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Summary. In recent studies, the exact solutions of the Eshelby tensors for a spherical inclusion in a finite,

spherical domain have been obtained for both the Dirichlet- and Neumann boundary value problems, and they

have been further applied to the homogenization of composite materials [15], [16]. The present work is an

extension to a more general boundary condition, which allows for the continuity of both the displacement and

traction field across the interface between RVE (representative volume element) and surrounding composite. A

new class of Eshelby tensors is obtained, which depend explicitly on the material properties of the composite,

and are therefore termed ‘‘the Composite Eshelby Tensors’’. These include the Dirichlet- and the Neumann-

Eshelby tensors as special cases. We apply the new Eshelby tensors to the homogenization of composite

materials, and it is shown that several classical homogenization methods can be unified under a novel method

termed the ‘‘Dual Eigenstrain Method’’. We further propose a modified Hashin-Shtrikman variational principle,

and show that the corresponding modified Hashin-Shtrikman bounds, like the Composite Eshelby Tensors,

depend explicitly on the composite properties.

1 Introduction

Eshelby’s solution for embedded inclusion problem [3]–[5] is fundamental in the development of

contemporary micromechanics. In the past, numerous efforts have been made to extend Eshelby’s

solution to include the effects of material anisotropy [22], inclusion geometry [1], [25], imperfect

interface conditions [8], nonuniform eigenstrains [21] and surface and interface energies [27].

Micromechanics is essentially a multiscale theory: Although a ‘‘representative volume element’’

(RVE) can be viewed as a material point at the macro-scale, it is associated with specific

microstructure at the micro-scale. It is well known that the classical Eshelby solution was obtained

for an elastic isotropic inclusion embedded in an infinite elastic matrix. With uniform eigenstrain

prescribed, the Eshelby tensor inside an elliptical or ellipsoidal inclusion is found as constant and

size independent. The treatment of the RVE as an infinite space implies that the inclusion

concentration is dilute, and therefore, a direct application of these results to the case of finite

inclusion concentration is only approximate. To date, only limited work exists to study the inclusion

problem for a finite RVE. It is not until recently that Li et al. [14]; Wang et al. [29]; Li et al [15]

Correspondence: Shaofan Li, Department of Civil and Environmental Engineering, University of California,

Berkeley, CA94720, USA

e-mail: li@ce.berkeley.edu

Acta Mech 197, 63–96 (2008)

DOI 10.1007/s00707-007-0504-2

Printed in The Netherlands
Acta Mechanica



utilized the invariant group properties of circular and spherical inclusions to derive the exact closed-

form solutions of the Eshelby tensors for such inclusions within a finite RVE under both Dirichlet-

and Neumann boundary conditions. It has been found that the so-called Dirichlet- and Neumann-

Eshelby tensors are not constant tensors in the interior of the inclusion even for uniformly prescribed

eigenstrains. Instead, they are dependent on the position inside the RVE and the volume fraction of

the participating phases. They further have some salient symmetry properties denoted as ‘‘transverse

radial isotropy’’. Consequently, the modification of existing homogenization methods [22], [23] via

these finite Eshelby tensors provides significant improvement in predicting the behavior of

composites [16]. In particular, the Hashin-Shtrikman variational bounds [6], [7] are modified

according to the prescribed boundary condition.

The multiscale interaction of the microstructured RVE and its macroscopic environment can be

more realistically represented by a three-phase model, where the finite RVE (inclusion and matrix) is

geometrically idealized into concentric spheres (or circles in 2D) and is embedded in an infinite

homogeneous and isotropic composite material. The three-phase model was used successfully in

deriving the generalized self-consistent scheme (GSCS) [2] and improved Mori-Tanaka theory

[18], [19] and it has been widely applied, for example, to study grain boundaries of poly-crystals

[13], fiber or particle-reinforced composites [24], coated fiber composites [9], syntactic foams [20],

and granular rock [26]. The elastic solution for the three phase model under uniform external load

and under uniform eigenstrain were reported in [2] and [18], [19], however, these solutions are not

all in closed-form and lack an expression for the Eshelby tensor.

In this paper, we extend our previous work to solve the exact elastic field and associated Eshelby

tensor of an idealized, spherical, finite RVE embedded in an infinite, homogeneous, isotropic medium.

This surrounding infinite medium can be identified with the homogenized composite and we therefore

denote the boundary value problem of the RVE as the finite Eshelby problem under ‘‘composite

boundary conditions’’. A solution is found which satisfies the continuity of the displacement and

traction fields across the RVE/composite interface, and it is thus termed the ‘‘Composite Eshelby

Tensor’’. It is shown that this result is a linear combination of the Dirichlet- and Neumann-Eshelby

solutions reported in [15]. The fact that the ‘‘Composite Eshelby Tensor’’ is a composition of these

special results gives the terminology a twofold meaning. Second, we use the ‘‘Composite Eshelby

Tensor’’ to explore its ramifications to existing homogenization techniques. A new scheme, termed the

‘‘Dual Eigenstrain Method’’ is devised, which unifies previous homogenization methods. Third, we

propose a new variational principle for the generalized boundary problem, such that the Hashin-

Shtrikman bounds can be substantially modified. We note that the results presented here are all

analytical and can be applied straightforwardly. In particular, we show that our model contains a closed-

form result of the Modified Mori-Tanaka Method developed by Luo and Weng [18], [19].

The following Section serves as a brief review of our finite Eshelby tensor formalism, in particular

the Dirichlet- and Neumann-Eshelby problems. They are needed for the development of the

underlying concept, the ‘‘Composite Eshelby problem’’, treated in Sect. 3. The important results of

Sects. 2 and 3 are summarized in boxes 1, 2 and 3, so that one may skip the detailed derivation in

preference for the following applications. These are the Dual Eigenstrain Method, discussed in Sect.

4, and the Modified Hashin-Shtrikman Bounds, derived in Sect. 5. We conclude this work in Sect. 6.

2 Dirichlet- and Neumann-Eshelby tensors

In this section, a brief summary of the Dirichlet- and the Neumann-Eshelby tensors is outlined. For a

detailed derivation, we refer to our original work [15]. The familiar reader may skip this section.
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2.1 Considered problem

The problem under investigation is shown in Fig. 1. We consider a spherical inclusion WI with radius a

embedded at the center of a spherical RVE W with radius H0. Consider two arbitrary points x [ W and

y [W and let R = y � x. Each vector x, y, R can be expressed as its length multiplied by a unit direction

vector. We shall denote these unit vectors as r = x/|x|, n = y/|y| and ‘ = R/R, where R = |R|. If y lies on

the boundary, as shown in Fig. 1, we have |y| = H0 and n will be the outward normal of the boundary

surface qW. Furthermore we define the ratios q = a/|x|, q0 = a/H0 and t = |x|/H0 = q0/q to allow for a

nondimensional description of the problem. An important quantity is the ratio between the volumes of

the inclusion and the RVE, the so called volume fraction f = q0
3. The material property of the inclusion

WI and the surrounding matrix WE = W/WI are given by the elastic tangents C
I and C

E; which are

considered as isotropic in the following derivation. It is noted that the concentric arrangement of the two

phases, as shown in Fig. 1, is a chosen idealized representation of the true microstructure, which

captures the volume fraction of the two phases within the RVE. The RVE is homogenized by

considering the prescribed, piecewise constant eigenstrain distribution

e�ðxÞ ¼ e�; x 2 XI ;
0; x 2 XE;

�
ð2:1Þ

such that the entire domain W = WI [ WE has the constant modulus C ¼ C
E: In passing, we note

that this homogenization procedure may not be exactly the same as the classical ‘‘equivalent

eigenstrain method’’ [22] since for a finite sphere the disturbance strain field due to a piecewise

constant eigenstrain distribution is not uniform in general.

The displacement field u (and corresponding stress and strain fields r; eÞ within the RVE are

decomposed into a background field u0 (and r0; e0Þ; due to the far field boundary condition, and a

disturbance field ud (and rd; edÞ; due to the presence of the inclusion. Given the Green’s Function for

an infinite elastic domain

G1ij ðx� yÞ ¼ 1

16plð1� mÞ
ðxi � yiÞðxj � yjÞ

R3
þ ð3� 4mÞ dij

R

� �
; ð2:2Þ

the solution of the disturbance displacement field can be expressed by the following integral

equation:

Ω I

x

y

n

r

H

a
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E

Fig. 1. Illustration of the single

inclusion problem
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ud
mðxÞ ¼ �

Z
XI

C
E
ijk‘G

1
im;jðx� yÞe�k‘ðyÞdXy þ

Z
oX

tdi ðyÞG1imðx� yÞdSy

þ
Z
oX

C
E
ijk‘u

d
kðyÞG1im;jðx� yÞ n‘ðyÞdSy; 8x;y 2 X;

ð2:3Þ

known as Somigliana’s identity [28]. Here td
i ¼ C

E
ijk‘e

d
k‘nj is the traction acting on the RVE surface.

We emphasize that here and from now on l and m denote the shear modulus and Poisson’s ratio of

the exterior phase.

In the following we are interested in three special cases. The first arises when considering an

infinite RVE. Dropping the boundary terms we arrive at the expression

ud
i ðxÞ ¼ �

Z
XI

C
E
k‘mnG1ik;‘ðx� yÞe�mnðyÞdXy; ð2:4Þ

which gives rise to the infinite Eshelby tensors denoted as S
I;1 for x [ WI and S

E;1 for x [ WE.

Second, we consider the prescribed macrostrain boundary condition u ¼ e0x; 8x 2 oX which

implies the Dirichlet problem ud ¼ 0 on qW, so that expression (2.3) becomes

ud
mðxÞ ¼ �

Z
XI

C
E
ijk‘G

1
im;je

�
k‘dXy þ

Z
oX

C
E
ijk‘u

d
k;‘G

1
imnjdSy: ð2:5Þ

We will see that this integral equation gives rise to the Dirichlet-Eshelby tensors SI;D for x [ WI and

S
E;D for x [ WE.

Finally, by considering the prescribed macrostress boundary condition t ¼ r0n; 8x 2 oX; we

obtain the Neumann problem td ¼ 0 on qW. Then expression (2.3) becomes

ud
mðxÞ ¼ �

Z
XI

C
E
ijk‘G

1
im;je

�
k‘dXy þ

Z
oX

C
E
ijk‘u

d
kG1im;jn‘dSy; ð2:6Þ

which leads to the Neumann-Eshelby tensors S
I;N for x [ WI and S

E;N for x [ WE.

