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Summary. This is the second paper in a series concerned with the precise characterization of the elastic
fields due to inclusions embedded in a finite elastic medium. In this part, an exact and closed form solution
is obtained for the elastic fields of a circular inclusion embedded in a finite circular representative volume
element (RVE), which is subjected to the traction (Neumann) boundary condition. The disturbance strain
field due to the presence of an inclusion is related to the uniform eigenstrain field inside the inclusion by the
so-called Neumann-Eshelby tensor. Remarkably, an elementary, closed form expression for the Neumann-
Eshelby tensor of a circular RVE is obtained in terms of the volume fraction of the inclusion. The newly
derived Neumann-Eshelby tensor is complementary to the Dirichlet-Eshelby tensor obtained in the first
part of this work. Applications of the Neumann-Eshelby tensor are discussed briefly.

1 Introduction

In part I of this serial work, a novel solution procedure is developed to solve a class of
Fredholm integral equations. By applying this technique, an exact solution of the elastic
fields due to a circular inclusion inside a finite domain is obtained, which is subjected to
prescribed displacement (Dirichlet) boundary conditions. This second paper deals with its dual
problem: the elastic fields due to a circular inclusion inside a finite circular representative
volume element (RVE) that is purely subjected to prescribed traction (Neumann) boundary
conditions.

In finite domains, the Eshelby tensors are expected to form a duality pair for two different
boundary conditions, much like the Hashin-Shtrikman variational bounds (Hashin and
Shtrikman [3], [4], Hill [5], and Weng [9]) come as a pair from minimization of elastic potential
energy and complementary potential energy. The original Eshelby tensors (Eshelby [1], [2]) for
an ellipsoidal inclusion are obtained in an unbounded domain, and there is no boundary
condition effect. This is because an infinite space has no boundary, and therefore the boundary
effect never affects the inclusion solution. The Eshelby tensor for an infinite domain serves as a
good approximation if the size of an inclusion is small. However, in the ensuing homogeni-
zation processes, effects of different boundary conditions become important, especially in the
range of moderate to high inclusion concentrations. In engineering applications, all RVEs are
finite, and the Eshelby tensors become domain dependent. As discovered in Part I (Li et al. [6])
of this series, the Dirichlet-Eshelby tensor depends on the ratio between the size of the inclusion
and the size of the representative volume element (RVE).
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2 Inclusion problem

Consider a circular inclusion Q. embedded at the center of a circular representative volume
element Q. The following traction boundary condition is prescribed on the boundary of the
RVE,

aji(xX)n; =1; = 0'%%]’, Vx € 0Q, (1)

where o*% is a constant stress tensor.

Under the pure traction boundary condition, Hill [3] showed that the remote constant stress
tensor is equal to the average stress in the RVE, i.e.,
(T?J = <G@‘j(X)>Q =: 0y, Vx € Q. (2)
The total stress field may be decomposed into two parts: the average stress field (also the remote
stress, macro-stress) and the disturbance stress field,

sz(x) = &ij + G%-(X), Vx € Q. (3)

From the average theorem (2), the average of the disturbance stress field vanishes, i.e.
((r%(x))Q = 0; and the induced disturbance traction field vanishes on the prescribed traction
boundary,

ol(x)n; =0, Vx € 0Q. (4)

Ji
The total strain field may be viewed as the superposition of the induced remote strain field and
the disturbance strain field,

€j(x) = e%— + Efj(x)7 Vx € Q, (5)
where the induced constant strain field on the remote RVE boundary is defined as
6% =: Dyjeoyy = Dijrebre, (6)

and Dy is the elastic compliance tensor of the matrix.

In the presence of the second phase inclusion inside the RVE, the average strain field is not
equal to the remote strain of the comparison matrix, i.c., € # (€;(X))q =: &, which means
that the average of the disturbance strain field will not be zero in this case.

To account for the misfit of an inclusion, a piecewise constant eigenstrain field is prescribed

inside the RVE, i.e.,

. €5 Vx € Q,,
€;(x) = (7)
0, Vx € Q/Q.

In terms of the eigenstrain field, we have

Ciie (e + (%) =€), VX € Qe

01i(%) = o) + o%(x) = e (8)
Cijkg (€M + GM(X)), Vx € Q/Qg

0 Dije (0 + 04(X)) + €5, VX € Q, 0

€j(x) = €5+ ezjj(x) = 0 d 9)
Dyjie (0l + 07,(x)), Vx € Q/Q,.

