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Summary. In recent studies, the exact solutions of the Eshelby tensors for a spherical inclusion in a finite,
spherical domain have been obtained for both the Dirichlet- and Neumann boundary value problems, and they
have been further applied to the homogenization of composite materials [15], [16]. The present work is an
extension to a more general boundary condition, which allows for the continuity of both the displacement and
traction field across the interface between RVE (representative volume element) and surrounding composite. A
new class of Eshelby tensors is obtained, which depend explicitly on the material properties of the composite,
and are therefore termed ‘‘the Composite Eshelby Tensors’’. These include the Dirichlet- and the Neumann-
Eshelby tensors as special cases. We apply the new Eshelby tensors to the homogenization of composite
materials, and it is shown that several classical homogenization methods can be unified under a novel method
termed the ‘‘Dual Eigenstrain Method’’. We further propose a modified Hashin-Shtrikman variational principle,
and show that the corresponding modified Hashin-Shtrikman bounds, like the Composite Eshelby Tensors,
depend explicitly on the composite properties.

1 Introduction

Eshelby’s solution for embedded inclusion problem [3]-[5] is fundamental in the development of
contemporary micromechanics. In the past, numerous efforts have been made to extend Eshelby’s
solution to include the effects of material anisotropy [22], inclusion geometry [1], [25], imperfect
interface conditions [8], nonuniform eigenstrains [21] and surface and interface energies [27].
Micromechanics is essentially a multiscale theory: Although a ‘‘representative volume element’’
(RVE) can be viewed as a material point at the macro-scale, it is associated with specific
microstructure at the micro-scale. It is well known that the classical Eshelby solution was obtained
for an elastic isotropic inclusion embedded in an infinite elastic matrix. With uniform eigenstrain
prescribed, the Eshelby tensor inside an elliptical or ellipsoidal inclusion is found as constant and
size independent. The treatment of the RVE as an infinite space implies that the inclusion
concentration is dilute, and therefore, a direct application of these results to the case of finite
inclusion concentration is only approximate. To date, only limited work exists to study the inclusion
problem for a finite RVE. It is not until recently that Li et al. [14]; Wang et al. [29]; Li et al [15]
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utilized the invariant group properties of circular and spherical inclusions to derive the exact closed-
form solutions of the Eshelby tensors for such inclusions within a finite RVE under both Dirichlet-
and Neumann boundary conditions. It has been found that the so-called Dirichlet- and Neumann-
Eshelby tensors are not constant tensors in the interior of the inclusion even for uniformly prescribed
eigenstrains. Instead, they are dependent on the position inside the RVE and the volume fraction of
the participating phases. They further have some salient symmetry properties denoted as *‘transverse
radial isotropy’’. Consequently, the modification of existing homogenization methods [22], [23] via
these finite Eshelby tensors provides significant improvement in predicting the behavior of
composites [16]. In particular, the Hashin-Shtrikman variational bounds [6], [7] are modified
according to the prescribed boundary condition.

The multiscale interaction of the microstructured RVE and its macroscopic environment can be
more realistically represented by a three-phase model, where the finite RVE (inclusion and matrix) is
geometrically idealized into concentric spheres (or circles in 2D) and is embedded in an infinite
homogeneous and isotropic composite material. The three-phase model was used successfully in
deriving the generalized self-consistent scheme (GSCS) [2] and improved Mori-Tanaka theory
[18], [19] and it has been widely applied, for example, to study grain boundaries of poly-crystals
[13], fiber or particle-reinforced composites [24], coated fiber composites [9], syntactic foams [20],
and granular rock [26]. The elastic solution for the three phase model under uniform external load
and under uniform eigenstrain were reported in [2] and [18], [19], however, these solutions are not
all in closed-form and lack an expression for the Eshelby tensor.

In this paper, we extend our previous work to solve the exact elastic field and associated Eshelby
tensor of an idealized, spherical, finite RVE embedded in an infinite, homogeneous, isotropic medium.
This surrounding infinite medium can be identified with the homogenized composite and we therefore
denote the boundary value problem of the RVE as the finite Eshelby problem under ‘‘composite
boundary conditions’’. A solution is found which satisfies the continuity of the displacement and
traction fields across the RVE/composite interface, and it is thus termed the ‘‘Composite Eshelby
Tensor”’. It is shown that this result is a linear combination of the Dirichlet- and Neumann-Eshelby
solutions reported in [15]. The fact that the ‘‘Composite Eshelby Tensor’’ is a composition of these
special results gives the terminology a twofold meaning. Second, we use the ‘‘Composite Eshelby
Tensor’’ to explore its ramifications to existing homogenization techniques. A new scheme, termed the
“‘Dual Eigenstrain Method’’ is devised, which unifies previous homogenization methods. Third, we
propose a new variational principle for the generalized boundary problem, such that the Hashin-
Shtrikman bounds can be substantially modified. We note that the results presented here are all
analytical and can be applied straightforwardly. In particular, we show that our model contains a closed-
form result of the Modified Mori-Tanaka Method developed by Luo and Weng [18], [19].

The following Section serves as a brief review of our finite Eshelby tensor formalism, in particular
the Dirichlet- and Neumann-Eshelby problems. They are needed for the development of the
underlying concept, the ‘‘Composite Eshelby problem’’, treated in Sect. 3. The important results of
Sects. 2 and 3 are summarized in boxes 1, 2 and 3, so that one may skip the detailed derivation in
preference for the following applications. These are the Dual Eigenstrain Method, discussed in Sect.
4, and the Modified Hashin-Shtrikman Bounds, derived in Sect. 5. We conclude this work in Sect. 6.