2.2 The Eshelby tensor decomposition

The Dirichlet- or Neumann-Eshelby tensor S�;� (• ¼ I or E; * ¼ ?, D or N) in the infinite domain

relates the disturbance strain ed to the prescribed eigenstrain e� as

ed
ijðxÞ ¼ S

�;�
ijmnðxÞe�mn; 8x 2 X: ð2:7Þ

It has been shown in [15] that the Eshelby tensor, which depends on x ¼ tH0 r, can be decomposed into

SijmnðxÞ ¼ SðtÞ �HijmnðrÞ; ð2:8Þ

a dot product between the two arrays

SðtÞ :¼

S1ðtÞ
S2ðtÞ
S3ðtÞ
S4ðtÞ
S5ðtÞ
S6ðtÞ

2
6666664

3
7777775
; HijmnðrÞ :¼

dijdmn

dimdjn þ dindjm

dijrmrn

dmnrirj

dimrjrn þ dinrjrm þ djmrirn þ djnrirm

rirjrmrn

2
6666664

3
7777775
: ð2:9Þ
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Since S depends on the radial distance, t, of point x, S is also denoted as the radial basis of S; and

since Hijmn depends on the radial direction, r, of point x;Hijmn is also referred to as the

circumference basis of S:

Similar to relation (2.7) we can identify a third order tensor U�;�; which relates the disturbance

displacement field ud to the prescribed eigenstrain e� as

ud
i ðxÞ ¼ U

�;�
imnðxÞe�mn; 8x 2 X: ð2:10Þ

The tensor U admits the decomposition

UimnðxÞ ¼ UðtÞ � NimnðrÞ; ð2:11Þ

a dot product between the two arrays

UðtÞ ¼

U1ðtÞ

U2ðtÞ

U3ðtÞ

2
664

3
775; NimnðrÞ :¼

ridmn

rmdin þ rndim

rirmrn

2
664

3
775: ð2:12Þ

Due to their arguments we call U the radial basis and Nimn the circumference basis of U: The

strain-displacement relation

ed
ij ¼

1

2
ðud

i;j þ ud
j;iÞ ð2:13Þ

establishes a direct link between the coefficients U and S. Given U the strain coefficients S can be

uniquely obtained from

SðtÞ ¼ DðtÞUðtÞ; ð2:14Þ

where D is the derivative operator

DðtÞ ¼ 1

H0

1

t
0 0

0
1

t
0

0 0
1

t

�1

t
þ d

dt
0 0

0 � 1

2t
þ 1

2

d

dt

1

2t

0 0 �3

t
þ d

dt

2
6666666666666666666664

3
7777777777777777777775

: ð2:15Þ

Likewise given S the displacement coefficients U follow from

UðtÞ ¼ IðtÞSðtÞ; ð2:16Þ

where I is the integration operator

IðtÞ ¼ H0t

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

2
4

3
5: ð2:17Þ

We remark that the displacements are only uniquely determinable from the strains up to a rigid body

displacement, which is set to zero here.
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2.3 The infinite problem

Let us now consider the solution of the infinite problem (2.4). Considering (2.13), (2.7) and (2.10)

expression (2.4) can be written as

ud
i ðxÞ ¼ U

�;1
imne�mn; U

�;1
imn ¼ �

Z
XI

C
E
k‘mnG1ik;‘ðx� yÞdXy;

ed
ijðxÞ ¼ S

�;1
ijmne�mn; S

�;1
ijmn ¼ �

1

2

Z
XI

C
E
k‘mnG1ik;‘jðx� yÞ þ C

E
k‘mnG1jk;‘iðx� yÞ

� �
dXy:

ð2:18Þ

The evaluation of U and S takes two forms (• ¼ I or • ¼ E) depending on the location of x. For

the spherical inclusion WI, the tensors UI;1;UE;1 and S
I;1; SE;1 can be written as

U
�;1
imnðxÞ ¼ U�;1ðtÞ � NimnðrÞ; S

�;1
ijmnðxÞ ¼ S�;1ðtÞ �HijmnðrÞ; ð2:19Þ

where the radial arrays U
I,?, U

E,? and S
I,?, S

E,? are given explicitly in Appendix A.

2.4 The Dirichlet problem

To solve the Dirichlet problem we write Somigliana’s identity (2.5) as

ed
ijðxÞ ¼ �

1

2

Z
XI

C
E
k‘mn G1ki;‘jðx� yÞ þ G1kj;‘iðx� yÞ

� �
dXy e�mn

þ 1

2

Z
oX

C
E
k‘mned

mnðyÞ G1ki;jðx� yÞ þ G1kj;iðx� yÞ
� �

n‘ðyÞdSy;

ð2:20Þ

an integral equation in terms of the unknown disturbance strain field ed: It can be solved exactly by

supposing the relation

ed
ijðxÞ ¼ S

�;D
ijk‘ðxÞe�k‘; 8x 2 X; ð2:21Þ

to hold for the Dirichlet-Eshelby tensor S�;D: Substituting Eq. (2.21) into (2.20) and canceling e�; we

can write

S
�;D
ijmnðxÞ ¼ S

�;1
ijmnðxÞ þ S

B;D
ijmnðxÞ; ð2:22Þ

where we have defined the Dirichlet boundary contribution

S
B;D
ijmnðxÞ :¼ 1

2

Z
oX

C
E
k‘stS

E;D
stmnðyÞ G1ki;jðx� yÞ þ G1kj;iðx� yÞ

� �
n‘ðyÞdSy: ð2:23Þ

Due to decomposition (2.8), Eq. (2.22) can be written as a relation for the radial basis arrays S.

Considering the two cases (• ¼ I or E) we thus obtain

SI;DðtÞ ¼ SI;1ðtÞ þ SB;DðtÞ; 0� t\q0; ð2:24:1Þ

SE;DðtÞ ¼ SE;1ðtÞ þ SB;DðtÞ; q0� t� 1: ð2:24:2Þ

We have shown in [15] that, by supplying S
B;D
ijmnðxÞ ¼ SB;DðtÞ �HijmnðrÞ and S

E;D
ijmnðyÞ ¼

SE;Dð1Þ �HijmnðnÞ; Eq. (2.23) can be integrated exactly to provide a relation between S
B,D and

S
E,D, namely
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SB;DðtÞ ¼ KDðtÞSE;Dð1Þ: ð2:25Þ

Here KD(t) ¼ K2(t) K1 is a (6 · 6) matrix factorized into the contributions

K1 ¼ l

2þ 2m
1� 2m

4m
1� 2m

0
2ð1� mÞ
1� 2m

0 0

0 2 0 0 2 0

0 0
2þ 2m
1� 2m

0
4

1� 2m
2ð1� mÞ
1� 2m

2
66664

3
77775 ð2:26Þ

and

K2ðtÞ ¼
�1

420lð1� mÞ

70ð2m� 1Þ 28 4mð7� 3t2Þ
0 28ð5m� 4Þ 7ð4m� 5Þ þ 3t2ð7� 4mÞ
0 0 6t2ð10m� 7Þ
0 0 �24mt2

0 0 18mt2

0 0 0

2
6666664

3
7777775
: ð2:27Þ

Substituting Eq. (2.25) into (2.24.2) and evaluating it at t ¼ 1 furnishes an equation for S
E,D(1),

S
E;Dð1Þ ¼ I6 �KDð1Þ½ ��1

S
E;1ð1Þ; ð2:28Þ

where I6 is the (6 · 6) identity matrix. The solution of this equation together with Eqs. (2.25) and (2.24)

solves the Dirichlet-Eshelby problem. The explicit expression of the Dirichlet boundary contribution

S
B,D(t) is given in Appendix A. A summary of the Dirichlet-Eshelby tensor is given in Box 1.

The disturbance displacement field, as characterized by Eq. (2.10), now follows from the

application of Eq. (2.16). We thus obtain the description of ud as summarized in Box 2, which can be

seen in analogy to Box 1.

2.5 The Neumann problem

The Neumann BVP Problem (2.6), an integral equation in ui
d, can be solved directly on the

displacement level. Considering the decomposition

ud
i ðxÞ ¼ U

�;N
imnðxÞ e�mn; ð2:29Þ

Eq. (2.6) can be written as

U
�;N
imnðxÞ ¼ U

�;1
imnðxÞ þ U

B;N
imnðxÞ; ð2:30Þ

where we have defined the Neumann boundary contribution

Box 1. Dirichlet- and Neumann-Eshelby tensors

Dirichlet- and Neumann-Eshelby relation

ed
ij ¼ S

�;�
ijmne�mn; (• = I,E; * = D,N)

Radial and circumference basis decomposition

S
�;�
ijmnðxÞ ¼ S

�;�ðtÞ �HijmnðrÞ; HijmnðrÞ from (2.9)

Radial basis equations

S
I;�ðtÞ ¼ S

I;1ðtÞ þ S
B;�ðtÞ; 0� t\q0;

SE;�ðtÞ ¼ SE;1ðtÞ þ SB;�ðtÞ; q0� t� 1:

Coefficients S
I,?, S

E,?, S
B,D and S

B,N are given in Appendix A for the 3D spherically symmetric case
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U
B;N
imnðxÞ :¼

Z
oX

Ck‘st U
E;N
smn G1ki;‘ðx� yÞ ntðyÞdSy: ð2:31Þ

Due to decomposition (2.11), Eq. (2.30) can be written as a relation between the radial basis arrays

U, which is

UI;NðtÞ ¼ UI;1ðtÞ þ UB;NðtÞ; 0� t\q0; ð2:32:1Þ

UE;NðtÞ ¼ UE;1ðtÞ þ UB;NðtÞ; q0� t� 1: ð2:32:2Þ

Substituting U
B;N
imnðxÞ ¼ UB;NðtÞ � NimnðrÞ and U

E;N
imnðyÞ ¼ UE;Nð1Þ � NimnðnÞ into Eq. (2.31) and

performing the integration, we can find the relation [15]

UB;NðtÞ ¼ KNðtÞUE;Nð1Þ; ð2:33Þ

with

KNðtÞ ¼
t

1� m

2ð1� 2mÞ
3

2ð1� 5mÞ
15

�2mð7� 4t2Þ
35

0
7� 5m

15

7ð5� mÞ þ 6t2ð4m� 7Þ
105

0 0
4ð7� 10mÞt2

35

2
666666664

3
777777775
: ð2:34Þ

Substituting (2.33) into (2.32.2) at t ¼ 1 gives an expression for U
E,N(1), namely

UE;Nð1Þ ¼ I3 �KNð1Þ½ ��1
UE;1ð1Þ; ð2:35Þ

where I3 is the 3 · 3 identity matrix. The solution of this equation together with Eqs. (2.33) and

(2.32) solves the Neumann-Eshelby Problem. The explicit expression of the Neumann boundary

contribution U
B,N(t) is given in Appendix A. The disturbance strain field according to (2.7) now

follows from differentiation of (2.14). A summary of the disturbance strain and displacement fields

can be found in Boxes 1 and 2.

2.6 The traction field

Finally, for the derivation of the composite finite Eshelby Tensors in Sect. 3, we need to discuss the

traction field. We introduce the disturbance traction field td acting on the surface defined by the

outward unit normal r, i.e., the surface of any sphere placed concentrically within the RVE. In terms

of the prescribed eigenstrain e� this traction is given, for both the Dirichlet and the Neumann

problem (* ¼ D, N), as

Box 2. Dirichlet and Neumann disturbance displacement fields

Dirichlet and Neumann disturbance displacement field

ud
i ¼ U

�;�
imne�mn; (• = I, E; * = D,N)

Radial and circumference basis decomposition

U
�;�
imnðxÞ ¼ U�;�ðtÞ � NimnðrÞ NimnðrÞ from (2.12)

Radial basis equations

UI;�ðtÞ ¼ UI;1ðtÞ þ UB;�ðtÞ; 0� t\q0;

UE;�ðtÞ ¼ UE;1ðtÞ þ UB;�ðtÞ;

Coefficients U
I,?, U

E,?, U
B,D and U

B,N are given in Appendix A for the 3D spherically symmetric case
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tdi ðxÞ :¼ rd
ijðxÞ rjðxÞ ¼

C
E
ijk‘ S

I;�
k‘mnðxÞ � I

s
k‘mn

� �
rjðxÞ e�mn; 8x 2 XI ;

C
E
ijk‘ S

E;�
k‘mn
ðxÞ rjðxÞ e�mn; 8x 2 XE;

(
ð2:36Þ

where I
s is the fourth order identity tensor which can be written as I

s
ijmn ¼ Is �Hijmn; for I

s ¼
[0, 1/2, 0, 0, 0, 0]T, and Hijmn is given by Eq. (2.9). In analogy to the preceding developments we

can write the traction as

tdi ðxÞ ¼ T
�;�
imnðxÞ e�mn;

T
I;�
imnðxÞ :¼ Cijkl S

I;�
klmnðxÞ � I

s
k‘mn

� �
rjðxÞ;

T
E;�
imnðxÞ :¼ Cijkl S

E;�
klmnðxÞ rjðxÞ;

ð2:37Þ

where we have introduced the third order tensor T which can be decomposed as

TimnðxÞ ¼ TðtÞ � NimnðrÞ; ð2:38Þ

with T(t) ¼ [T1(t), T2(t), T3(t)] and Nimn given by Eq. (2.12).

Equations (2.38), (2.37) and (2.8) provide the relation between the arrays T
•,* and S

•,*, namely the

matrix equations

TI;�ðtÞ ¼ K1 SI;�ðtÞ � Is
� �

; TE;�ðtÞ ¼ K1SE;�ðtÞ; ð2:39Þ

where K1 is given by Eq. (2.26). In view of Box 1 we can thus write

TI;�ðtÞ ¼ TI;1ðtÞ þ TB;�ðtÞ � T�; 0� t\q0;

TE;�ðtÞ ¼ TE;1ðtÞ þ TB;�ðtÞ; q0� t� 1;
ð2:40Þ

where T
I,?, T

E,?, T
B,D, T

B,N and T
* ¼ K1 I

s are given in Appendix A.