Equivalently, the disturbance strain and stress fields are related via

eg’-(x) = Dijkwgé(x) +ey(x), Vx € Q, (10)

or



A circular inclusion II: The Neumann-Eshelby problem 93

g

) = {sz(sﬁe(x) ) VX €Q, (1)

v Cyrredy (%), vx € Q/Q,.

Analogously to the Eshelby tensor for an infinite space, the interior/exterior Neumann-Eshelby
STRMENS o

tensors( ymn “ijmn

) for a finite domain are introduced to characterize the disturbance strain

field in terms of the prescribed eigenstrain for a finite RVE under the Neumann boundary
condition, such that

. Sk (X)€,, VX € Qo

Sij‘mn(x)emn, Vx € Q/Q,.
Assume that the solid is linear elastic,
04j(X) = Cyjreere(X), (13)
where Cy is the elastic tensor and the infinitesimal elastic strain is defined as
e5(X) = €5(x) — €;(x). (14)
The equilibrium equation, oj;;(x) = 0, leads to the following boundary value problem:
C@jk/;uﬁ/j(x) — Cljk/;e}*w(x) = 0, Vx € Q, (15)
oﬁ(x)nj(x) =0, Vx € 0Q. (16)

It is noted that the eigenstrain distribution is localized within the inclusion, and it is not present
on the RVE boundary.

Denote Green’s function, G, (x —y), as the solution of the following Navier’s equation for
an infinite elastic domain in a two-dimensional space,

Cz’jka;,jk’[j(x — y) + 57’rzié(x - Y) = 07 X,y € sz (17)
which gives

© 1
G (x—y) = S =) {4t — (3 — 4v)o; InRY, (18)

where v is Poisson’s ratio, p is the shear modulus, ¢; = (y; — x;)/R, and R = |y — x|.

As in Part I of this work, the circular RVE depicted in Fig.1 has radius Hy, with a circular
inclusion of radius a in the center. The ratio of inclusion and RVE is characterized by the
dimensionless parameter p, = a/Hy. The normalized radial position for an arbitrary vector
x € Q is denoted as ¢ = |x|/Hp, and its circumference variation is characterized by a unit
normal vector r defined as r(x) =: x/|x|. For clarity, we reserve the symbol n(y) =:y/|y| if
y € 0Q to emphasize its position on the RVE boundary. The argument x or y may be dropped
in the following if no confusion can occur.

Using Somigliana’s identity [8] and considering the prescribed traction boundary
condition (16), the disturbance displacement field may be written as the integral
representation:

ug, (x) = 7{) N Cirerts, (¥)Gy, (X — ¥)nu(y)dS, — /Q CineGry j(X = ¥) €4, (¥)dQy. (19)

It is noted that the first part of Eq. (19) is integrated alongy € 90Q. When evaluated at x € 9Q,
it becomes a weakly singular integral equation. To avoid discussions on weakly singular
integral equations, we restrict x € Q for the moment, which means that x is in the interior
region of the domain Q.
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)

Fig. 1. A circular representative element contain-
ing a circular inclusion

A similar type of integral equation was solved in Part I. However, the prescribed traction
(Neumann) boundary value problem is fundamentally different from the prescribed displace-
ment (Dirichlet) boundary value problem. Instead of solving a Fredholm type integral equation
for the strain field, a Fredholm type integral equation for the displacement field u? has to be
solved, i.e.,

ug, (x) = fg ) Cirerty, (¥)Gy, (X — ¥)u(y)dSy — €, /Q Ciine Gy (X — y)dQy. (20)

e

A new third-order tensor, U;,,’,?Z(x), is introduced to characterize the disturbance displacement

field in terms of the prescribed eigenstrain

I.N
U’LM’VL(X)G:IMN VX € QE’

uf (x) = (@1)
UZN(x)er vx € Q/Q,,

mn mn’

such that the expected strain field solution can be obtained as Egs. (12), i.e.,
d L g d
5@'(") =5 (u”(x) + uj,i(x))

%(U’N (x) + ULY (X))e* =SV (x)er | Wx € Q, (22)

mn,j Jmni mn ymn mn?

