes the exterior Eshelby
tensor in an infinite domain.

In Eq. (17), 73(x) := x;/|x|,7 = 1,2 are the components of the unit vector in the direction of
the position vector, x. It can be easily verified that the following identity holds:

5im7’:7‘7n + 51‘7#’]‘”% + éjwzrirr + ész’Vm = _2517'577;)7, + 5717%&7‘71 + 51‘715,7’771, + zazjrmrn + 25mn7717j' (18)

Therefore it may be observed from Egs. (16), (17) that for a fixed p there are five inde-
pendent circumference bases, and they may form a non-Abelian finite group!. By grouping

In a 3D spherical inclusion, the non-Abelian group has six elements, and for 3D ellipsoidal inclusions, the
non—Abelian group may have seven elements (see Li et al. [11]).
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them together in a 1D array, we denote @y, (r) as the circumference basis of the Eshelby
tensors, 1.€.,
04j0mm
OimOjn + OinOjm
O (1) 1= OifTmTn . (19)
O iy
70 m¥n

Then the components of both the interior and exterior Eshelby tensor may be rewritten in a
unified expression as the matrix product of two one-dimensional arrays, i.e.,

Sij?;n(x) = {S[foo (t) 5L’j(smn + Sé’oo (t)(éiméjn + 5in5jm) + Séoo (t)éiijVn

84 ()3t + ng(t)mﬂ,,m} (20)

= 0},,,(r)S"(1), @1

and

gg% (X) = {S?m(t) 51]'5mn + Sg’oo(t) ((Szmbm + 5in5jm) + ng (t) 57’j7‘m7‘n

+Sli’,oo (t)émn?ﬂiyj + S[g',oo (t)?"iTijTn }

= 0, (1)S">(1), 22)
where the vectors, 8°°(t) and 8*(t), are specified as
S1%(1) f4v— 17
SL(t) 3 —4v
1
/,00 d .00 —
S™(1) = | Sy*(1) ST 0 |, (23)
S0 0
55 (1) -0
ST () [ 9(p/t)*—4v—2 |
Sy (1) —3p2/12 +2
§ (1) = | sEx() | = g2 I PP /t? +8v+ 4 (24)
3 8(1—v) Po ’
SEo (1) —12p3/t* +4
550 L 86/E=2)

where the variable ¢t = |x|/Hy = po/p, with p = a/|x|, and p, = a/Ho.

To find the Eshelby tensor in a finite domain, we consider a circular inclusion embedded in a
finite, isotropic, circular RVE. Without loss of generality, we assume that the disturbance strain
field can be expressed, analogously to Eq. (13), as
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x) =S5 (x)e,,, VxeQ, (25)

i ymn

where the superscript D indicates that the Dirichlet boundary condition is prescribed on the
boundary of the RVE. Then Eq. (12) yields a tensorial integral equation for the Eshelby tensor
in a finite domain,

L] ®.00 ]' o0 o0
gzﬁ;n(x) = S?ﬁjmn (x) + 5 jég (Gikﬁj(x -y)+ Glrei (x— Y))W(Y)Ckémgg(}gn (y)dQy,. (26)

Note that this integral equation has two different forms, depending on whether x is inside or
outside the inclusion,

o0 1 o0
Sijgm( ) Sﬁ]mn( ) 2% (led( )-i—G]”(X y)) ( )Ckipquq?ﬂn( )ngv VXEQQ, (27)
Q

o0 1 o0 (o]
ggvfn( ) gLE;m?Z( )+§fi) (GLkJ(x_y)+G]]» L(X_y)> ( )CMDCISE(]WM( )dQ% VXGQ/Q€7(28)

where the superscript (I, D) denotes the interior Dirichlet-Eshelby tensor for a finite
domain and the superscript (£, D) denotes the exterior Dirichlet-Eshelby tensor for a finite
domain.

From Egs. (27), (28), one can see that in order to find the interior Eshelby tensor S%.? (x)

ymn

one has to find the exterior Eshelby tensor S%; and in order to find S ( ) one has to

ymn ( ) ymn

first solve a Fredholm type integral equation (28).