3 Composite Eshelby Tensors

In the preceding section, we have solved Somigliana’s identity considering either a pure Dirichlet

problem, ud ¼ 0 on qW, or a pure Neumann problem, td ¼ 0 on qW. Realistically the considered RVE

is embedded within a surrounding elastic medium. Therefore we can argue that the Dirichlet problem

corresponds to assuming the surrounding medium to be infinitely stiff (thus ud ¼ 0 on qW). On the other

hand the Neumann problem corresponds to assuming the surrounding medium to have zero stiffness (so

that td ¼ 0 on qW). It becomes apparent that the Dirichlet and the Neumann-Eshelby solutions are two

extremes, and that a general, more realistic, solution must lie in between those two extremes.

With this motivation in mind we present, in this section, an extension to the Dirichlet and

Neumann result reported previously.

3.1 The general problem

We start by solving Eshelby’s inclusion problem for a finite RVE with no boundary conditions

prescribed. We thus seek the general solution of Somigliana’s identity

ud
mðxÞ ¼ �

Z
XI

C
E
ijk‘G

1
im;jðx� yÞdXye

�
k‘ þ

Z
oX

tdi ðyÞG1imðx� yÞdSy

þ
Z
oX

C
E
ijk‘u

d
kðyÞG1im;jðx� yÞn‘ðyÞdSy; 8x;y 2 X;

ð3:1Þ

where neither ud or td are considered zero on the boundary, so that both boundary integrals are still

present.
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Before deriving the general solution let us consider the convex combination of the Dirichlet and

Neumann disturbance displacement fields

ud
i ðxÞ ¼ a u

d;D
i ðxÞ þ ð1� aÞud;N

i ðxÞ; ð3:2Þ

with u
d;D
i ¼ U

�;D
imne�mn and u

d;N
i ¼ U

�;N
imne�mn according to Box 1. It can be shown, by linear

superposition, that this simple combination (3.2) satisfies. Somigliana’s identity (3.1) exactly. We

note that Eq. (3.2) corresponds to the combination of the displacement tensors

U
�;CðxÞ ¼ aU�;DðxÞ þ ð1� aÞU�;NðxÞ; ð3:3Þ

so that we can write ud
i ¼ U

�;C
imne�mn: Likewise the disturbance strain field follows as

ed
ij ¼ S

�;C
ijmne�mn; S

�;CðxÞ ¼ aS�;DðxÞ þ ð1� aÞ S�;NðxÞ: ð3:4Þ

Here and above the superscript C is used to denote the combination or composition of the Dirichlet

and Neumann solutions. Even though (3.2) satisfies Somigliana’s identity (3.1) for any a, it is not the

most general result. This is derived next and we will see that further important contributions are

picked up.

3.2 The general solution

Since the Finite Eshelby tensor S�;C is a combination of the Dirichlet- and Neumann-Eshelby tensor,

it can also be written in decomposition (2.8) discussed in the previous section. As we have seen for

the Dirichlet and the Neumann problem, this decomposition allows us to recast the integral equation

(3.1) into an algebraic equation. We will therefore rewrite the three integrals appearing in (3.1) using

the developments of Sect. 2.

The first integral, the domain contribution, can be written, in view of Eqs. (2.18) and (2.19), in the

following two ways:

U�;1 � Nimne�mn ¼ �
Z
XI

Ck‘mnG1ik;‘ðx� yÞdXye
�
mn;

S�;1 �Hijmne�mn ¼ �
1

2

Z
XI

Ck‘mnG1ik;‘jðx� yÞ þ Ck‘mnG1jk;‘iðx� yÞ
� �

dXye
�
mn:

ð3:5Þ

The third integral, the Neumann boundary contribution, can be expressed by the two alternative

statements

KNðtÞUE;Cð1Þ � Nimne�mn ¼
Z
oX

Ck‘stu
d
s ðyÞG1ki;‘ðx� yÞntðyÞdSy; ð3:6:1Þ

DðtÞKNðtÞ½ �UE;Cð1Þ �Hijmne�mn ¼
1

2

Z
oX

Ck‘stu
d
s ðyÞ G1ki;‘j þ G1kj;‘i

� �
ntðyÞdSy: ð3:6:2Þ

Here, the equation of the displacement field, (3.6.1), follows from using Eqs. (2.31), (2.11), (2.29)

and (2.33). Note that in using Eq. (2.33) superscript N is replaced by C since we are not considering

the Neumann-Eshelby problem but the more general Composite Eshelby problem. The equation of

the strain field, (3.6.2), follows by differentiation of (3.6.1). In view of Eq. (2.14) this means

application of operator D: Note that the differentiation D only operates on KN(t) and does not affect
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UE;Cð1Þ;Hijmn or e*
mn. Also note that the Neumann boundary contribution (3.6) is zero in the

Dirichlet case (C ¼ D), since u
d
i ¼ 0 then.

The Dirichlet boundary contribution, i.e. the second integral in (3.1), can be written as

IðtÞKDðtÞ½ �SE;Cð1Þ � Nimne�mn ¼
Z
oX

Ck‘st ud
s;tðyÞG1kiðx� yÞn‘ðyÞdSy; ð3:7:1Þ

KDðtÞSE;Cð1Þ �Hijmne�mn ¼
1

2

Z
oX

Ck‘ste
d
stðyÞ G1ki;j þ G1kj;i

� �
n‘ðyÞdSy: ð3:7:2Þ

Here (3.7.2) follows from the use of Eqs. (2.23), (2.8), (2.21) and (2.25) (now by replacing D by C),

whereas (3.7.1) follows from the application of (2.16) to (3.7.2). Note that the Dirichlet boundary

contribution is zero for the Neumann problem (td ¼ 0 on qW). Further note that I only operates on

KDðtÞ and does not affect S
E,C(1).

Now, Somigliana’s identity (3.1), either expressed in terms of the displacement ud or expressed in

terms of the strain ed; can be rewritten as an algebraic equation. Using the preceding Eqs. (3.5), (3.6),

(3.7) and the decompositions (2.11), (2.29), (2.8), (2.21) we obtain the two coupled equations

U�;CðtÞ ¼ KNðtÞUE;Cð1Þ þ IðtÞKDðtÞ½ �SE;Cð1Þ þ U�;1ðtÞ;
S�;CðtÞ ¼ DðtÞKNðtÞ½ � UE;Cð1Þ þKDðtÞSE;Cð1Þ þ S�;1ðtÞ:

ð3:8Þ

In particular, on the surface of the RVE (t ¼ 1, • ¼ E), we have

UE;Cð1Þ ¼ KNð1ÞUE;Cð1Þ þ IðtÞKDðtÞ½ �t¼1SE;Cð1Þ þ UE;1ð1Þ;
S

E;Cð1Þ ¼ DðtÞKNðtÞ½ �t¼1UE;Cð1Þ þKDð1ÞSE;Cð1Þ þ S
E;1ð1Þ;

ð3:9Þ

which can be written in the matrix form

I3 �KNð1Þ � IðtÞKDðtÞ½ �t¼1

� DðtÞKNðtÞ½ �t¼1 I6 �KDð1Þ

� �
UE;Cð1Þ
SE;Cð1Þ

� �
¼ UE;1ð1Þ

SE;1ð1Þ

� �
: ð3:10Þ

We have thus transformed the integral equation (3.1) for the unknown vectorial displacement field

ud into an algebraic equation for the unknown radial basis arrays U
E,C(1) and S

E,C(1). We remark

that due to the coupling we cannot solve for the coefficients UE;Cð1Þ or S
E,C(1) alone. Further note

that (3.10) represents the generalization of (2.28) and (2.35), which are the corresponding statements

for the (decoupled) Dirichlet and Neumann special cases.

Next we derive the general solution of (3.10). Let us therefore denote the coefficient matrix by

K ¼ I3 �KNð1Þ � IðtÞKDðtÞ½ �t¼1

� DðtÞKNðtÞ½ �t¼1 I6 �KDð1Þ

� �
; ð3:11Þ

which is a singular matrix since the two matrix equations in (3.9) are dependent on each other: We

obtain (3.9.2) by application of the derivative operator DðtÞ to (3.9.1) and then setting t ¼ 1. Vice

versa (3.9.1) can be obtained by application of the integration operator IðtÞ to (3.9.2) and then

setting t ¼ 1.

It is straightforward to verify that both the Dirichlet (C ¼ D) and the Neumann problem (C ¼ N)

are solutions of (3.10), i.e.,

K UE;Dð1Þ
S

E;Dð1Þ

� �
¼ UE;1ð1Þ

S
E;1ð1Þ

� �
and K UE;Nð1Þ

S
E;Nð1Þ

� �
¼ UE;1ð1Þ

S
E;1ð1Þ

� �
: ð3:12Þ

(Note that U
E,D(1) ¼ 0 and T

E,N(1) ¼ K1 S
E,N(1) ¼ 0). Furthermore, consider the arrays
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U0ðtÞ ¼

H0t

0

0

2
664

3
775; S0ðtÞ ¼

1

0

0

0

0

0

2
666666666664

3
777777777775

; U00ðtÞ ¼

0

H0t

0

2
664

3
775; S00ðtÞ ¼

0

1

0

0

0

0

2
666666666664

3
777777777775

; ð3:13Þ

where U
0 and S

0 as well as U
00 and S

00 are related by the operators DðtÞ and IðtÞ according to Eqs.

(2.14) and (2.16). In can be easily verified that the arrays U
0, S

0, U
00 and S

00 form two zero

eigenvectors (corresponding to zero eigenvalues) of K; i.e. they satisfy

K U0ð1Þ
S0ð1Þ

� �
¼ 0

0

� �
; K U00ð1Þ

S00ð1Þ

� �
¼ 0

0

� �
: ð3:14Þ

In view of (3.12) and (3.14) we thus have the three zero eigenvectors

UE;Dð1Þ
SE;Dð1Þ

� �
� UE;Nð1Þ

SE;Nð1Þ

� �
;

U0ð1Þ
S0ð1Þ

� �
;

U00ð1Þ
S00ð1Þ

� �
: ð3:15Þ

Therefore the rank of K can be at most 6, i.e. rank ðKÞ� 6: On the other hand we know that the

submatrix I6 �KDð1Þ is invertible, therefore the rank of K is at least 6 ðrankðKÞ� 6Þ: So we

conclude that rankðKÞ ¼ 6 and that therefore the complete solution of (3.10) can only be the

combination

UE;Cð1Þ ¼ aUE;Dð1Þ þ ð1� aÞUE;Nð1Þ þ bU0ð1Þ þ c U00ð1Þ;

SE;Cð1Þ ¼ a SE;Dð1Þ þ ð1� aÞSE;Nð1Þ þ b S0ð1Þ þ cS00ð1Þ;
ð3:16Þ

V a, b, c. (Note that U
E,D(1) ¼ 0.) Plugging Eqs. (3.16) into (3.8) we arrive at

U�;CðtÞ ¼ aU�;DðtÞ þ ð1� aÞU�;NðtÞ þ bU0ðtÞ þ cU00ðtÞ;

S�;CðtÞ ¼ aS�;DðtÞ þ ð1� aÞS�;NðtÞ þ bS0ðtÞ þ cS00ðtÞ;
ð3:17Þ

which is the equation for the radial basis arrays U
•,C and S

•,C of the Composite Eshelby tensors

U
�;C and S

�;C which solve Somigliana’s identity (3.1) exactly. Note that the two Eqs. (3.17.1)

and (3.17.2) depend on each other via DðtÞ and IðtÞ: Using the definition of U�;D; U
•,N, S

•,D and

S
•,N (from Box 1 and 2), Eq. (3.17) can equivalently be written as

U�;CðtÞ ¼ U�;1ðtÞ þ aUB;DðtÞ þ ð1� aÞUB;NðtÞ þ bU0ðtÞ þ c U00ðtÞ;
S
�;CðtÞ ¼ S

�;1ðtÞ þ aS
B;DðtÞ þ ð1� aÞSB;NðtÞ þ bS

0ðtÞ þ cS00ðtÞ:
ð3:18Þ

Here, all the individual contributions to U
•,C and S

•,C, for both • ¼ I,E, are given in Appendix A.