L (UE, 00 + UL (%) )€, = SN, ()€ VX € Q/Q.
As stated in Part I, the main hypothesis of our approach is that the Eshelby tensors for a
circular inclusion in a circular RVE are “‘radial isotropic fourth-order tensors”, i.e., they can be
decomposed into a radial basis and a circumference basis. Using the matrix product of two one-
dimensional (1D) arrays, we may express the components of the fourth-order interior and
exterior Eshelby tensors in the following compact form:

I.N s
g77]'mn (X) = ®Zj;'7ym (r)sl N(t) ’ (23)
sim(x) = ©f  (r)s"N(), (24)

where the 1D arrays, SV (¢) and 8%~ (1), are specified as
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sy () (ST
S5V () S5 ()
SNy = | SEV@) | and 8PN = | SEN(@1) |, (25)
sy (@) i)
S5 (1) [55(0) ]
and the vector ®;;,,,(r) is the circumference basis of the Eshelby tensors, which is defined as
0ijOmn
OimOjn + Oinljm
Oy (T) == 0¥ mTn . (26)
757 Omn
ViV ¥mn

Similarly, the tensor U™ (x) is a “third-order radial isotropic tensor”, and it can only admit the

mn

following form, which may be represented by the inner product of two 1D arrays:

Ujm, (%) = &1, U0, vx € Q, 27)
UL x) =20, @UN(0), vx € Q/Q,, (28)
where the 1D arrays are defined as
U (o) Uy (o) Y16
U'Ney=|oiNw) |, UPN@o) = |USN@) | and  Ein(r) = | 7mbin + 70Sim | - (29)
UL () UPN(¢) TiTmn

So the disturbance displacement field decomposes into a radial and circumference basis:

u;j(x) = u;'i(tv 1‘) = 5»;”7, Eg‘mn(r)ULN(t)a vx € Q, (30)
uf (x) = uf(t,r) = ¢, B, @)UV (1), vx € Q/Q.. (31)

Further, the kinematic relation (22) yields the following differential mapping that uniquely
determines the radial basis of the strain and the displacement fields via

SNy = DU (1) and SEN(1) = DUV (1), (32)
where D(¢) is a differential operator defined in matrix form as
ol 1_4d _1 e
¢ ¢ dl t
Lo aeen
— 1,d 2
Y=g | O —i+E | (33)
A AL B
L 0 0 —i+al

3 Solution of the integral equation

To solve the Fredholm integral equation (20) in the form of Egs. (30) and (31), we substitute
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ug(y) - Emw‘—‘gmn(ny)UEYN(l)v Vy € 0Q (34)
into Eq. (20), which yields

1) == [ ConniG3 (x—¥)a2,

e 7§ G (% = IE () U (D), (35)

Depending on whether x is inside or outside the inclusion, the domain integral in Eq. (35) has
two different solutions. Denote the domain integrals

= (00 == [ €6, (x - 9)dD,, Vx € O, (36)

e

LWHL( )UE Oc( ) = _/ CP‘IW"LG;’Oi,fI(X - y)de7 VX € 9/967 (37)
Q.
and the boundary integral
Eg;nn (r)UBN(t) = f;ﬂ kaéGzO)?,q (x-y) EZmn (nY)UE’N(l)né(Y)dSya vx € Q. (38)

Substituting Eqgs. (36)—(38) into Eq. (35) and eliminating the circumference basis, one can find
the following pair of algebraic equations for the radial coefficients:

UV =00 +UPN(), 0<t<a/H, (39)

UEN () = U () + UPN (1), a/Hy <t<1. (40)

Closed form expressions for U"*(t) and U*(t) can be obtained by directly evaluating the
domain integrals (36) and (37),

/ CpgmnGp; o (X — ¥)AQy,
Q

1 0 2v . .

2v d R7R] 19} quRm S
+1_2[/M(R>dg}5m+[/ax(]€)dg}a
0 (RiRy,
Q, Q. 41
[ () oo |, e ()

For x € Q,, the integration can easily be evaluated as

4y — 1 3 —4v

H’VLVL( )U (t) - 8(1 _ v) xbéﬂ‘bﬂ + 8(1 _ V) (xmém + x'L(SLV}‘L) (42)

For x € Q/Q,, the integrals involved in the above equation can be derived as

(In R)d r-, vx € Q/Q,, 43
@) [ G- (n Ry, =7 /0. (43)
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0 (R:R; na? a? a?
b) | — (ZE2)an, =2 [ 1= == | i + 7,00) — —— 7485
( )/gg Oxk(RZ) K] [( 2|x|2>(” i)

2
-2 (1 —;;—2> ViTij:|, vx € Q/Q,. (44)