3 Solution of the integral equations

Before solving the integral equation (28), we first introduce the concept of the so-called radial
isotropic tensor. One may find that the interior Eshelby tensor, Sm}m, for a circular inclusion
inside on unbounded space is an isotropic tensor (see Eq. (16)), which reflects the symmetry
property of an isotropic elastic medium, i.e., Cypy is isotropic. Nevertheless, the exterior
Eshelby tensor, SE Wm, is not an obviously isotropic tensor (see Eq. (17)), and it depends on the
position where it is evaluated. For a given exterior point, x € R*/Q,, if we integrate

§E">o

iimn(X — ) along a circle that is centered at x, and with fixed radius, ie., [x —y| = const.,

Sfﬂf;l( x) will become an isotropic tensor. We call a tensor that has such a property “a radial
isotropic tensor”.

There is something special about this property, it reflects the symmetric relationship between
the inclusion and its ambient space. Moreover, for a concentric circular inclusion and the

corresponding circular RVE, this symmetric property should remain. Therefore, the finite

Eshelby tensor, Sfmm, should be a radial isotropic tensor as well.

Since the average of a radial isotropic tensor over a circle is an isotropic tensor, it can only be
the combination of homogeneous functions of 7;(x) of the zeroth order, second order and

fourth order. This implies that the circumference basis of S x) should be similar to the

Umn(
circumference basis of §WM( ), which is the hallmark that represents the concentric property
of the circular inclusion and the circular RVE. Therefore, we assume that the exterior Eshelby
tensor in the finite domain can only have the following form:
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S (x) = ST ()00 + S5 P () (imOn + 0indim) + S5 P ()04 mTn

ymn
+ SPPO8riry + SEP Wi,
ey

ymn (r)SEYD(tL (29)

where 7; = 2;/|x|, and the 1D array, 8¥(t), is defined as
T
SEP (1) = [ST 70,85 7(0), 55 (0,557 (1), 55" 0)] (30)

where Sf’D (t),7=1,2,3,4,5, are unknown functions of a nondimensional radial variable
t = |x|/Hy that are to be determined, and @, (r) is the circumference tensorial basis that is
known based on the symmetry argument. Note that the radial basis array 7 () does not
depend on subscripts ijmn. In particular, for x — 9Q it follows that |x| - Hp,t — 1, r —n
and p — p,. Then the array 8" (1) = 8%(1) becomes constant and

S (x) — O

£,
iymn zjmn(n)s 00(1)7 vx € 0Q. (31)
The basic hypothesis of our approach is that the circumference basis of the Eshelby tensor of
an isotropic finite domain, Sgyfn (x), is similar to that of the Eshelby tensor in an isotropic
infinite domain. This postulate is true only if the circumference basis is invariant under the

following boundary integration operator, i.e.,
1 o0 o0 3
St ) =5 [ Cuna (63, = ¥) + G5, (x =3 )5 (),

= o G (X, ¥)dS,, = Kij [SE,1 (09Q)] (32)

= 5L (050 + SEP OBy + 5100 + 5 ()67
+ SEP O marivy + S (O)rivyrnr,

=0’ (r)sPP(), (33)

ymn

where the superscript (B,D) refers to the fact that Sgin is the contribution coming from the

Dirichlet boundary. Furthermore we have denoted the integrand as
1
G (%,¥) = 5 Cust (G5 (X = ¥) + G5 1 (x = ¥) ) ()SEi, 9). (34)
By explicit integration, we shall show that the circumference basis remains invariant under the
integration operator Ky, or the integral operator Ky, has the invariant property (33). After a
few algebraic manipulations, we find that
-1

8n(1l — v)uR
+ Ts (Emnn + énnm)éij + T2(2V — 1)(5im€jnn + 5m€j7&m

G'L’jrm’z = [Tléknkéijémn + Tl (2V - 1)(&”] + éjni)émn

+ 5jm£in'n + 5jn€inm) - 2Tl Ziéj‘gknkémn + TBEknknmnn 51’]’
— 2T, (&éjémnn + é@Zjlnnm) + Ty (2V — 1)(€mjnmnn + éjnmmnn)

- 2T3£i£76knknmnn:| ) (35)

where ¢; = (y; —2;)/R and R = |y — x|. For a circular RVE 7;(y) = y;/|y|.- Denoting
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T =[T,Ts,Ts)", (36)
we identify
v 2(1—v
1;22v lin 0 1(—2v) 0
T=KS*?(1), Ki=ul 0 2 0 0 0 |. (37)
0 0 1—22v 0 21(1—721’)

Integral (32) consists of the following independent integrals, which are evaluated in the
Appendix:

0 /d ) %em (v)ds, = 2n, (38)
(I1) /8 . }%émj(Y) dSy = ndy, (39)
(1) /O Q%e@zjzknk(y) ds, = ndy, (40)
(IV) /0 ) %Eknk ) ()1 (3) S, = 5 (2 = ) + (%) (), (41)

1
(V) / — il (L1 (¥) + La7) ASy = 5 (8450mn + SimOjn + Sjmbin), (42)
oQ

n
R 2
1 T, .
(VI) /agﬁ (imj(y) + €mi(¥))1m (y)10n(y) Sy = 3 (0imOjn
OO + g (1= 12)8330m + 728,57 (X7 (X), (43)

1 m
(VH) / E&;éjfknk (y)nm (y)nn (y) dSy = Z (1 — tz) (5im5jn
[2/9)

+5]m57w) + géijémn + gtgéijrm(x)rn (X) (44)
Thus the integral (32) can be evaluated exactly. Substituting Eqs. (38)—(44) into Eq. (32) gives
SZL (%) = SYP(1)050m + ST () (Simjn + Sindim) + S5 ()07

ymn

+ Sf’D (t)rirjémn + SgﬁD(t)V’éijan

= 0,,(r)$" (1), (45)

where
SPP(1) = Ko (1)K 8P (1), (46)
and

22v—-1) 1 v(1—1%) ]

. 0 4v—3 27l Lf
Ks(t) = ST wn 0 0 (@v-1e2|. (47)
0 0 0
.0 0 0 |
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The integral equations (27) and (28) then reduce to a pair of algebraic evolution equations,

0y, (r)S" (1) = @, (r) (8" (1) + K(t)S*" (1)), (48)
0j;,,(1)8"7 (1) = O, (r) (S (1) + K(1)S*"(1)), (49)
where K(t) = Ko (1)K is given by
M 2v(£2-1 2v(£2-1)(1-v) ]
i mep BED 4y, pE
_2_9y 2—12-2v)(1-v)
Ky — L 0 2@3-4y) g o RO
0= 8(1—v) |0 0 21 0 2(1 — v)i? (50)
0 0 0 0 0
L0 0 0 0 0 i

Eliminating the circumference basis from Eqgs. (48) and (49), we have
S"P(1) =8 (1) +87P(1), 0<t<py, (51)
SEL (1) = 8F (1) + 8PP (1), py <t<1, (52)

where 877 (t) = K(t)S¥”(1). It is reasonable to assume that Egs. (51) and (52) continuously
depend on t. Let t — 1 in (51) and (52), one can find S”(1) by solving the equation

S"P(1) = (1 - K(1))"'8">(1). (53)
The solution is
[ 4vog — 3p3 |
(4v —3)
4vpg — 3p5
2(3 = 4v)
2 4
SED(1) = | 2P0 =30 | (54)
3 —4y
P56 — 300
2(1 —v)
205 — 3p)
(v=1)

We comment in passing that the algebraic equations (51) and (52) are obtained from the
integral equations (27) and (28) under the condition ¢ # 1. By the continuity property of the
radial basis SE’D(L‘) we obtain Eq. (53). By doing so, we circumvent the difficulties in solving a
hyper-singular integral equation.

Substituting Eq. (54) back into Eqgs. (51) and (52), one can solve for both 8*2(t) and S (t),
which are the radial basis for the Dirichlet—Eshelby tensor in a finite domain,

4y —1 [ 1—4v?
L2 3 —4dy 30 — pi) 22 — 1
/Dy _ L~ Po Po— Po 200, _
S (t)—8(1_v) 0 +8(1_v)(3_4v) 42(2v—1) |, (55)
0 0
0 i 0 |

and
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[9p2/12 —4v — 2 —t2(4v — 1) [ 1 —4v?
—3p3 /12 +2 — 13(3 — 4v) 20 — 1
S5P(t) = Sflg/tzv) ~12p3 /8% +8v +4 +m a22v—1)|.  (56)
—12p% /" + 4 0
I 8(3p5/t" — 2) 1 L0

The exact expressions for the Eshelby tensors for a circular inclusion embedded in a circular
RVE under the prescribed displacement boundary condition then become