We finally remark that the traction basis corresponding to the zero eigenvectors U
0 and U

00 is

T0ðtÞ ¼ K1S0ðtÞ ¼
3j
0
0

2
4

3
5; T00ðtÞ ¼ K1S00ðtÞ ¼

2k
2l
0

2
4

3
5: ð3:19Þ

where k ¼ j� 2
3
l: Thus T

0 and U
0 are associated with a pure volumetric deformation, while

T00 � 2
3
T0 and U00 � 2

3
U0 are associated with a pure deviatoric deformation. A summary of the

Composite Eshelby tensors is given in Box 3.
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3.3 The physical solution

To satisfy Somigliana’s identity (3.1) by solution (3.17), a, b and c can be arbitrary. However not

any choice will make physical sense. Next we derive physical meaningful values of these

parameters. The derivation is based on the work by Luo and Weng [19]. Their idea is to consider the

two-phase RVE to be embedded within the surrounding homogenized composite Wc, an isotropic

elastic medium with stiffness jc and lc, and Poisson’s ratio mc, as shown in Fig. 2. This assumption

will provide us with physical conditions at the interface between composite and RVE from which a,

b and c can be solved.

We begin by studying the case of a deviatoric deformation. Adopting the spherical coordinates

{r, u, h}, as displayed in Fig. 2, it has been shown by [2] that the displacement field can be

expressed as

ur ¼ UrðrÞ sin2 h cos 2u;

uh ¼ UhðrÞ sin h cos h cos 2u;

uu ¼ UuðrÞ sin h sin 2u;

ð3:20Þ

e3

e2

H0

e1

r
q

a

ΩIΩEΩc

Fig. 2. RVE embedded within a surrounding

Composite Wc

Box 3. Composite Eshelby tensors

Disturbance displacement, strain and traction fields (• = I, E)

ud
i ¼ U

�;C
imne�mn ed

ij ¼ S
�;C
ijmne�mn, tdi ¼ T

�;C
imne�mn:

Radial and circumference basis decomposition

U
�;C
imnðxÞ ¼ U�;CðtÞ � NimnðrÞ; NimnðrÞ from (2.12),

S
�;C
ijmnðxÞ ¼ S

�;CðtÞ �HijmnðrÞ; HijmnðrÞ from (2.9),

T
�;C
imnðxÞ ¼ T�;CðtÞ � NimnðrÞ:

Radial basis equations

U�;CðtÞ ¼ aU�;DðtÞ þ ð1� aÞU�;NðtÞ þ bU0ðtÞ þ c U00ðtÞ;
S
�;CðtÞ ¼ aS

�;DðtÞ þ ð1� aÞS�;NðtÞ þ bS
0ðtÞ þ c S

00ðtÞ;
T�;CðtÞ ¼ aT�;DðtÞ þ ð1� aÞT�;NðtÞ þ b T0ðtÞ þ cT00ðtÞ:

See Box 1, Box 2, Eqs, (2.40), (3.13) and (3.19) for individual contributions
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where Ur, Uu and Uh are functions of the radial coordinate r. For the disturbance displacement field

of the composite surrounding the RVE region, ud
c , these are

Uc
rðrÞ ¼

3C3

r4
þ 5� 4mc

1� 2mc

C4

r2
;

Uc
uðrÞ ¼

3C3

r4
� 2C4

r2
¼ �Uc

hðrÞ;
ð3:21Þ

where C3 and C4 are unknown constants to be determined. Employing the strain displacement

relation (2.13) and the constitutive relation r ¼ C
c : e; where C

c is the isotropic elasticity tensor

of the composite, the stress components acting on the surface of a sphere centered at the origin

follow as

rc
rr ¼ � 4lc

6C3

r5
þ 5� 4mc

1� 2mc

C4

r3

� �
þ kc

6C4

r3

� �
sin2 h cos 2u;

rc
ru ¼ �4lc

4C3

r5
þ 1þ mc

1� 2mc

C4

r3

� �
sin h sin 2u;

rc
rh ¼ 4lc

4C3

r5
þ 1þ mc

1� 2mc

C4

r3

� �
sin h cos h cos 2u;

ð3:22Þ

where lc and mc are the shear modulus and Poisson’s ratio of the surrounding composite. The

disturbance displacement field is in a state of shear when we consider the prescribed eigenstrain

contribution

e� ¼ ðe1 	 e1 � e2 	 e2Þe�; ð3:23Þ

where e
* is some constant. We note that this corresponds to shearing of the e1, e2 plane, the

consideration of which suffices for our needs. For this eigenstrain e� the disturbance displacement

field, given in Box 3 and evaluated at the boundary of the RVE (t ¼ 1), follows in spherical

coordinates as

ud
r ðyÞ ¼ ð1� aÞ 2U

E;N
2 ð1Þ þ U

E;N
3 ð1Þ

h i
þ 2cU00

2 ð1Þ
h i

sin2 h cos 2u e�;

ud
uðyÞ ¼ �2 ð1� aÞUE;N

2 ð1Þ þ cU00
2 ð1Þ

h i
sin h sin 2u e�;

ud
h ðyÞ ¼ �ud

uðyÞ cos h cot 2u;

ð3:24Þ

which does not depend on the Dirichlet-Eshelby coefficients U
E,D since U

E,D(1) ¼ 0. Likewise, for

the prescribed eigenstrain (3.23), the disturbance traction field (see Box 3) on the RVE surface

becomes

tdr ðyÞ ¼ a 2T
E;D
2 ð1Þ þ T

E;D
3 ð1Þ

h i
þ 2c T00

2 ð1Þ
h i

sin2 h cos 2u e�;

tduðyÞ ¼ �2 aT
E;D
2 ð1Þ þ cT00

2 ð1Þ
h i

sin h sin 2u e�;

tdh ðyÞ ¼ �tduðyÞ cos h cot 2u;

ð3:25Þ

which does not depend on the Neumann-Eshelby coefficients T
E,N since T

E,N(1) ¼ 0. Also note that

both (3.24) and (3.25) are independent of b. At the interface between RVE and surrounding

composite, where r ¼ H0, we require the continuity of the displacement field

ud
r ðyÞ ¼ uc

rðH0Þ;
ud

h ðyÞ ¼ uc
hðH0Þ;

ð3:26Þ

and the continuity of the traction field
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tdr ðyÞ ¼ rc
rrðH0Þ;

tdh ðyÞ ¼ rc
rhðH0Þ:

ð3:27Þ

Note that the conditions on uh and th are mathematically equivalent to the conditions on uu and tu

and have therefore been omitted. Equations (3.26) and (3.27) give four expressions for the 4

unknowns a, c, C3 and C4. These can be solved for a and c, giving

a ¼ 4lcð7� 10mÞ
4lcð7� 10mÞ þ lð7þ 5mÞ ; ð3:28Þ

and

c ¼ f

2
ða� �cÞ; �c ¼ lcð7� 5mcÞ

lcð7� 5mcÞ þ 2lð4� 5mcÞ
: ð3:29Þ

We note that c depends on both the bulk modulus jc (via mc) and the shear modulus lc of the

composite whereas a only depends on lc. Physically, the surrounding composite must satisfy

0 < lc < ?. We can see from Eq. (3.28) that this leads to the restriction 0 < a < 1. The limit

case lc ¼ ?, implying a ¼ 1 and c ¼ 0, corresponds to the Dirichlet problem as discussed earlier.

Conversely the limit lc ¼ 0 implies a ¼ 0 and c ¼ 0, which corresponds to the Neumann problem.

To obtain b we need to consider hydrostatic deformation. For this radially symmetric case the only

nonzero displacement component is [2]

ur ¼ C1r þ C2

r2
; ð3:30Þ

for some constants C1 and C2. In the surrounding composite the disturbance field due to the inclusion

must decay so that C1 ¼ 0 and we can write

uc
r ¼

C2

r2
: ð3:31Þ

For a linear elastic isotropic composite the stress in radial direction then becomes

rc
rr ¼ �6jc

C2

r3
: ð3:32Þ

The hydrostatic eigenstrains can be expressed as e�ij ¼ e�dij; for some constant e*. Thus the radial

components of the disturbance fields, ur
d ¼ ud � er and tr

d ¼ td � er, follow from Box 3 as

ud
r ðyÞ ¼ ð1� aÞ 3 U

E;N
1 ð1Þ þ 2 U

E;N
2 þ U

E;N
3 ð1Þ

h i
þ 3bH0 þ 2cH0

h i
e�;

tdr ðyÞ ¼ a 3 T
E;D
1 ð1Þ þ 2 T

E;D
2 þ T

E;D
3 ð1Þ

h i
þ 3b T0

1ð1Þ þ c 3 T00
1 ð1Þ þ 2 T00

2 ð1Þ
� �h i

e�:
ð3:33Þ

As for the shear case, we impose the continuity conditions

ud
r ðyÞ ¼ uc

rðH0Þ; ð3:34:1Þ

tdr ðyÞ ¼ rc
rrðH0Þ ; ð3:34:2Þ

at the interface between the RVE and composite. This provides two equations for the final two

unknowns b and C2. For b we find

b ¼ f

3
ð�c� �bÞ ; �b ¼ 4lcð1� 2mÞ

4lcð1� 2mÞ þ 2lð1þ mÞ : ð3:35Þ
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With the specified values of a, b and c the Composite Eshelby tensors U
�;CðxÞ and S

�;CðxÞ are

completely determined by the expressions in Box 3 and Appendix A. Note that these tensors depend

on the volume fraction f, the comparison solid (l, j) and the composite solid (lc, jc). As a

concluding statement of the preceding derivation, let us remark that the Composite Eshelby tensors

U
�;C and S

�;C satisfy Somigliana’s identity exactly for any volume fraction f and coefficients a, b, c.

For the particular a, b and c above we furthermore satisfy the continuity of all elastic fields at the

interface of RVE and surrounding composite.

Similar to the limits of c we obtain b ¼ 0 for both the Dirichlet case (lc ¼ ?) and the Neumann

case (lc ¼ 0). The fact that b and c are zero for the Dirichlet and Neumann special cases is very

important, because it shows (from Eq. (3.17)) that the Dirichlet- and Neumann-Eshelby results are

special cases of the Composite Eshelby tensor. Another special case is lc ¼ l and mc ¼ m, which

corresponds to considering the composite and the comparison solid to have the same properties.

Computing the particular values of a, b and c it can be shown from (3.18) that this case will give us

the original infinite Eshelby Tensor S
�;1: The three special cases discussed above can be

summarized as follows:

S�;CðtÞ ¼ S�;DðtÞ for lc ¼ 1 ;

S�;CðtÞ ¼ S�;1ðtÞ for lc ¼ l ;

S�;CðtÞ ¼ S�;NðtÞ for lc ¼ 0 :

ð3:36Þ

Figure 3 shows a plot of the coefficients of the displacement Eshelby tensor U
C for shear modulus

lc=l ¼ f0; 1
±3
; 1; 3;1g and inclusion ratio q0 ¼ 0.4. Poisson’s ratio of both the matrix (the

comparison phase) and the composite is chosen as m ¼ mc ¼ 0.3. According to Eq. (3.36), which

holds analogously for U
•,C, lc ¼ ?, lc ¼ l and lc ¼ 0 correspond to the Dirichlet-, the original
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Fig. 3. Components of the radial basis

coefficient UC(t)
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infinite and the Neumann-Eshelby problem. We observe that the components of U
C(t) are continuous

functions of t with a kink at the material interface t ¼ q0. They vary smoothly with lc. Note that for

composite moduli lc differing significantly from l the Composite Eshelby tensor will differ

significantly from the original Eshelby tensor. This is despite the fact that the volume fraction is

small, i.e. f ¼ q3
0 ¼ 0.064.

We remark that since the strain and traction bases S
•,C and T

•,C are related to U
•,C (by (2.14) and

(2.39)), the behavior of both S
•,C and T

•,C will be similar to the behavior of U
•,C, shown in Fig. 3.