Substituting Egs. (43) and (44) into Eq. (41) yields

1 a® at
=T Booy— .~ _o % s
'—‘mm(r)U (t) 8(1 _ V) { |:2(1 2\1) ‘X|2 X4:| xbémn

+|22v— 1);‘;2 |;j4] (@B 2 Oim) — (4@@) xi{”lf” } (45)
After reorganization, U*(t) and U”*(t) are obtained as
4v—1 4y 240
U (1) = % 3—4v| and UP™(1) = —S(f?f{()) S|2-a+8 . (46)

v 2
: {(1-3)
It is noted that, when subjected to the differential operator (33), the Eshelby tensor for an
infinite RVE is recovered, i.e.,

St = DU () and S°() = DOUE>(1) . (47)
The boundary contribution U?¥(¢) can be evaluated directly from Eq. (38) as

E‘Zmn(r)UB’N(t) = o A iyan (X, ¥)ASy, (48)
where

Himm = CquZG;‘q (X - Y) Egmn (nY)UEN(l)nl’, (Y)

1
T {vaNu) (1= 26) @080 = Cid) + 20

+ USV’N(l) |:(1 - ZV) (nmnpépém + n’nnpfpéim + ninmén + ninném

— 2 nly) + 21 il + 2nnei£mnpzp}

+UBN(1) [( 1 — 20) (2 by — Mopinls) + 2nmnn£mpepnqeq} }
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Integral (48) consists of the following independent parts, which are derived in the Appendix:

1
@) [ zhas, =0, (50)
g 1
(i) / Enmkﬂdey =ntr, (1)
a0
1 T
(W)/ g iledSy = gt(%ﬁﬂc + 756 — 71055), (52)
a0
. 1 T
(iv) /m];ni@ﬁmpﬁpdsy = 318 7idik — 150 — 710y), (53)
1 T
(v) Agﬁnmjnknpépdb’y = Zt(l — tz)(néjk + ¥0i + 7dy) + 7 £ 7Tk, (54)
. 1
(vi) ag}—gémpﬁpnqéquy =0, (55)

1
(vit) /é)gﬁninjéknpﬁpnqéquy

T 5 T 2 T g
= gt(l — 1 )(7"7‘,5,7% Jr?”jém) *Et 1 3 rkél;/ +§ 12 riviri. (56)

Integral (48) can be integrated exactly after substitution of Egs. (50)-(56). After some
algebraic manipulation, the final result is expressed in compact matrix form as

UHN(1) = K(1) URY(1), (57)

where
2(1=2v)t (1 —4v)t —2vt +vi3
K() = ﬁ 0 t t+28e | (58)
0 0 (3 —4v)?
The term UZY (t) represents the Neumann boundary correction of the disturbance displacement
field due to a finite RVE. This reduces the system of Egs. (39) and (40) to

UM =U00>0) + K@) UPN(1), 0<t<a/H, (59)
UsN (@) = UB=0) + K@) UPN(1), a/Hy <t < 1. (60)

Assuming that UY(¢) and U®¥(¢) depend on ¢ continuously we let ¢ — 1. One can solve for
UZN(1) by letting t = 1 in Eq. (60), i.e.,

UEN (1) = [1 - K(1)}71UEv°°(1)7 (61)

which gives
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305005 — 1)
U N(1) = H, Lot (62)
205(1 — pj)
Substituting Eq. (62) back into Egs. (59) and (60), one can first find
[ (8p2 —4v—2) t +4v(1 — p2)® ]
2
H
UBN (1) = % (4 307) t+2(2v = 3)(1 - p})E* |, (63)
L a0

and subsequently one can solve for both U""(¢) and U (), which are the radial basis for the
interior and exterior disturbance displacement fields in a finite domain,

4y—1 (3pF —4v—2) 1+4v(1—p2)P*
Ho piHo
UI’NI = 0 _ 2 _ _2\43 <<
=gy |2~ | Taa—yy | 430120 =30 - |, O=t=a/H,
0 4(3—4v)(1—p2)t?
(64)
-4v—2+p_(2)_
¢ £ (3p2 —4v—2)t+4v(1—p2)¢
ZH 2—4 2 ,DZHO
UE~N1§:M V@ 0 _ a2 _ . 2\43 <i<1.
® S0 |7t | TRy | G302 =3)A )t , a/Hy<t<1
4 p 4(3 —4v)(1—p3)t?
t e
(65)