D 1 3p%(pE —1)(1 — 4w?)
§’[£j’rfnn(x) - m { |:(4V - 1) (1 - p%) + S (4V — 3) :|575]'5m77/
+ {(3 —4v) (1 - P%) + i (p%(;vl—) (32;2 - 1)] (GimOpm + Gindjm)
[12(2\) z41>f%:§)p% - 1)} Ifzéijrmrn}a vx € Q., (57)

and

SED (x) = o/ 9p2 /12 +4v—2 —2(4v - 1)
iymn _8(1 —V) Po

362 (p2 — 1) (1 — 4w
3t2(p2 — 1) (26 — 1
(pf — 1)( ) (8imOjn + Sindjm) + | — 12p3 /1> + 8v + 4
(4v —3)
1262(2v — 1) (p2 — 1
( (@ _);g/)’o )} Oifmn + { — 1205/t + 4} O i
- [B(308 /2 - 2>J} vxe 0/, 9

If we let Hy — oo, po/t = a/|x|, and py,t — 0, Eqs. (57) and (58) recover the classical Eshelby
solutions (16) and (17).

To visualize the Eshelby tensors, the coefficients $*°°, 877 and S*”, where o = I or E, are
plotted as functions of the radial distance ¢ (see Fig. 2). Here Poisson’s ratio is chosen as v = 0.3
and the inclusion size as p, = 0.2. Note that all coefficients have a jump at t = p,,, which implies
discontinuities of the strain components across the inclusion/matrix interface.

From Fig. 2, one may observe that all coefficients of S ie., the difference between S*
and S*°, are actually small, if Hy is large. This difference will increase if p, is increased.

4 Displacement field

To show that the prescribed Dirichlet boundary condition is indeed satisfied by the above
solution, we examine the corresponding disturbance displacement field. Substituting

ul (y) = Sfl’f);(l)e;q,y € 09, into Eq. (11), we obtain
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Fig. 2. Eshelby coefficients S (¢), S2(t), Ss(t), S4(¢) and S5(t)

uf(x) = /Q Cqué’Ggi,q(X —¥)er Ay + fgg CqulsfésDL(l)fth;? (x — y)nydSy

e

=¢ = (r)U(1), (59)

mn=imn

where the 1D array

U2 = [0720),U3°0), U3 (0)]

is the radial basis for the displacement field and Z;,,,(r) is the circumference basis for the
displacement field,

Viéwm
Eimn (I‘) = rméin + 7"naim (60)

ViV V'm



78 S. Li et al.

Let us denote

=, (B0 f ConteSEin (DG (X = Yy, (6)

m’m( )UI o / Cpq”mm qu(x y)dQJv X< Qe’a (62)
and

mm( )U[OC( ) = _/ CPQ”VMGZ’CL',q(X - y)de, VX € Q/Qe' (68)

e

Substituting Egs. (61), (62), and (63) into (59), one may find the radial bases for the dis-
placement field,

U201 =00 +UP"@1), 0<t<po, (64)
UPP(1) = 0P (1) + UPP(1), py <t <1, (65)
where
H 4y — 1
[ ,00 _ Ot _
U (t)78(1—v) 3—4v |, (66)
_ 9+
Po
4V—2+t—2
2 2
; pito p
UE,oot — 0 _ rFo 67
(t) S0l —v) 2-dv+3 |, (67)
2
Po
_4(172)_

and

1—4v+(1—p ) Sy
U (1) = piHot Oez 3344»# (68)
TR [P Ao P
—4(1 - p3)e?

It is readily verified that when ¢ = 1,

0
U’ = 0| =ul(y) =¢,E  (mU*P(1)=0, VyecoQ. (69)

mnTrmn
0

Note that when x € 9Q = r = n for a circular RVE. To this end, we have shown that the
prescribed displacement boundary condition is satisfied automatically and the above solution is
indeed the solution of the BVP (7), (8).

5 Traction field

Consider an arbitrary point x € Q. The disturbance traction vector on a plane tangential to the
normal direction is

1} = or, (70)
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where the disturbance stress is given by

Cine(e2,(x) — €5,), Vx€Qp,

U%(X) _ e (€ ) e (71)
Cijreed(X), Vx € Q/Q,.