3.4 The average solution

We finally discuss the spatial average of the Composite Eshelby tensor. As we have shown in [16]

the domain average of S
I;C over the interior domain WI and the average of S

E;C over the exterior

domain WE can be written as

hSI;C
ijmniXI

¼ s
I;C
1 E

ð1Þ
ijmn þ s

I;C
2 E

ð2Þ
ijmn ;

hSE;C
ijmniXE

¼ s
E;C
1 E

ð1Þ
ijmn þ s

E;C
2 E

ð2Þ
ijmn ;

ð3:37Þ

where E
ð1Þ
ijmn and E

ð2Þ
ijmn are the isotropic basis tensors

E
ð1Þ
ijmn ¼

1

3
dijdmn ; E

ð2Þ
ijmn ¼

1

2
dimdjn þ dindjmð Þ � 1

3
dijdmn : ð3:38Þ

The coefficients s1
I,C, s2

I,C and s
E,C
1 , s

E,C
2 are related to the radial basis SI;C and SE;C by

s
I;C
1

s
I;C
2

" #
¼

3 2 1 1
4

3

1

3

0 2 0 0
4

3

2

15

2
664

3
775h3t2SI;Ci½0;q0� ;

s
E;C
1

s
E;C
2

" #
¼

3 2 1 1
4

3

1

3

0 2 0 0
4

3

2

15

2
664

3
775h3t2SE;Ci½q0 ;1�

ð3:39Þ

with

h. . .i½a;b� :¼ 1

b3 � a3

Zb

a

. . . dt: ð3:40Þ

Due to Eq. (3.17) we can immediately write

s
�;C
i ¼ as

�;D
i þ ð1� aÞs�;Ni þ bs0

i þ c s00
i ; ð3:41Þ

for i ¼ 1, 2 and • ¼ I, E. The individual pieces are all given in Appendix A. We will see that an

important object is the difference

hSI;C
ijmniXI

� hSE;C
ijmniXE

¼ DsC
1 E
ð1Þ
ijmn þ DsC

2E
ð2Þ
ijmn ; ð3:42Þ

where we have defined

DsC
i :¼ s

I;C
i � s

E;C
i ¼ aDsD

i þ ð1� aÞDsN
i : ð3:43Þ

The coefficients DsD
i :¼ s

I;D
i � s

E;D
i ;DsN

i :¼ s
I;N
i � s

E;N
i and Dsi

C are also given in Appendix A for

the a reported in Eq. (3.28).
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4 The dual eigenstrain method

In this section we illustrate how the Composite Eshelby tensor affects the computation of the

effective elastic modulus C: Therefore we introduce a general homogenization method termed the

‘Dual Eigenstrain Method’, which, as we will see, contains the classical dilute distribution, Mori-

Tanaka and self-consistent homogenization methods while further defining some entirely new

methods.

4.1 The dual eigenstrain homogenization

Consider a two phase composite solid with phase moduli C
I and C

E: The phases are arranged

concentrically in regions WI and WE as illustrated in Fig. 4. The idea of the dual eigenstrain method

is to prescribe an eigenstrain in both the inclusion and matrix phase as

e�ðxÞ ¼ e�I ; x 2 XI ;
e�E ; x 2 XE :

�
ð4:1Þ

As before we focus on constants e�I and e�E: This formulation admits the two special cases

e�E ¼ 0 and e�I ¼ 0 as shown in Fig. 4: In the interior eigenstrain approach, where e�E ¼ 0; e�I is

introduced to account for the misfit in the material response arising from setting C
E as the stiffness

of both phases. Likewise, in the exterior eigenstrain approach, where e�I ¼ 0; e�E accounts for letting

C
I be the comparison stiffness. As we prescribe nonzero e�I and e�E the comparison solid can neither

have stiffness C
I nor CE: We thus introduce the elasticity tensor eC to characterize the comparison

solid of the two phases within the framework of the dual eigenstrain method. In taking such a

homogenization approach the average stress consistency condition becomes

C
I : ðe0 þ hediXI

Þ ¼ eC : ðe0 þ hediXI
� e�I Þ ; x 2 XI ;

C
E : ðe0 þ hediXE

Þ ¼ eC : ðe0 þ hediXE
� e�EÞ ; x 2 XE :

ð4:2Þ

We remark that from e�E ¼ 0 follows eC ¼ C
E and that e�I ¼ 0 implies eC ¼ C

I : The Eshelby tensor

following from Eq. (4.2) depends on eC; the modulus of the homogenized comparison solid. Since we

homogenization

of matrix phasehomogen
iza

tio
n

of inclu
sio

n
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eigenstrain
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Ee ∗  = 0
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C

Fig. 4. Dual eigenstrain homogenization
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are prescribing two eigenstrain fields e�I and e�E we have two Eshelby tensors. The first, S�;C; gives

the disturbance strain field ed
I caused by the interior eigenstrain e�I : The second, S

�;C
; relates the

disturbance field ed
E to the exterior eigenstrain e�E: Therefore the total disturbance strain field is

written as

edðxÞ ¼ ed
I ðxÞ þ ed

EðxÞ ;

ed
I ðxÞ ¼ S

�;CðxÞ : e�I ;

ed
EðxÞ ¼ S

�;CðxÞ : e�E :

ð4:3Þ

Note that both ed
I and ed

E are given for all x [ W through the use of the interior Eshelby tensor

(• ¼ I for x [ WI) and exterior Eshelby tensor (• ¼ E for x [ WE). S
�;C has been derived earlier

(see Box 3 and Appendix A). The simple illustration of Fig. 5 shows that S
�;C
E can be written as

S
�;CðxÞ ¼ S

I;CðxÞ f¼1 � S
�;CðxÞ

		 : ð4:4Þ

Let us emphasize that the material constants appearing in S
�;C are those of the comparison solid, i.e.

m ¼ ~m and l ¼ ~l: Further note that S�;C depends on the volume fraction of the interior phase, i.e.

f ¼ fI, and that we can write fE ¼ 1 � fI. The validity of Eqs. (4.3) and (4.4) can be proved by

showing that they satisfy Somigliana’s identity (2.3) exactly. We note that the superposition

procedure displayed in Fig. 5 can also be used for n nested shells. Such a shell model has been

investigated in [16].

4.2 The effective modulus

With the above relation we can now derive the effective modulus of the dual eigenstrain method. We

start by defining the concentration tensors AI and AE and rewrite the average stress consistency

condition as

e0 þ hediXI
¼ AI : e�I ; x 2 XI ; AI :¼ eC � C

I
h i�1

: eC ;

e0 þ hediXE
¼ AE : e�E ; x 2 XE ; AE :¼ eC � C

E
h i�1

: eC :

ð4:5Þ

We note that AI and AE are ill-defined for the cases eC ¼ C
I and eC ¼ C

E: To avoid this problem

the following derivation can alternatively be written using only A
�1
I and A

�1
E : This, however, comes

at the expense of clarity.

E

E

e ∗

e d =   •,C : e ∗

e ∗
EE e ∗

–
E

e d =   •,C : e ∗
Ee d =   I,C     f = 1 : e ∗S S S

Fig. 5. Superposition of the exterior eigenstrain

The Composite Eshelby Tensors 81



The average disturbance strain in the two phases follows from (4.3) as

hediXI
¼ hSI;CiXI

: e�I þ hS
I;CiXI

: e�E ;

hediXE
¼ hSE;CiXE

: e�I þ hS
E;CiXE

: e�E :
ð4:6Þ

Substituting these two expression into (4.5) yields the system of linear equations

AI � hSI;CiXI
�hSI;CiXI

�hSE;CiXE
AE � hS

E;CiXE

" #
:

e�I
e�E

� �
¼ e0

e0

� �
: ð4:7Þ

We note that the entries in the matrix equation above are fourth order and second order tensors.

Solving (4.7) for e�I and e�E gives

e�I ¼ AE � DS½ � : M�1 : e0 ; e�E ¼ AI � DS½ � : M�1 : e0; ð4:8Þ

with

DS :¼ hSI;CiXI
� hSE;CiXE

¼ hSE;CiXE
� hSI;CiXI

� �
; ð4:9:1Þ

M :¼ AI � hSI;CiXI

� �
: AE � hS

E;CiXE

h i
� hSI;CiXI

: hSE;CiXE
: ð4:9:2Þ

We note that in (4.9.1) we have used the fact that S
I;Cjf¼1 is constant and we therefore have

hSI;Cjf¼1iXE
¼ hSI;Cjf¼1iXI

: Further note that all tensor contractions above commute since we are

considering isotropy.

The average strain in the two phases now follows from (4.5) and (4.8) as

heiXI
:¼ e0 þ hediXI

¼ AI : BE : e0 ; BE :¼ AE � DS½ � : M�1 ;

heiXE
:¼ e0 þ hediXE

¼ AE : BI : e0 ; BI :¼ AI � DS½ � : M�1 ;
ð4:10Þ

so that the average strain of both phases becomes

heiX ¼ f heiXI
þ ð1� f ÞheiXE

¼ f AI : BE þ ð1� f Þ AE : BI½ � : e0 : ð4:11Þ

On the other hand the average stress in the two phases is given by Eq. (4.2) which can be written as

hriXI
¼ eC : ðe0 þ hediXI

� e�I Þ ¼ eC : AI � I
s½ � : BE : e0 ;

hriXE
¼ eC : ðe0 þ hediXE

� e�EÞ ¼ eC : AE � I
s½ � : BI : e0 ;

ð4:12Þ

and therefore the average stress of both phases is

hriXI
¼ f hriXI

þ ð1� f ÞhriXE

¼ f eC : ½AI � I
s� : BE þ ð1� f ÞeC : ½AE � I

s� : BI

h i
: e0 :

ð4:13Þ

The effective modulus C of the two phase composite is defined by the relation

hriX ¼ C : heiX ; ð4:14Þ

from which follows

f eC : ½AI � I
s� : BE þ ð1� f ÞeC : ½AE � I

s� : BI

h i
: e0

¼ C : fAI : BE þ ð1� f ÞAE : BI½ ��1: e0 :
ð4:15Þ

Note that e0 and the cumbersome tensor M
�1 cancel. Expression (4.15) still does not admiteC ¼ C

I or eC ¼ C
E yet. However we can further pull out the tensors AI and AE on both sides. The

final expression for the effective elastic modulus then becomes
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C ¼ fC
I : AE þ ð1� f ÞCE : AI

� �
: fAE þ ð1� f ÞAI½ ��1; ð4:16Þ

with

AE ¼ I
s � A

�1
E : DS; AI ¼ I

s � A
�1
I : DS: ð4:17Þ

The formula now admits the cases eC ¼ C
E or eC ¼ C

I which arise from setting e�E ¼ 0 or e�I ¼ 0: In

terms of the effective bulk modulus �j and shear modulus �l of the composite, Eq. (4.16) corresponds to

�j ¼
fjI 1� 1� jE

~j


 �
DsC

1


 �
þ ð1� f Þ jE 1� 1� jI

~j


 �
DsC

1


 �
f 1� 1� jE

~j


 �
DsC

1


 �
þ ð1� f Þ 1� 1� jI

~j


 �
DsC

1


 � ; ð4:18:1Þ

�l ¼
flI 1� 1� lE

~l

� �
DsC

2

� �
þ ð1� f ÞlE 1� 1� lI

~l

� �
DsC

2

� �

f 1� 1� lE

~l

� �
DsC

2

� �
þ ð1� f Þ 1� 1� lI

~l

� �
DsC

2

� � ; ð4:18:2Þ

where ~j and ~l are the moduli of the comparison solid. Further Ds
C
1 and Ds

C
2 are the coefficients

given explicitly in Eq. (A.15) by setting m ¼ ~m and l ¼ ~l:

4.3 Four special cases

We now discuss the possible applications of Eq. (4.16) or (4.18), respectively:

1. Setting both e�I ¼ 0 and e�E ¼ 0 (i.e. eC ¼ C
I in WI and eC ¼ C

E in WE) gives

A
�1
I ¼ 0 and A

�±1
E ¼ 0: We therefore arrive at the Voigt bound C ¼ fCI þ ð1� f ÞCE:

2. Similarly one can obtain the Reuss bound. We therefore need to consider the homogenization of

the RVE in terms of an eigenstress r�: We can then arrive at a formula for the compliance D

analogous to Eq. (4.16). (As long as eC is equal in both domains WI and WE this formula for D

will be equal to the inverse of CÞ: For the same special case as above (i.e., eC ¼ C
I in WI andeC ¼ C

E in WE) the formula for D specializes to the Reuss bound D ¼ f DI þ ð1� f ÞDE:

3. Setting e�E ¼ 0 gives the interior eigenstrain method as noted in Fig. 4 We then have eC ¼ C
E

and thus A
�1
E ¼ 0: From Eq. (4.16) then follows that

C ¼ C
E � fCE : AI � ð1� f ÞDS½ ��1; ð4:19Þ

where DS takes the properties of the exterior phase WE, since eC ¼ C
E: Note that

AI ¼ ½CE � C
I ��1 : CE here. Expression (4.19) is the modified Mori-Tanaka method as derived

in [16]. It resorts to the original Mori-Tanaka method if an infinite RVE is considered so that

hSE;1iXE ¼ 0 and thus DS ¼ hSI;1iiXI : We note that (4.19) is equal to the modified Mori-

Tanaka method reported in [19].