The radial coefficients for the Eshelby tensor can be obtained by applying the differentiation
operator (33) to Egs. (64) and (69),

rdv—17 [—2(14+2v) +3p2 +12(1 —p2)v*]
1 3—4y ) 4-3p2—6(1—p2)t*
SI‘N():D(t)U[‘N(t)ZS(l_v) 0 +8(1ng) 12(1—2v)(1 - p2) 2 ., (66)
0 0
L o | I 0 |
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SEN (1) =D()UPN (1)

_—2(1+2v)+%_
2 tt
r_ 2 A2 27
5 3p2 2(142v)+3p5+12(1 — pg)vt
#o 4—3pF—6(1—p3) 1*
__ PG |42y 1208 | s 12(1—2v)(1— p2) 2 (67)
8A-v |~ & & | 8- Po ‘
0
4 12p5
2t 0
16 24p2
L2 e

The exact expressions for the Neumann-Eshelby tensors for a circular inclusion embedded in a
circular RVE under prescribed traction boundary condition are then given as follows:

S, (x) = ﬁ{ [(4v = 1)(1 = ) — 331 p})(1 — 4v )] 636100

+[(8 = 4v) + 0F + 3081 = )1 = 2 )] (BinsOin + Bindyn)

+ [12(1 —2)p2(1 — p?) tz}éijrmm}, Vx € Q,, (68)

2 1 9
SEN (x) = 8({@ 3 { {—2(1 +2v) (?2 + 1) +12ve% + p? (74 +3- 12vt2>} 810

2 1
—+ t—z +4 — 6t2 — 3p(2) (?4 +1- 2tz):| (5im(sjn + 57777,5jm)

1+ 2v 1
+ 4( o +3(1—2v) zz)—12p3(t—4+(1—2v)z2)}5ijrmm

[4 3p2

[8 (3,0%

+ |z tZ—Z)}nrﬂmrn} Vx € Q/Q,. (69)

Expressions (64), (65), (68), and (69) can be re-cast into a unified form,

S N(t) =8"*@1t)+8"N(t), 0<t<1, (70)

UN() =0"1)+UPN(), 0<t<1. (71)

We emphasize that the solution in a finite RVE is essentially composed of the infinite domain
solution and the boundary correction. The components of each term are plotted in Fig. 2 and
Fig. 3a, c and e for an inclusion size p; = 0.2 and Poisson’s ratio v = 0.3. Note that all Eshelby
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Fig. 2. Coeffcients of the Neumann-Eshelby tensor S;(t),Ss(t),Ss(t),S4(¢) and S5(t)

tensor coefficients have a jump at the inclusion/matrix interface ¢t = p,, while the disturbance
displacement field remains continuous within the RVE.

4 Disturbance traction field

The induced disturbance traction field on a set of successive concentric circular surfaces can be
determined using

£ (x) = ofi(x) 75(x). (72)

In view of (11) and the Eshelby tensors (68)-(69), the disturbance traction field can be specified
as
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7 (x) @W(SI’N (x) — 1% )em VX € Q,

d ktmn ktmn

ti(x) = BN 73
75(%) Cijit S (X) € vx € Q/Q.. (73)

where [I,(Ciiin is the fourth-order symmetric identity tensor. It is noted that it also falls into our

new category of a fourth-order radial isotropic tensor.

Simple calculation reveals that ¢¢(x) can also be characterized using a third-order radial
isotropic tensor Ty, (X), which can be further decomposed into a radial and circumference
basis such that
) — {Lﬁjv() €ion = S @ ()6, Vi € Q.. -

TN (r)e,, = E  (m)TEN(1)e vx € Q/Q,,

*
. -
mn mn =imn mn?

with the radial basis being determined by
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Fig. 3. Coefficients of the Disturbance Displacement Field U;(t) i = 1,2,3 (a, ¢, e); Coeflicients of the
Disturbance Traction Field T;(t) ¢ = 1,2,3 (b,d,f)
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ST () + 2085V (@) + (1 =SV @) — v

T V(1) :% (1 —20)SEN (1) — (1 —2v)/2 ,  0<t<a/H, (75)
Sy (1) + (1 =S (o)
SPN() + 205N @) + (1 —v) STN (1)

TN (1) :% (1 —2v)S5Y (1) , a/Hy<t<1. (76)

S50 + (1= ST ()
It is readily verified that when ¢ = 1,
0

T™N(1)=(0] . (77)

This means that the traction vector vanishes at the boundary of the RVE, i.e., t?(x) =0 for
vx € 0Q. This verifies that the prescribed Neumann boundary condition is exactly satisfied by
the obtained Neumann-Eshelby solution.