Combining the above equations we find

1.D 4s .

d ¥y (X)Cijk[ (Skimn (X) - Hl(d:r)m>€wm7 VX € QE ’

t; (x) . (72)
75(%) Ciit S (X) € vx € Q/Q,,

where l],(cijzm is the fourth-order symmetric identity tensor. It is noted that it also falls into our

new category of a fourth-order radial isotropic tensor.
Analogously to the displacement field, we write the traction field as

t =B, T (e, (73)
Careful analysis reveals the traction coefficients
TP(1) =K (S"°(1) - I¥), 0 <t<pg (74)
TP (1) = K 8P (1), py <t <1, (75)
where I = [0 1 00 0]" are the coefficients of I]g;,)m. Similar to before, we write
TP (1) = T0(t) + T8 (1), 0<t<po, (76)
TP (6) = T%(0) + TP (1), pp <t <1, (77)
with
1

T =——H |1

0=gi 1] (78)

. [ —3p8/1* +2
.00 nog/t? 2 /42
TE (1) = i) —3p3/2+2 |, (79)
12(p3 /12 — 1)
and
(82 —10v+1)/(2v—1) 1
TED (1) = s 3 — 4y L) g (80)
4(1—v) 4(1 —v)(3—4y) 42
0 —4t

In Fig. 3, the three displacement coefficients U™, UP? and U*" are plotted, and they are
juxtaposed with the three traction coefficients T**°, T?? and T*” over the normalized radial
distance ¢, (0 < ¢ < 1). In the figure, we choose v = 0.3 and p, = 0.2. Note that all coefficients
are continuous and U?” = 0 at t = 1. Contrary to the variation of the Eshelby coefficients or
strain fields, the boundary contribution to the displacement field, UBP =P — U™, is
significant, and it changes the nature of the displacement field. Furthermore one can see that
the traction components are decaying along the radial direction.
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Fig. 3. Displacement and traction coefficients U;(¢) ¢ = 1, 2, 3 (a, ¢, e); T;(¢), 7 = 1, 2, 3 (b, d, f)

6 Applications

Using the tensorial bases

1

Ef, = 5 90, (81)
1

Eftm = 5 Gondu + i = 8dumn), (82)

the interior Eshelby tensor can be rewritten in terms of the E basis as

Sii

ymn

1= gy [ 3p(l-ps)1-2v) gy o
(X) = 2(1 — v) [Eijmn 2(1 — V)(S — 4v) ( ijmn (37,ij7"%)

9 2(9:2
+ ﬁ ((3 ~dy) - %) E2,. (83)
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Consider the averaging

Q=2 /z“/ ]?drdq’ (H2> (84)

on 73 1 /a?
(rmr) Q = na2/ / 5 TmTndrde = 1 ( )5'mnv (85)
Hy

and recognize that the ratio
2
a 2
S= BP0 (86)

is the volume fraction of the inclusion in an RVE. Then the average interior Eshelby tensor has
the following form:

<S£]?rm> =91 [Eiﬁ)vm + Sz [Egjzﬁmz’ (87)
with

g e, 371 —)
5172(1_‘)) and5274(1_v)((3 4v) 32y )" (88)

One may compare the above result with the interior Eshelby tensor of an infinite space:
1 o (3—4v)

21— 2 T 41—

It is both sensible and remarkable that the finite Eshelby tensor depends on the volume fraction

of the inclusion, which distinguishes it from the Eshelby tensor for an infinite ambient space.

Moreover one can verify that:

s = gOpl —|—52E()

. 0 _
iymn 1ijmn ynm? with 1= (89)

(i) whenf =0,s; =s), and sy = s);
(i) when f=1,s; =0, and s2 = 0.

The newly derived Dirichlet-Eshelby tensor is used in homogenization of a two-phase
composite material. The commonly used dilute homogenization method (e.g., Nemat-Nasser
and Hori [15]) is employed in calculating the effective material constants K, uo; and veg. The

homogenization results using SU;’;;? and Sf]l;m are depicted in Fig. 4. The inclusion properties

are chosen as K, = 10K and p, = b, thus v, = 3v, where K, p and v are the matrix properties.
It is common knowledge (which one can also observe from Fig. 4) that in the homogenization

of dilute inclusion distribution using Siﬁn the estimate of the effective material constants

becomes poor when the volume fraction of the second phase, f, becomes large. The results
obtained by using the Dirichlet-Eshelby tensor converge at both ends, f = 0 and f = 1, which

comes as a pleasant surprise. The reason for this improvement is that SWM loses its physical

meaning when f — 1, whereas SIP is always valid for the whole range of the volume fraction

iymmn
of the inhomogeneity, f € [0, 1].
Finally we include the following remarks: First, we have observed that the Dirichlet-Eshelby
tensor derived in this paper is independent from the prescribed boundary data. This indicates
that it is a good quantity that will serve well in material homogenization and characterization.