If we consider a composite of two materials we are faced with two possibilities: (i)

placing material 1 in WE and material 2 in WI, and (ii) the flipped case of placing material 2

in WE and material 1 in WI.

4. The exterior eigenstrain method is obtained by setting e�I ¼ 0 so that eC ¼ C
I and thus A�1

E ¼ 0:

We thus obtain

C ¼ C
I � ð1� f ÞCI : AE � f DS½ ��1; ð4:20Þ

where DS takes the properties of the interior phase WI, since eC ¼ C
I : Note that

AE ¼ ½CI � C
E��1 : CI here. Expression (4.20) can be considered as the flip of the modified

Mori-Tanaka formula (4.19), which arises when flipping the properties of WI and WE, i.e. flipping
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C
I $ C

E and fI $ fE: Equation (4.20) gives the flip of the original Mori-Tanaka method if

considering an infinite RVE where hSE;1iXE ¼ 0 and thus DS ¼ hSI;1iXI
:

Again for two given materials 1 and 2 we are faced with two possible placing choices,

denoted by (iii) and (iv) in the following.

The four cases discussed above are displayed in Fig. 6. Here we consider two materials with

j1 < j2 and l1 < l2. The plots are normalized by j1 and l1. The material ratios are chosen as

j2 ¼ 4j1 and l2 ¼ 10l1. Furthermore Poisson’s ratio of either matrix or inclusion phase must be

specified. Here we have chosen m1 ¼ 0.4 giving m2 ¼ 0.2727. Figure 6a shows the effective bulk

modulus �j; normalized by j1 and given by Eq. (4.18.1). The effective shear modulus �l; given by

(4.18.2), is displayed in Figs. 6b and 6d. In Figs. 6a, 6b and 6d the two green curves show the Voigt

and Reuss bounds according to cases 1 and 2 above. The modified Mori-Tanaka Method comes in

two versions: the interior eigenstrain method (4.19) and the exterior eigenstrain method (4.20). Both

depend on the shear modulus of the surrounding composite lc. Varying lc does not affect the bulk

modulus �j: Therefore Eqs. (4.19) and (4.20) only give the two blue lines shown in Fig. 6a. Here the

lower blue line corresponds to the placements (i) and (iv), which are equal in case of the bulk

modulus. On the other hand, the upper blue line corresponds to the placements (ii) and (iii), which

are also equal here. In the deviatoric case, however, lc has a strong influence on the effective shear

modulus �l: Furthermore placements (i) and (iv), and (ii) and (iii) now yield different results.

Figure 6b displays the results obtained from Eq. (4.19), and Fig. 6d displays the results obtained

from Eq. (4.19). Varying lc in (4.19) gives the two grey regions corresponding to placements (i) and
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(ii), while the variation of lc in (4.20) gives the two grey regions corresponding to placements (iii)

and (iv). The upper boundary of the four grey regions is given by lc ¼ ? (the Dirichlet case) while

the lower boundary is given by lc ¼ 0 (the Neumann limit.) The special case lc ¼ ~l; which

corresponds to the original Mori-Tanaka result, is shown in red. (We note that the red lines of

Figs. 6b and 6d agree exactly.) The blue lines show the case for lc ¼ �l; which is an implicit method.

In Sect. 5 we consider the Hashin-Shtrikman bounds and we will see that the red set of lines above

corresponds to the original Hashin-Shtrikman result. The blue set of lines, on the other hand,

corresponds to a modified Hashin-Shtrikman result. It can be seen that these bounds are significantly

tightened. Figures 6b and 6d look very alike and it is difficult to see much difference. Therefore in

Fig. 6c we display the bandwidth (upper bound minus lower bound) of the original Mori-Tanaka

(MT) method ðlc ¼ ~l; in red) and the two modified MT methods (4.19) and (4.20) using lc ¼ �l:
One can see that the new methods have considerably lower bandwidth as the original method and

that there is a subtle difference between (4.19) and (4.20).

4.4 General cases

So far we have considered four special cases of the Dual Eigenstrain method. Let us now look at the

general case where both e�I and e�E are nonzero. In other words eC is neither equal to C
I nor equal to C

E:

However, in the following, we restrict ourselves to eC being bounded by C
I and C

E: Since the extreme

cases eC ¼ C
I and eC ¼ C

E give the curves (i), (ii), (iii) and (iv) displayed in Fig. 6, we expect that an

intermediate eC should also yield intermediate curves. It turns out that the Dual Eigenstrain (DE)

method can be used to produce any curves between cases (i) and (iii), or between (ii) and (iv). In the

following let us focus on the transition between (i) and (iii), i.e. the case where material 2 is located

inside WI and material 1 is located inside WE. Let us further consider the choice lc ¼ ~l (which produces

a smooth transition between the original MT results shown in red in Fig. 6 (b) and (d)).

As a first application of the DE method let us consider the convex combination

eC ¼ aCI þ ð1� aÞCE; a 2 ½0; 1� : ð4:21Þ

Figure 7 displays the effective bulk and shear moduli for a ¼ {0.05, 0.15, 0.3, 0.5, 0.75}. We can

see how the parameter a allows for a smooth transition between the interior eigenstrain method

(a ¼ 0) and the exterior eigenstrain method (a ¼ 1), both shown in red. Since for an arbitrary

isotropic composite, �j and �l lie in between the bounds posed by a ¼ 1 and a ¼ 0, the DE method
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Fig. 7. Effective bulk a and shear modulus b using the dual eigenstrain method with the convex combination

(4.21)
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may be useful for curve fitting purposes of experimental data. We note that letting a ¼ a(f), i.e. a

function of the volume fraction of the interior phase, any response between the interior and exterior

eigenstrain methods can be produced.

As a second example of the DE let us consider eC to be predicted by some other homogenization

scheme. For instance we have the Voigt and Reuss predictors

eC ¼ fCI þ ð1� f ÞCE;

eC�1 ¼ fCI�1 þ ð1� f ÞCE�1
;

ð4:22Þ

the original MT predictor, i.e. eC given by Eq. (4.19) jlc¼lE
or (4.20) jlc¼lI

, and the Self Consistent

predictor if we let eC ¼ C: Figure 8 shows the DE for the special cases eC ¼ C
I and eC ¼ C

E (both in

red), and the five predictors given above. Here, as in Fig. 7, we have applied the Dual Eigenstrain

method to the original Mori-Tanaka method, i.e., we have set lc ¼ ~l: The results of both Figs. 7 and 8

are qualitatively similar when considering other choices of lc, e.g., the Neumann case (lc ¼ 0), the

self-consistent case ðlc ¼ �lÞ or the Dirichlet case (lc ¼ ?). Figure 8 shows that the plotted methods

form a nested structure of subsequently narrower pairs. In particular the self consistent choice (the black

line) of using ~j ¼ �j and lc ¼ ~l ¼ �l deserves further comment. It can be formally shown that this

scheme gives exactly the same curve for all four placements (i) through (iv), and that furthermore this

scheme is equivalent to the original Self Consistent scheme proposed by Hill [11], [12]. We can

therefore conclude that the Dual Eigenstrain method unifies all the discussed homogenization schemes

– i.e., the Voigt, Reuss, Original Mori-Tanaka, Luo and Weng’s modified Mori-Tanaka, Hill’s Self

Consistent method, and, as we shall see, the Hashin-Shtrikman bounds – since they are all special cases

of the DE method.

5 Modification of the Hashin-Shtrikman variational bounds

In this section we show how the Hashin-Shtrikman bounds are modified due to the Composite

Eshelby tensors. Let us first consider the two special boundary conditions, the Dirichlet (lc ¼ ?)

and the Neumann Problem (lc ¼ 0). It is most appropriate to work with the principle of minimum

potential energy (PMPE) when confronted with the Dirichlet problem. On the other hand, given the

Neumann Problem, the principle of minimum complementary potential energy (PMCPE) is suitable.

The respective results for these two special cases have been reported in [16]. Let us now consider the

general case lc [ (0,?), for which neither the disturbance displacement field ud nor the disturbance
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traction field td can be supposed to vanish on the boundary of the RVE. To see how this affects the

Hashin-Shtrikman bounds we construct the following modified Hashin-Shtrikman Variational

Principle based on the PMPE.

Consider two comparable boundary value problems: First, the BVP of the heterogeneous

composite RVE, characterized by a spatially varying modulus CðxÞ (as, for example, is shown in

Fig. 1), and which is governed by the equations

divr ¼ 0 ; r ¼ CðxÞ : e ; e ¼ rsu in X u ¼ e0xþ �ud on oX ; ð5:1Þ

where �ud is the prescribed value of the disturbance displacement field ud on the RVE boundary,

which is supposed to be non-zero in general. The value of �ud can be determined from enforcing

displacement continuity across the RVE/composite interface, as is considered in Sect. 3 by Eqs.

(3.26) and (3.34.1). Second, let us consider the comparison BVP

div ~r ¼ 0 ; ~r ¼ eC : ~e ; ~e ¼ rs~u in X ð5:2:1Þ

~u ¼ e0 þ hediX

 �

x on oX; ð5:2:2Þ

which corresponds to a homogenized version of the first BVP, both in terms of the constant elastic

modulus eC and in terms of the averaged boundary displacement. BVP (5.2) can be solved exactly

and the solution is given by

~u ¼ ~ex; ~e ¼ e0 þ hediX; 8x 2 X; ð5:3Þ

where the strain ~e is constant. The solution of the first BVP (5.1) can be expressed by the

decomposition

u ¼ u0 þ ud; e ¼ e0 þ ed; 8x 2 X; ð5:4:1; 2Þ

where u0 ¼ e0x: The major idea of the particular choice of the comparison BVP is to ensure that the

strain field solution of this BVP,~e; is the average of the strain field solution of the composite BVP, e; i.e.,

e ¼ rsu ¼ e0 þ ed;

~e ¼ rs~e ¼ e0 þ hedi ¼ heiX:
ð5:5Þ

As is seen in Eq. (5.2.2) this is achieved by prescribing the average ~e of the solution to the first BVP

as a boundary condition on the second BVP. According to Eq. (5.5) the misfit in the strain field of the

two BVP’s is characterized by

e� ~e ¼ ed � hediX: ð5:6Þ

To characterize the misfit in the stress field between the composite and homogenized solid we define

the stress polarization

p :¼ r� eC : e ¼ DC : e; DC :¼ CðxÞ � eC: ð5:7Þ

From the equilibrium equation div r ¼ 0 of the first BVP follows (in component form)

ðeCijk‘e
d
k‘Þ; jþpij;j ¼ 0; ð5:8Þ

which is also termed the subsidiary condition. Let us now revisit the original Hashin-Shtrikman

variational principle [6], [7], [10] for displacement boundary value problems. In the original

formulation the quantity hediX is zero and thus does not appear in the consideration of the

comparison BVP. The solution of the comparison BVP is therefore characterized only by e0 rather

than by ~e ¼ e0 þ hediX: Further, in the original formulation, the misfit in the strain field of the two

BVP’s is only given by ed rather than by ed � hediX: In view of this we propose that the quantities
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~e and ðed � hediXÞ should now play the roles that were formerly played by e0 and ed: We thus arrive

at the following modified Hashin-Shtrikman variational principle:

Theorem (Modified Hashin-Shtrikman theorem): Consider ud 2 U; dud 2 V and p 2 S; where

U ¼ fuju 2 H1ðXÞ;u ¼ hediX x on oXg;