Figure 3b, d and f show profiles of the disturbance traction coefficients of T**(¢), T?(¢)
and T*V(t), where we chose v = 0.3 and p, = 0.2. Note that all coefficients of the disturbance
displacement and traction fields are continuous and that TV (1) = 0 at ¢ = 1.

5 Applications

With the Neumann-Eshelby tensor derived, homogenization theory needs to be revisited to take
into account the boundary effect of the RVE and the size effect of the inclusion.
Consider the averages

1 1 .
<t2>Q,, = §P(2) and <t2nmnn>9{, = Zp%) Omns (78)
and the volume fraction of the inclusion in an RVE

az

2
The average interior Neumann-Eshelby tensor from Eq. (68) has the following form:
) 1 2
<S£j’r]>£n>9,), =91 [E'E'j’r)nn +S2 EE'j’r)mﬂ (80)
with
1+4(1-2 3—-4 4—-f(6-3
oLy (B (S (6 - ) s1)

20—v) = 7 4(1—v) ’

and
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1
[Egjl)n’ﬂ :§5i7'5mm (82)
@ _1
[Ezj’m'n :é (52'm6jn + 5i’néjm - 6zj5mn)- (88)
One may compare this result with the interior Eshelby tensor of an infinite space,
Lo _ 0 o __ 1 o 3-4 e
S?]mw =51 [Edjmn + Sy [Edjmn - 2(1 _ V) ymn + 4(1 _ V) [Eijmn' (84)

Note the average interior Neumann-Eshelby tensor is different from the average interior
Dirichlet-Eshelby tensor of part I.
Note the following limiting cases:

(i) when f=0,s; =5, and sy = sJ;
(i) whenf=1,s; =1, and sy = 1.

The newly derived Neumann-Eshelby tensor <§f]fncw)g is used in the homogenization of a single
inclusion problem. For comparison, we consider the same material properties as used in Part I,
where the ratios of inclusion and matrix properties are: bulk modulus K, /K = 10, shear modulus
U,/ =5, and Poisson’s ratio v,/v = 3. Effective material properties K, tor and veg are eval-
uated using the dilute homogenization method (e.g., Nemat-Nasser and Hori [9]) under pre-
scribed traction. The homogenization results are depicted in Fig. 4 in comparison with those
fjfncw It is well known that the dilute homogenization gives poor predictions for
effective material properties when the volume fraction of the inclusion is large (dashed lines). By
using the new Neumann-Eshelby tensor, satisfactory results have been obtained for the whole
range of the volume fraction of the inclusion (f € [0, 1]).

To understand the nature of the Neumann-Eshelby tensor, we calculate the sums of both the

o . 1N N
interior and the exterior Neumann-Eshelby tensors, S} (x) and S (x),

obtained using S

I.N LN IN I.N IN
Siijj (X) = S1111(X) + Sgagn(X) + Sy19a(X) + Sy, (%)

= 48PN (1) + 4SEN (8) + 285N (1) + 25N (1) + SEV (1)

14+ (1—2v
= 7(1 v )f = 251 (85)
and

SiY (%) = ST (%) + S53(%) + STioh (%) + S5 (%)

= 455N (1) + aSEN (1) + 285N (1) + 287N (1) + SEN (1)

(1-2v)f
= "7 86
T, (86)
Again, the dependence of both S;Zn(x) and SSWIZCZ (x) on the position vector is cancelled out
under the prescribed uniform biaxial eigenstrain distribution, but they still have explicit
dependence on the volume fraction of the inclusion.
Compare the Neumann-Eshelby tensor with the Dirichlet-Eshelby tensor obtained in part I:

since (1 —2v) >0,

I+ (1 =2v)f 1S IN _ ol.D
=y 1=y = Sii > S (87)
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Fig. 4. Comparisons of homogenization results between the methods using S;:n and the methods using
IN
Si]"mn
1=2vf_ —=f EN E,D
P > T = Sy > Suy - (88)

This indicates that the dilatational sum of the Neumann-Eshelby tensor is always larger than
that of the Dirichlet-Eshelby tensor, which means that under the same prescribed bi-axial
eigenstrain field the disturbance strain field corresponding to a prescribed traction boundary
condition will be larger than the disturbance strain field corresponding to a prescribed dis-
placement boundary condition.