I.D
Secondly, we calculate the sum SZW( X),

Sﬁyly);( )= SIl?n( )+ Sé’zDzz(x) + §1‘122( x) + §2211( x)
= 4877 (1) + 4S5P (1) + 285 (1) + 28Y° (1) + SE (1)

= — 2. (90)
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ymn

This indicates that if the prescribed eigenstrain field is bi-axially uniform, i.e., €]; = €5,, the
induced disturbance strain field will be uniform as well. It means that even though the
individual components are position dependent, under uniform bi-axial loading, the volumetric
disturbance field is constant within the interior of the inclusion.

Moreover, one can calculate the sum of the exterior Eshelby tensor under uniform bi-axial
loading,

S (x) = ST (%) + S5y (%) + STih (%) + St (%)

= 4877 (1) + 4857 (1) + 2557 (1) + 2577 (1) + 557 (1)

-
=1 (91)
It is also interesting to note that
1
1.D ED _ gl _ _ 90
Si — Suy = Siy = 1I—v_ 2s1. (92)

7 Conclusions

In this paper, the problem of a 2D plane strain circular inclusion in a finite representative
volume element is studied. It has been argued that if a 2D circular inclusion is placed con-
centrically within a circular RVE, the tensorial circumference basis for the finite Eshelby tensor
is the same as that for the infinite Eshelby tensor.
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By utilizing this property, we have solved a pair of Fredholm type integral equations, and we
have obtained, for the first time, the closed form exact solutions for both the interior and
exterior Eshelby tensors for a finite RVE.

By applying the present results to evaluate the effective material properties, the methods
employing the finite Eshelby tensor show a remarkable accuracy in simple homogenization
procedures.

The dual, traction boundary problem is reported in a sequential paper [18]. Further we have
obtained the results for the three-dimensional case. Those results and their application to
homogenization are reported in separate papers.

Appendix
Integration formulas

In this Appendix, we document the detailed integration procedures in evaluating the seven
integrals listed in Egs. (38)—(44). According to Fig. 1, we define the vectors

[ cos( + ¢)

n= and y = yn;e;, (93)
| sin(¢ + ¢)
[cos @

r= and x = 27;e;, (94)
| sin @
[ cos(¢p + 0)

= and R =y — x = R{e;. (95)
| sin(¢o + 0)

Considering x + B¢ =y, we have

H R

Ez::fo(nifm), or 77,7;:]70&'+t7"¢, (96)
where

_ Ix|
L=, (97)
H 1
20 _ . (98)
E /1 —2tcos¢+ 12
Elemental integrals
Instead of integrating along ¢ we pick 6 as our integration variable.

From Fig. 5, we obtain the relation

R

as = G (99)

Applying the law of cosine on the triangle (0xy) in Fig. 5 one can find that

cosy = V1 —12sin 0. (100)
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Fig. 5. Relation between dsS, d¢
and d0

Furthermore we express Eq. (98) in terms of 0 giving
R:Ho(ftc050+ V1 — 2 sin? 9). (101)

Considering an odd function #° of ¢ we find by applying Egs. (99), (100) and (101) that

1 2n g()(ﬁ)

—Z°(0)dS = Hy——=—==d0 =0, 102
aéR " 0 VI st 0 (102)
where i = [cos 0 sinf]”. For an even function #° of ¢ it follows that

2n 2n
/ 2°(0)ds = / Hy <1 - ﬂ) P(R)d0 = [ HoZ"(h)do. (103)
5o 0 1 —2sin® 0 0

In both equations above we have used the fact that an odd function of n integrates to zero over
the range [0, 27].

We shall break integrals (38)—(44) into the following seven elemental integrals, which are
easily integrated using Eqs. (103) and (102). The seven elemental integrals are

2n
o [ ap=2n (104)
2n
(i) /O %@Cup ~0, (105)
2n 2n
(i) / (0 = / Fuydd = 78y, (106)
0 0
2n
. H,
(N) / Foéiéjémd‘b =0, (107)
0
2n 2n 7
(V) [) &‘gjémgnd(ls = A ﬁiﬁjﬁmﬁndg = Z (5i75'm7z + 51m5jn + 5inéjm)a (108)
) ZnHO
I (109)
0

2n 2n
(vii) / bl bsclp =/ T o T Ty s 10
0 0

T
= ﬂ <5zj5mnérs + 5im5jn5rs + 5i’n,5jmérs + 5i75mn5js + 5i35mn5jr

571]'57}7/7571,5 + 571777/5]'7671,5 + 5777 5]'75771,5 + 57757;7]5719 + 579 5mj57w