V ¼ fvjv 2 H1ðXÞ; v ¼ 0 on oXg;

S ¼ frjr 2 L2ðXÞg :

ð5:9Þ

Then the potential P : S 
 U ! R

P ¼ eP � 1

2

Z
X

p : DC�1 : p� p : ed � hediX

 �

� 2p : ~e
� �

dV ;

with eP ¼ 1

2

Z
X

~e : eC : ~e dV ; DC ¼ CðxÞ � eC ; p ¼ DC : e;

ð5:10Þ

satisfies the variational statements

1: dP ¼ 0 () ðeCijk‘e
d
k‘Þ; jþpij;j ¼ 0 ;

2:
d2P [ 0 ; ifDC\0 ðpos:definiteÞ;

d2P\0 ; if DC[ 0 ðneg:definiteÞ:

ð5:11Þ

Proof First note that the variation of the constant ~e ¼ heiX ¼ e0 þ hediX vanishes since

dhed
ijiX ¼

1

2V

Z
X

dud
i;j þ dud

j;i

� �
dV ¼ 1

2V

Z
oX

dud
i nj þ dud

j ni

� �
dS ¼ 0; 8 dud 2 V: ð5:12Þ

The first variation of p is:

dP ¼ � 1

2

Z
X

2dp : DC�1 : p� dp : ðed � hediXÞ � p : ded � 2dp : ~e
� �

dV

¼ � 1

2

Z
X

dp : ðed � hediXÞ � p : ded
� �

dV ;

ð5:13Þ

where we have used DC�1 : p ¼ e ¼ ~eþ ed � hediXð Þ according to Eqs. (5.7) and (5.5.1). In view of

the definition (5.7) and (5.1) we have p :¼ r� eC : ðe0 þ edÞ; thus dp ¼ dr� eC : ded and it follows

that

dP ¼ � 1

2

Z
X

dr : ed � hediX

 �

� r : ded þ ded : eC : ~e
h i

dV : ð5:14Þ

Since ~r ¼ eC : ~e is a constant symmetric tensor the last contribution vanishes with the help of the

divergence theorem, i.e.Z
X

ded
ij ~rij dV ¼

Z
X

dud
i ~rij


 �
;j

dV ¼
Z
oX

dud
i ~rij nj dS ¼ 0; 8 dud 2 V: ð5:15Þ

By further use of the divergence theorem, the remaining part can be rewritten as
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dP ¼ � 1

2

Z
oX

drij ud
i � hed

ikiXxk


 �
� rij dud

i

� �
nj dS

þ 1

2

Z
X

drij;j ud
i � hed

ikiXxk


 �
� rij;j dud

i

� �
dV :

ð5:16Þ

On the boundary qW, we have ud
i ¼ hed

ikiX xk and du
d
i ¼ 0, so that dP ¼ 0 is satisfied iff rij,j: 0,

which implies the subsidiary condition (5.8).

Considering Eqs. (5.12) and (5.13), we find that the second variation of p becomes

d2P ¼ �
Z
X

dp : DC�1 : dp� dp : ded
� �

dV

¼ �
Z
X

dp : DC�1 : dpþ ded : eC : ded
h i

dV ;

ð5:17Þ

where we have used dp ¼ dr� eC : ded and

Z
X

drijded
ij dV ¼

Z
oX

drij dud
i nj dS�

Z
X

drij;j dud
i dV ¼ 0: ð5:18Þ

Clearly DC[ 0) d2P \ 0: By virtue of (5.18), we obtain

Z
X

dp : eC�1
: dp dV ¼

Z
X

dr : eC�1 : drþ ded : eC : ded
h i

dV ; ð5:19Þ

so that we further have

d2P[ �
Z
X

dp : DC�1 : dpþ dp : eC�1 : dp

h i
dV

¼ �
Z
X

dp : eC�1 : CðxÞ : DC�1
� �

: dp dV ;

ð5:20Þ

which yields DC\0) d2P [ 0: h

We note that the theorem contains the original Hashin-Shtrikman variational principle as a special

case when hediX ¼ 0:

We now consider the homogenized RVE with effective elastic modulus C: The potential energy of

the homogenized solid

P ¼ 1

2

Z
X

~e : C : ~e dV ð5:21Þ

is bounded by

P p; ed

 �			

DC[ 0
� inf

ed�e
P ed

 �
�P p; ed


 �			
DC\0

: ð5:22Þ

From this statement we derive the bounds for the effective bulk and shear moduli �j and �l for an

isotropic solid. To decouple the dilatational and deviatoric response let us consider the comparison

strain ~e and the polarization stress p to be of the form
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pij ¼ pdij þ sbij

~eij ¼ ~edij þ ~cbij

; dij ¼
1; i ¼ j

0; i 6¼ j

�
; bij ¼

0; i ¼ j

1; i 6¼ j

�
ð5:23Þ

We first apply the interior eigenstrain method to Eq. (5.22), where e* and thus p are nonzero only

within WI, i.e.

pðxÞ ¼ p x � XI ;
0 x � XE:

�
ð5:24Þ

Given the Composite Eshelby tensor S
�;C of Box 3, all the terms in Eq. (5.22) can be directly

evaluated without approximation: We first note that the stress polarization is related to the

eigenstrain by p ¼ �eC : e�; so that in view of the Eshelby relation ed ¼ S
�;C : e� we have

ed ¼ �S�;C : eC�1
: p: ð5:25Þ

Dividing by the volume V ¼ | W | of the RVE the first four individual contributions to Eq. (5.22)

become

1

V
inf
ed�e

PðedÞ ¼ 9

2
�j~e2 þ 6�l~c2;

1

V
~P ¼ 9

2
~j~e2 þ 6~l~c2;

1

2V

Z
X

p : DC�1 : p dV ¼ fp2

2ðjI � ~jÞ þ
3f s2

2ðlI � ~lÞ ;

1

V

Z
X

p : ~e dV ¼ 3fp~eþ 6f s~c:

ð5:26Þ

To evaluate the final contribution we employ the structure of the Composite Eshelby tensor given in

Box 3. There we have

ed ¼ aed;D þ ð1� aÞed;N þ bed;0 þ ced;00; ð5:27Þ

and since ed;0; ed;00 are constant and since hed;DiX ¼ 0 we obtain

ed � hediX ¼ aed;D þ ð1� aÞðed;N � hed;NiXÞ: ð5:28Þ

In view of Eq. (5.25) the final piece in Eq. (5.22) gives

1

2V

Z
X

p : ed;DdV ¼ � 1

2V

Z
XI

p : SI;D : eC�1 : pdV ¼ � f

2
p : hSI;DiXI

: eC�1 : p; ð5:29Þ

and, since hS�;NiX ¼ f Is;

1

2V

Z
X

p : ðed;N � hed;NiXÞdV ¼ � f

2
p : hSI;NiXI

� f Is

 �

: eC�1 : p: ð5:30Þ

Combining the last two equations by using Eq. (5.28) we finally conclude for an isotopic material that

1

2V

Z
X

p : ðed�hediXÞdV ¼ sHS
1 p2

2~j
þ3sHS

2 s2

2~l
with sHS

i ¼as
I;D
i þð1�aÞðsI;N

i � f Þ; i¼1;2; ð5:31Þ

and where si
I,D, si

I,N are given in Appendix A. With Eqs. (5.26) and (5.31) all contributions of P are

specified and we can set the derivatives oP
op

and oP
os equal to zero to obtain the two equations
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p

jI � ~j
þ sHS

1 p

~j
� 3~e ¼ 0;

s
lI � ~l

þ sHS
2 s
~l
� 2~c ¼ 0: ð5:32Þ

These can be solved for the stress polarization parameters p and s. Plugging these into P by

considering the two choices ~c ¼ 0 and ~e ¼ 0 we find the two equations

P
V
¼ 9~e2

2
~jþ f

1
jI�~jþ

sHS
1

~j

0
@

1
A; P

V
¼ 6~c2

2
~lþ f

1
lI�~lþ

sHS
2

~l

0
@

1
A: ð5:33Þ

We are now in the position to state the new Hashin-Shtrikman variational bounds. Let us consider

two materials with j1 < j2 and l1 < l2. From Eq. (5.22) we now obtain

j1 þ
f2

1
j2�j1

þ sHS
1

j1

� �j� j2 þ
f1

1
j1�j2

þ sHS
1

j2

;

l1 þ
f2

1
l2�l1

þ sHS
2

l1

� �l� l2 þ
f1

1
l1�l2

þ sHS
2

l2

:

ð5:34Þ

Explicitly, for the value of a given in Eq. (3.28) we have

sHS
1 ¼

1þ m1

3ð1� m1Þ
f1;

sHS
2 ¼

8� 10m1

3ð1� m1Þ
f1 � 21

f2 1� f
2
3

2

� �2

5ð1� m1Þ
2ðlc � l1Þ

4lcð7� 10m1Þ þ l1ð7þ 5m1Þ
;

ð5:35Þ

for the lower bound, and

sHS
1 ¼

1þ m2

3ð1� m2Þ
f2;

sHS
2 ¼

8� 10m2

3ð1� m2Þ
f2 � 21

f1ð1� f
2
3

1Þ
2

5ð1� m2Þ
2ðlc � l2Þ

4lcð7� 10m2Þ þ l2ð7þ 5m2Þ

ð5:36Þ

for the upper bound. It can be seen that s1
HS is independent of lc, the stiffness of the surrounding

composite, and that s1
HS is equal to the corresponding expression of the original Hashin-Shtrikman

formulation. Thus the bulk modulus bounds are identical to the original Hashin-Shtrikman bulk

modulus bounds. For the shear modulus, however, the new bounds are different from the original

solution. Since both expressions for s2
HS depend on lc, the Hashin-Shtrikman shear bounds become

explicitly dependent on the surrounding composite phase. In particular we note the special cases

1: lc ¼ 0 ! NeumannHSbounds;

2:
lc ¼ l1 for lower bound

lc ¼ l2 for upper bound

( )
! OriginalHS bounds;

3: lc ¼ 1 ! DirichletHSbounds:

ð5:37Þ

The Dirichlet and Neumann special cases have been reported in [16]. It is known that the original

HS bounds coincide with the original Mori-Tanaka method. Moreover it can be shown that the more

general ‘interior eigenstrain HS’ bounds, given by (5.34)–(5.36), are identical to the ‘interior

eigenstrain modified Mori Tanaka’ formula given in Eq. (4.19). Due to this equivalence, Fig. 6 also

serves to illustrate the Hashin-Shtrikman bounds. In this figure we have used j2 ¼ 4j1 and l2 ¼ 10

l1. The original HS bounds (in red) and the modified HS bounds for the implicit case lc ¼ �l (in blue),

are shown in Figs. 6a and 6b. (In case of the bulk modulus the original and modified HS bounds are
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equal.) It can be seen that the modified Hashin-Shtrikman shear bounds, using lc ¼ �l are

substantially narrower than the original bounds. The grey regions in Fig. 6b marks the variation of the

lower and upper Hashin-Shtrikman bounds for the possible range 0 < lc < ?. The Neumann-Hashin-

Shtrikman bounds (lc ¼ 0) are formed by the lower boundary of these grey regions while the

Dirichlet-Hashin-Shrikman bounds (lc ¼ ?) are formed by the upper boundary of the grey regions.

It can thus be seen that the Neumann-HS bounds constitute a downward shift compared to the original

HS bounds while the Dirichlet-HS bounds constitute an upward shift. This tendency can also be

observed in the computational homogenization results obtained by Löhnert [17].