It may be interesting to note that

SN _gBN _gle 1 _ o0 89
1

i i~ i T 1y

6 Conclusions

In this paper, we solved the dual problem to part I: that is the elastic fields of a 2D plane
strain circular inclusion in a finite representative volume element under the prescribed
traction boundary condition. By doing so, we have found the so-called Neumann-
Eshelby tensors in both the interior and exterior region of a circular RVE with a circular

inclusion.
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As in the case of the Dirichlet-Eshelby tensors, it has been shown that the Neumann-Eshelby
tensors do not depend on the prescribed boundary data, and they only depend on the volume
fraction of the inclusion and the position where the tensors are being evaluated.

Applications of the Neumann-Eshelby tensor shows remarkable improvement in a simple
homogenization procedure. We have obtained the three-dimensional counterparts of both the
Dirichlet-Eshelby tensor and the Neumann-Eshelby tensor, and have applied these results to
develop new variational bounds. They will be reported in later papers.

Appendix
Integration formulas

In this Appendix, we document the detailed integration procedures in evaluating the seven
integrations listed in Egs. (50)—(56).

Define:
x|
= — 90
HO ) ( )
R=:]y—x|=Hyv1—2tcos¢ + 2, (91)
and
— cos(¢ + ¢) —tcosq
g:y X _ 1 .((P }) .bP’ (92)
Iy —x| /1—2tcos¢+12 | sin(p + ¢) —tsine
According to Fig. 1, we define the unit normal vectors at x € Q and 'y € 0Q:
y | cos(e+ o)
ny =-—=1 . , and y = Hon(y), 93
) ly| Lln((p—ﬁ-(/)) on() ©3)
cos
r(x) = X _ ] ¢ , and x = tHor(x). (94)
|X| sin @
Considering x + R¢ =y, we have
H _
b= FO (ni(y) — 24), (95)
or
R
i(¥) =74 + i, 96
nily) =gt + 7 (96)
where
_ X
X =: [?; =t VZ‘(X) (97)

Equation (96) is useful in the following derivations to substitute n in the integrands for £.
Another trick usually applied is to substitute unity into the integrand, which reads

Ho\* _ Ho\* _ Ho\ > R N\
A :<FO> (s — Zs)*= (%) (148 - 2n;) = (FO) <1 +1% — 2([7065 +:rs)xs)

—(%)2(1 ) _2(%%5@ =1, (98)
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Elemental integrals

To facilitate the integrations, we shall break the integrals (50)—(56) into the following elemental
integrals, which have been proved in the Appendix of Part I.
The seven elemental integrals are

2n
i) [ dap=2n (9)
2n 1
(i) / Lyde—o, (100)
o R
2n
0
2n 1
(iv) /0 5 lilitudd =0, (102)
2n T
(V) / giéjém&zd(p = Z (51']577172 + 5im5jn + 5in5jm)a (103)
0
2n 1
(Vl) /0 }—e&@émfnfyd(ﬁ =0, (104)

2n
(Vll) A gi@'gmgngrgsdd’ = ﬂ (57}7'6‘”141675 + biméjnars + 5inéjmbrs + b?lvamnajs + bisbmnbjr
+ 57}]'51%7"5715 + 5im5jréns + 577%5]75771,5 + 5717*5mj5ns + 5@'55’mj 5%7
+ 571'5777,8517,7" + 57777(595777 + 57775957717 + 5717“5777,8517,' + 579 57}77"577 . 105
2 J J ] 7

Utilizing Eq. (98), one can further find the following identities:

21 R 2n
B g = -2, / (b,
Hy 0

0
2n R 2n
1 bt = 22, [ 66,00, (106)
o Ho 0
2n R 2n
/ Ir éi‘gjfménérd(b = _st/ Eigjém‘gnérgsdd)' (107)
o Ho 0

The seven integrals

(i) Considering integration (100) it is trivial to show that
1
I = / Lyas, 0. (108)
ok

(ii) Likewise, by using the elemental integrals, we can show

I f/ lnlnédS /ZnHon-nKChb
1 — DQRzkk y—o lek

2n

R 2n 2n 21IH0
o Ho 0 0 o R

= mlr;. (109)
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(iii) It can also be readily shown that

1 2m HO
[1]] = ag}—enmﬂkdé’y = A F%anékdqf)

2m 2n

R 2n 27'EH
o Ho 0 0 0o E

T
= gt(éim + 5];&% - (3@'7"@.