57?]' 5%9 517,7’ + 57171 5]19 517,7 + 57% 5]'5 (smr + 57?7’57% 5nj + 57?8 57m’5nj) . (1 1 0)
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Utilizing (96), one can find the following identities:

2n 2n 2n 2n
R R Hy
= de = / 2 pb,0,dd = 2t 7 / 20 hngd = —2t 7, / :t,do,
o Ho ¢ o Ho ¢ *Jo R ¢ 0 ¢

2n R 2m
/ 2 ltibde = 217y / Gl LA,
o Ho o

2m 2n
R
/ il b lrp = 21 7 / 0l bl s,
o Ho 0

The seven integrals

(1) Consider integration (38), we have
1 ZnH 2n 27'(H
I = / 7 bndSy = /0 Eﬂéknkd(i) = /0 de +t m/o foékd/qb = 2.
0Q

(ii) Likewise, by using the elemental integrals, we can show that

1 27 HO 2m 2n HO
I = }—efmdey = E(ﬂ%dd) = fiéjd(ﬁ +try f&dd) = Tlfél'j.
0Q 0 0 0

(iii) It can also be readily shown that

2n
]{0 2n 2n HO
[HI - _ébéJéknkd(]s = ébéquf) +1t 7y —&éjékd(ﬁ = 713(3[]'.
R A . R
0

(iv) First break I; into the following pieces:

2m 2m

1
Iy = / }—e&cnknmnwdﬁy = Ll dd — 1t 7y, Lyl dp
aQ 0 0

5 2n H% ) 2n 2n HO
+ T ﬁdd) — 7| Tm nkéndd) +7n Enk@mdd)
0 0 0

2n 172
H
- lf37"k7"m7”n A R_gdd)
Considering the following identities:

2n 2n 2m
R
o 17y / ngnnkdd) =1 V/c/ [_Tgmfngkdd) + tz / gmgndd)
0 0 0 0

2n 2n
= 277 / Cnl by lsdp + 1> / Clndp,
0 0

85

(111)

(112)

(113)

(114)

(115)

(116)

(117)
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2n 172 2m
H? 1
—dp =—— d 118
¢ /0 pi=1—pg ) 99 (118)
2m
H
. /0 fonkfmd¢:n5km, (119)
2n 72 2n p2 4 2n
i . (7R ¢
b /0 Rznk d) 0 2 ¢ 1_¢2 0 d)v ( )

one may obtain
2n 2n
Iy = rpry, / do + (1 —1%) / Lolydp
0 0

2n 2n 2n

= _tzyk (7'777/ /kﬁwd(b + 7 ﬁkemd¢) + 2t27'}c7's g?n[wﬁkﬁsdqs
0 0 0

(2 — 12)0pn + W27 (121)

NI

(v) Integral [y is shown straightforwardly as

2m HO
Iy = f@@(ﬁmnn + Tl )Ap
0

2m

2n HO 2n HO
=2 f@fjfmfnd(f) + | v / —fifjfnd(}.') + 7y, / —fifjfmd(,‘b
0 o R o R

(5zj5mn + 57’,m5jn + 57175]7") (122)

NGRS

(vi) Taking (95) for n;, n;, n, and n, in the sixth integral Iy; and removing zero parts
gives

2m
R
Iy = / ﬁ() (fﬂ’&j + nquj)nmnn ¢
0

2n 2n
=2 / Clin, A+t | == () + 75 M, A
0 0 H
27[H2 2n H
= 2/ —Zgjeifmfn do + 2t/ —&@(&n?"n + Vmgn) do
0 Ro o Fo
2n 2n H
+ 28277 / Gl dg +t / N (575 + 7)o b A
0 0 0

2n
+ 12 / (7 + 7)) (b + Tl dp. (123)
0
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For the individual pieces we write

2n H2 2n H2
e 2 / —5 il by dp = 2 / — il b lsls A
0 Ro 0 R()
2n 2n
=2(1+1%) / Gl b, dep — 4t / Cilily by A
0 0
2n 2n H
=2(1-1%) / Gl b, dep — 4t / — Uil lsrs A
0 o Fo