The bounds reported in Eqs. (5.34)–(5.36) are derived by considering the eigenstrain e� to be

prescribed within WI. Let us finally consider the case where e�; and thus p, is prescribed within WE, i.e.

pðxÞ ¼ 0 x 2 XI ;
p x 2 XE:

�
ð5:38Þ

Under this condition, termed the exterior eigenstrain method in Section 4, we can derive a second set

of HS bounds. The relation between ed and p is now given by

ed ¼ �S�;C : eC�1 : p; ð5:39Þ

where S
�;C

is given by Eq. (4.4). From here the derivation follows the same steps as above and is

therefore omitted. The second set of bounds we obtain can also be expressed in the form (5.34) but

where now

sHS
i ¼ �as

E;D
i � ð1� aÞðsE;N

i � f Þ; i ¼ 1; 2: ð5:40Þ

Explicitly, by using (3.28), (A.11.2) and (A.12.2), this becomes

sHS
1 ¼

1þ m1

3ð1� m1Þ
f1;

sHS
2 ¼

8� 10m1

3ð1� m1Þ
f1 �

42f 2
1 1� f

2
3

1

� �2

5f2ð1� m1Þ
lc � l1

4lcð7� 10m1Þ þ l1ð7þ 5m1Þ
;

ð5:41Þ

for the lower bound, and

sHS
1 ¼

1þ m2

3ð1� m2Þ
f2;

sHS
2 ¼

8� 10m2

3ð1� m2Þ
f2 �

42f 2
2 1� f

2
3

2

� �2

5f1ð1� m2Þ
lc � l2

4lcð7� 10m2Þ þ l2ð7þ 5m2Þ
;

ð5:42Þ

for the upper bound. It can be shown that the ‘exterior eigenstrain HS’ bounds given by Eqs. (5.34),

(5.41) and (5.42) are identical to the ‘exterior eigenstrain MT’ formula (4.20). The original HS

bounds and the modified ‘exterior eigenstrain HS’ shear bounds for the parameters j2 ¼ 4j1

and l2 ¼ 10l1 are thus shown by the red and blue curves in Fig. 6d. For the bulk bounds the

modified and original HS bounds are identical and are as shown in Fig. 6a

In the following let us denote the shear modulus bounds of the interior HS method by lI
‘� �l�lI

u

and the shear modulus bounds of the exterior HS method by lE
‘ � �l�lE

u: Since the two sets of

bounds are both valid we can combine them and write

max lI
‘; l

E
‘


 �
� �l� min lI

u; l
E
u


 �
: ð5:43Þ

From Fig. 6c one can see that the exterior eigenstrain HS gives the narrowest bounds for the chosen

material parameters (j2/j1 ¼ 4, l2/l1 ¼ 10 and m1 ¼ 0.4). For this case the modified HS bounds are

up to 25% tighter than the original bounds.
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We conclude this section on the remark that no approximations, as are needed in the derivation of

the original HS bounds [30], are made here. Moreover, the new bounds derived here are significantly

narrower than the original bounds.

6 Conclusions

This work serves three major purposes: First, in Sects. 2 and 3, we have derived the Composite

Eshelby tensor S�;C: It is the solution of the general Micromechanical BVP and it is summarized in

Box 3. We then showed that the parameters a, b and c can be found by placing the RVE within a

surrounding medium with stiffness jc and lc and imposing the continuity of both the traction and

displacement fields. Secondly, we have introduced the Dual Eigenstrain method, which unifies

previous homogenization schemes. In particular it unifies the Voigt-, Reuss-, original Mori-Tanaka-,

Luo and Weng’s Mori-Tanaka- and Hill’s Self Consistent scheme. Thirdly we have shown that the

Hashin-Shtrikman bounds are modified due to the new Composite Eshelby Tensor, since it captures

the elastic disturbance fields more precisely than the original, infinite Eshelby tensor. In particular,

for the optimal choice �l ¼ lc we can show that the Hashin-Shtrikman shear bounds are significantly

tightened.

The Composite Eshelby tensor is a convenient tool to use. The derivation of the Hashin-Shtrikman

bounds and the modified Hashin-Shtrikman bounds are straightforward and do not require any

approximations, such as where employed in the original derivations of Hashin-shtrikman principles.

We therefore believe that the Composite Eshelby tensor is an important contribution, especially since

homogenization techniques and variational bounds are widely used in material modelling.

Further extensions to this work could be the consideration of an RVE whose phases are not

concentrically aligned. It may also be interesting to study the generalization to non constant

eigenstrains e�; which, for radially symmetric problems, should admit the same radial isotropic

structure as the Composite Eshelby tensor.

Appendix A

List of coefficients

In this Appendix we list all the radial basis arrays needed to construct the Eshelby tensors S�;�; U�;�

and T
�;� as given in Boxes 1, 2 and 3. The coefficients of the Infinite Eshelby tensor are

SI;1ðtÞ ¼ 1

15ð1� mÞ

5m� 1

4� 5m

0

0

0

0

2
666666664

3
777777775
; SE;1ðtÞ ¼ q3

0=t
3

30ð1� mÞ

3q2
0=t

2 þ 10m� 5

3q2
0=t

2 � 10mþ 5

15ð1� q2
0=t

2Þ
15ð1� 2m� q2

0=t
2Þ

15ðm� q2
0=t

2Þ
15ð7q2

0=t
2 � 5Þ

2
6666666664

3
7777777775
; ðA:1Þ

UI;1ðtÞ ¼ H0t

15ð1� mÞ

5m� 1
4� 5m

0

2
4

3
5; UE;1ðtÞ ¼ q3

0H0=t
2

30ð1� mÞ

3q2
0=t

2 þ 10m� 5
3q2

0=t
2 � 10mþ 5

15� 15q2
0=t

2

2
4

3
5; ðA:2Þ

and
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TI;1ðtÞ ¼ 2l
15ð1� mÞ

ð1� 12mþ 5m2Þ=ð2m� 1Þ
4� 5m

0

2
64

3
75;

TE;1ðtÞ ¼ l q3
0=t

3

15ð1� mÞ

�12q2
0=t

2 þ 10ð1� mÞ
�12q2

0=t
2 þ 5ð1þ mÞ

60ðq2
0=t

2 � 1Þ

2
64

3
75:

ðA:3Þ

The contributions from the Dirichlet boundary are

SB;DðtÞ ¼ � q3
0

15ð1� mÞ

5m� 1
4� 5m

0
0
0
0

2
6666664

3
7777775
þ q3

0ð1� q2
0Þ

20ð1� mÞð7� 10mÞ

2ð7� 10mt2Þ
7ð5t2 � 3Þ � 20mt2

�10t2ð7� 10mÞ
�40mt2

30mt2

0

2
6666664

3
7777775
; ðA:4Þ

UB;DðtÞ ¼ � q3
0H0t

15ð1� mÞ

5m� 1
4� 5m

0

2
4

3
5þ q3

0ð1� q2
0ÞH0t

20ð1� mÞð7� 10mÞ

2ð7� 10mt2Þ
7ð5t2 � 3Þ � 20mt2

�10t2ð7� 10mÞ

2
4

3
5; ðA:5Þ

and

TB;DðtÞ ¼ � 2l q3
0

15ð1� mÞ

1� 12mþ 5m2

2m� 1

4� 5m
0

2
6664

3
7775þ

l q3
0ð1� q2

0Þ
10ð1� mÞð7� 10mÞ

2ð7þ 5mt2Þ
7ð5t2 � 3Þ þ 10mt2

10t2ð7� 5mÞ

2
4

3
5: ðA:6Þ

Further, from the Neumann boundary we get

SB;NðtÞ ¼ q3
0

30ð1� mÞ

2� 10m
7� 5m

0
0
0
0

2
6666664

3
7777775
� q3

0ð1� q2
0Þ

5ð1� mÞð7þ 5mÞ

2ð7� 10mt2Þ
7ð5t2 � 3Þ � 20mt2

�10t2ð7� 10mÞ
�40mt2

30mt2

0

2
6666664

3
7777775
; ðA:7Þ

UB;NðtÞ ¼ q3
0H0t

30ð1� mÞ

2� 10m
7� 5m

0

2
4

3
5� q3

0ð1� q2
0ÞH0t

5ð1� mÞð7þ 5mÞ

2ð7� 10mt2Þ
7ð5t2 � 3Þ � 20mt2

�10t2ð7� 10mÞ

2
4

3
5; ðA:8Þ

and

TB;NðtÞ ¼ � l q3
0

15ð1� mÞ

2ð1þ 5mÞ
7� 5m

0

2
4

3
5� 2l q3

0ð1� q2
0Þ

5ð1� mÞð7þ 5mÞ

2ð7þ 5mt2Þ
7ð5t2 � 3Þ þ 10mt2

10t2ð7� 5mÞ

2
4

3
5: ðA:9Þ

Associated with the eigenstrain e� we have the traction array

T�ðtÞ ¼ K1Is ¼ 1

1� 2m

2m
1� 2m

0

2
4

3
5: ðA:10Þ

When we average the Finite Eshelby tensors according to Eqs. (3.37) and (3.41) we find
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s
I;D
1 ¼

ð1þ mÞð1� f Þ
3ð1� mÞ ; s

I;D
2 ¼

2ð4� 5mÞð1� f Þ
15ð1� mÞ � 21cuð1� f 2=3Þ; ðA:11:1; 2Þ

s
E;D
1 ¼ � ð1þ mÞf

3ð1� mÞ ; s
E;D
2 ¼ � 2ð4� 5mÞf

15ð1� mÞ þ 21cuf
1� f 2=3

1� f
; ðA:11:3; 4Þ

and

s
I;N
1 ¼ 1þ mþ 2ð1� 2mÞf

3ð1� mÞ ; s
I;N
2 ¼ 2ð4� 5mÞ þ ð7� 5mÞf

15ð1� mÞ þ 21ctð1� f 2=3Þ; ðA:12:1; 2Þ

s
E;N
1 ¼ 2ð1� 2mÞf

3ð1� mÞ ; s
E;N
2 ¼ ð7� 5mÞf

15ð1� mÞ � 21ct f
1� f 2=3

1� f
; ðA:12:3; 4Þ

with

cu ¼
f ð1� f 2=3Þ

10ð1� mÞð7� 10mÞ ; ct ¼
4f ð1� f 2=3Þ

10ð1� mÞð7þ 5mÞ : ðA:13Þ

The differences between these coefficients are

DsD
1 :¼ s

I;D
1 � s

E;D
1 ¼ 1þ m

3ð1� mÞ ;

DsN
1 :¼ s

I;N
1 � s

E;N
1 ¼ 1þ m

3ð1� mÞ ;

DsD
2 :¼ s

I;D
2 � s

E;D
2 ¼ 2ð4� 5mÞ

15ð1� mÞ � 21cu

1� f 2=3

1� f
;

DsN
2 :¼ s

I;N
2 � s

E;N
2 ¼ 2ð4� 5mÞ

15ð1� mÞ þ 21ct

1� f 2=3

1� f
: ðA:14Þ

Furthermore we have

DsC
1 :¼ s

I;C
1 � s

E;C
1 ¼ 1þ m

3ð1� mÞ ;

DsC
2 :¼ s

I;C
2 � s

E;C
2 ¼ 2ð4� 5mÞ

15ð1� mÞ þ
42f ð1� f 2=3Þ2

5ð1� mÞð1� f Þ
l� lc

4lcð7� 10mÞ þ lð7þ 5mÞ :
ðA:15Þ
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[17] Löhnert, S.: Computational homogenization of microheterogeneous materials at finite strains including

damage. Dissertation, Universität Hannover 2004.

[18] Luo, H. A., Weng, G. J.: On Eshelby’s inclusion problem in a three-phase spherically concentric solid,

and a modification of Mori-Tanaka’s method. Mech. Mater. 6, 347–361 (1987).

[19] Luo, H. A., Weng, G. J.: On Eshelby’s S-tensor in a three-phase cylindrical concentric solid and the

elastic moduli of fibre-reinforced composites. Mech. Mater. 8, 77–88 (1989).

[20] Marur, P. R.: Effective elastic moduli of syntactic foams. Mater. Lett. 59, 1954–1957 (2005).

[21] Mura, T., Kinoshita, N.: The polynomial eigenstrain problem or an anisotropic ellipsoidal inclusion.

Phys. Status Solidi A 48, 447–450 (1978).

[22] Mura, T.: Micromechanics of defects in solids, 2nd ed. Boston: Martinus Nijhoff 1987.

[23] Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials, 2nd ed.

Amsterdam: Elsevier 1999.

[24] Qiu, Y. P., Weng, G. J.: Elastic moduli of thickly coated particle and fiber-reinforced composites.

J. Appl. Mech. 58, 388–398 (1991).

[25] Rodin, G. J.: Eshelby’s inclusion problem for polygons and polyhedra. J. Mech. Phys. Solids 44, 1977–

1995 (1996).
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