(iv) Integral I;y follows as:

1 "
[IV :/ —niéj&{npﬁpdSy :/ —Om@fknpfpdqi)
preyis ' o E

2m R 2n 2n 27IHO
o Ho 0 0 o R

= gt(g 5]'1{7"@ — 5ik7ﬂj - 57,']‘7%)-

(v) By substituting Eq. (96), integral [y is written as:

1
[V = / —nmjnkngégdSy
ool

2n
Hy (R _ R _ R _ R _
= 2(Z0+z ) (—=¢+z)(—¢ = by
/0 R (Ho z+xl> <H0 j+xj) (Ho }c+-75k> <H0 z+xe> Ao

2m
/0

R o _ _ R _ _ _
+ ([’To) (&@é(l’glk + eif;{&l‘gﬁbj + 67&6&%5‘%) + ([‘T()) (&xmk + ékxixj + éjxixk)

R\’ R\? (RN, ) _

o N o Ho\_ _ _ _
+ Uclei %% + LiloZiZx 0 + CleiZnr + Zi2i2x + (ﬁ) xixjxkxz&] d¢.

Three types of integrals are involved in the above besides the seven basic integrals:
2n R 2 . 2n 2n R
/ (—) Cililledd = (1 —17) 0l lodp — 2535/ <*> Ll Ll
0 \Ho 0 0o \Ho
27
b _
=1 (1 = %) (840ke + dixdje + Opedic) + 42,2 / 0l Lol Lsd
0
T 1,
=1 (1- 3! )(84j6xe + OikSje + SjwcSie)
+ g (04iZiZe + OrtiZ; + OipZiZo + O3sjTy + OjiZo + OjuiZ ),

(110)

(111)

(112)

(113)
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/ZR(R) Llildd = /2< ) 00005l d
0
2n 2n 2
=(1-¢ /O (%) Lilildd — 27 /O <§0) 40 Lsd g

= 77‘((57;1'56‘16 =+ 57/¢§?j + 5]'10921') — 27‘&@;5@@%, (114)

2n
/O ( )Moup / ( )Mudqa
2m ~ 2n R
= (1 — t2) ; &@dqﬁ —sz/o (E)éf;'é;égd(b

2n
0

= (0 + 22:7;). (115)

Substituting all these integrals into Eq. (112), after lengthy algebra, it can be avaluated as

Iy :gt<l — IfZ) ((3@'7% + Oty + 5]’/{7'1') + ntSTiVij- (116)
(6) Use Eq. (96) to simplify

R _ R _
Nply = (}Toép—l—xp)ép :}To—i-xpép. (117)
Thus the sixth integral vanishes:

1
]V[ = / 7€7np[p’)’bq£quy
ool

2n
T HN, (R R
_ /0 (§)47/<H—0+xpep) (H—O+xq€q)d(l)

2n R 2n 271]_[0
= —lidg + 27, il A + 2p7 / — il d
o Ho 0 0

= —2n%; + 2n%; = 0. (118)
(vii) Finally the last integral is written as

1
[VH:/ Enmjfmpfpanqd%
oQ
2n
Ho\ (R R R R _
:/0 <§> (HOZ +x><—£ +xJ>&< + Zply )(Fo—i-xqéq)dd)
2n R 3 - on R 2 B 2n R 2
—/(; (E) &éjﬁkdq§+2xp/0 (170> é;;fjfkfpd(ﬁ +xj/0 <I‘TO) &;Ekdd)
- 2t /R 2 o n /R
+x; ; [’To gjgkd¢) +.7)qu ; [?0 &@&cﬂpéqdqﬁ
2n R 2n R an R
+ 2% .9_6/ (—)Kﬁ lydd + 22 56/ (—)é'f l,d —|—5€5€/ (—)f a
pjo H, zkp¢ pzo H, ,]kp¢ L]O ],[0/’C
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2n

2n 27
+ XiXpy /0 flfkfpéqd(].’) + X;2Xp%q /0 fjéképéqdd) + Zi‘pi‘ii‘j‘/o fpfkd(f)

2n H,
N / <f°) Uplylidd. (119)
0
All these components have been evaluated before. After lengthy calculation, it finally yields

T

5 t37q-r]-¢”k. (120)

T 2 T 9
[VIIZ*gt 175 5ij7‘k+§t(17t)(5ik7j7'+5jkri)+
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