2n 2n
=201 =) [ lilnly, dd + 87,7, / %eiejemenesnrw
0 0

2n 2n
=2(1—1%) | Lililnl,dd + 8P, | Lilily bl do, (124)
0
2n H 2n H
° 2t / —Lilj(byyr + Tiln) dp = 2t / — il (U7 + Tl ) lsls A
0 Ry 0 Ry
9 2n RO
= —4t ﬁéi‘gj(émrn + Tmen)nsys dd)
0
2n
= _4t2 / éiéj(‘@mrn + 7ﬂm‘€n)‘€s7fs dd)
0
(125)

2n 2n
= — 47,7 / Gl b dp — 27,7 / Cilily s A,
0 0

2n 2n 2n
H
o i / — (75 + 1) bl Ap = — 247737 / Uil byl dep — 20577 / Ll lolsde, (126)
0 0 0 0

2n 2n 2n
o« / (7 + 7)) (T + Ponl) Ap = 77, / bl dep + tPriry, / Uil A
0 0

il dp. (127)

2n
+ 277, / Ly, A + t2rymy,
0

Thus the sixth integral can be written in the elemental integrals as
2n . 2n 2n
Iy = 2877y | bilide+ Crivn, | Lilydd + v, [ Ll dd
0 0

2n

2n
+ Zszij / Zién dd) + tzyjrn / éif’m dd)
0 0
2n 2n
— 4% / Gl bs dp — 27,7 / Lilil s dp
0 0

27 2m
— 207775 /0 Ul ls A — 24757 /0 il b ls dp

2n
2n
+2(1—2) / bty dp + 8277 / b3l L . (128)
0

0
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We evaluate [y; by using
2n TC
7,7 / Lilills A = 1 (65 + 2rimy),
0

2n
TrTs ﬁquémfng;fg dd) = % (&Jjémn + 5im5jn + 57177,5j'm + 25ij7'm7ﬂn + 257ym7‘i7ﬂj
0

+ 20577 + 2007 + 2057V + 20577y, (129)
which gives
i ont?
Iy = (3 — tz) 6 (57]57,,,,, + 57;7,,,(5]'77, —+ 57177,5jm) + ?57;]'7'7”1”7,,
it it
- ?6mn7ﬂz7ﬂy + ? (6im7"j7n + 5i7z7'j'7ﬂm + 5,7’m7'i7% + 5jnrir)z)~ (130)
By applying the identity
5imTjTWL + 5@'7ﬂ/‘j7‘m + 6]'WLT’L'T7L + 6j7LViT7rL =-2 5zj5mn + 5'L'm5jn + 6'L'n5jm + 2 6ij7'm7ﬂn + 2 5mn7ﬂi7j
(131)
we finally get:
T . nit? 9
Iy = § (5;7(37;«”1 + 5imbjn + 57?715,]'771,) — 7 5zjj($mn + it 52]j7"m7'n- (132)
(vii) Substituting 7, 7,, and 7, into the final integral Iy gives
2n
R
Iy = ﬁoéiéjés”snmnnd(ﬁ
0
2m 172 2n
H H
= /0 ﬁézfjémfn d¢ —+ t/o R—O&é] (Kmrn + men) d¢
0
2n 2n 2z
2 H 2
O | Gldd ot | e liltabubirdg 4 [ t(Eur,trab)Grdg. (133)
0 0
0

The first two parts are given by % (124) and % (125). For the remaining complicated part we
write

2n H an H
t/ —quejgméngsrs d(i) = t/ —ﬂifj-émﬁnfsTséyﬂy d¢
0 R() 0 RO
2n
= 72t27ﬂ/‘8/ @Mﬂmﬂnﬁsmd¢
o H

2n
= 21,7 / 0l il bl ls dp. (134)
0
Thus we break the seventh integral into the elemental pieces as
2n 2n
Iy = Cryry | lidg+ (1 —0) [ bl t, dd
0 0

2n

2n 2n
— s / Cilil s dep — 27,75 / 0l ls A + 26777 / Cililn ol lsdg.  (135)
0 0 0
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Evaluation gives

o\ T 2mt?
Iy = (3 -2t ) ﬁ (5ij5mn + 5im5jn + 5i725j7n) + Tézjrmrn
nt® m?

+ ?bmnrﬂ‘j - ﬁ (bimyjrn + 57717']7"771 + 5jm7ﬂi7‘n + 5j7zri7n)7 (186)

and by using (131) we prove
X (

IVH = (1 - t2) Z (577;75]71 + 57l77,bjm) +257]57}’7W + %577]'7‘177,7/'77,- (187)
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