2 Dirichlet- and Neumann-Eshelby tensors

In this section, a brief summary of the Dirichlet- and the Neumann-Eshelby tensors is outlined. For a
detailed derivation, we refer to our original work [15]. The familiar reader may skip this section.
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2.1 Considered problem

The problem under investigation is shown in Fig. 1. We consider a spherical inclusion €; with radius @
embedded at the center of a spherical RVE Q with radius H. Consider two arbitrary points x € Q and
yeQandletR =y — x.Each vectorx,y, R can be expressed as its length multiplied by a unit direction
vector. We shall denote these unit vectors asr = x/Ixl, n = y/lyl and ¢ = R/R, where R = |RI. If y lies on
the boundary, as shown in Fig. 1, we have lyl = H, and n will be the outward normal of the boundary
surface 0C2. Furthermore we define the ratios p = a/lxl, po = a/Hpand ¢t = IxI/Hy = po/p to allow for a
nondimensional description of the problem. An important quantity is the ratio between the volumes of
the inclusion and the RVE, the so called volume fractionf = pj. The material property of the inclusion
Q; and the surrounding matrix Qg = Q/€; are given by the elastic tangents C’ and C¥, which are
considered as isotropic in the following derivation. It is noted that the concentric arrangement of the two
phases, as shown in Fig. 1, is a chosen idealized representation of the true microstructure, which
captures the volume fraction of the two phases within the RVE. The RVE is homogenized by
considering the prescribed, piecewise constant eigenstrain distribution

* _ 8*7 RS Q[a
e'(x) = { 0. xeOp 2.1)

such that the entire domain Q = €, U Q;, has the constant modulus C = C”. In passing, we note
that this homogenization procedure may not be exactly the same as the classical “equivalent
eigenstrain method” [22] since for a finite sphere the disturbance strain field due to a piecewise
constant eigenstrain distribution is not uniform in general.

The displacement field u (and corresponding stress and strain fields o, ¢) within the RVE are
decomposed into a background field u° (and 6°, "), due to the far field boundary condition, and a
disturbance field #” (and 6, £%), due to the presence of the inclusion. Given the Green’s Function for
an infinite elastic domain

1 (i — i) (@ — y)) dij
)

Glx—y)= 167mu(l —v) R3 +@- 4‘))?

2.2)

the solution of the disturbance displacement field can be expressed by the following integral
equation:

Fig. 1. Illustration of the single
inclusion problem
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o) = - / C0%, o~ i)y, + [ a6 x - pyas,
oQ

2.3)
/ (Czjkluk L/Vlj(x _y) nf(y)dsyv Vx,y €Q,

known as Somigliana’s identity [28]. Here § = ngsﬁmj is the traction acting on the RVE surface.
We emphasize that here and from now on y and v denote the shear modulus and Poisson’s ratio of
the exterior phase.

In the following we are interested in three special cases. The first arises when considering an
infinite RVE. Dropping the boundary terms we arrive at the expression

/ (Clckmn ik, x y) “mn (y)dQZH (24)

which gives rise to the infinite Eshelby tensors denoted as S for x € €; and S¥* for x € Qp.
Second, we consider the prescribed macrostrain boundary condition u = &’x,Vx € 0Q which
implies the Dirichlet problem u” = 0 on 0L, so that expression (2.3) becomes

“/(yin(x) == / CgMG?yOwSZ/dey‘*‘ / C@mﬂﬁ,ﬁ?ﬁﬂﬂ% (2.5)
)

We will see that this integral equation gives rise to the Dirichlet-Eshelby tensors S' for x € Q; and
SPP for x € Q.

Finally, by considering the prescribed macrostress boundary condition ¢ = ¢’n,Vx € 0Q, we
obtain the Neumann problem t* = 0 on 0Q. Then expression (2.3) becomes

ugﬂ /(CLJMGZWUSMdQ /ijkiukanJ%[dSyv (26)
0Q

which leads to the Neumann-Eshelby tensors SN for x € Q; and S" for x € Q.

2.2 The Eshelby tensor decomposition
The Dirichlet- or Neumann-Eshelby tensor S™* (¢ = [ or E; * = o0, D or N) in the infinite domain
relates the disturbance strain &? to the prescribed eigenstrain &* as

ag- (%) =S5, (%),

Vx € Q. (2.7)

It has been shown in [15] that the Eshelby tensor, which depends onx = tH,r, can be decomposed into

Sij’rrm (X) - S(t) . ®1j7’m'b(r)7 (28)
a dot product between the two arrays
Sl (t) 5zj5mn
S2 (t) 5im5jn + 5'L’7L5jm
o S3 (t) B 5iijTn
SO =g, | Comlr):= St (2.9)
S5(t) 52'1717/']'772 + 51’7’07"ij + 5j7rLV'L'V7L + 5j7LVinrz
Se(t) TV m ¥
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Since S depends on the radial distance, ¢, of point x, S is also denoted as the radial basis of S, and
since @y, depends on the radial direction, r, of point X, ®yj,, is also referred to as the
circumference basis of S.

Similar to relation (2.7) we can identify a third order tensor U**, which relates the disturbance
displacement field u” to the prescribed eigenstrain &* as

i (x) = U,

(x)en,, VxeQ. (2.10)
The tensor U admits the decomposition
Ui (%) = U(t) - Ejrn (1), (2.11)

a dot product between the two arrays

Uy (t) Tib‘mn
U@) = | U2(t) |, Ein(r) := | "m0in + i | - (2.12)
Us(t) iV m¥n

Due to their arguments we call U the radial basis and E;,,,, the circumference basis of U. The
strain-displacement relation

1
& =§(uff_j +uf,) (2.13)
establishes a direct link between the coefficients U and S. Given U the strain coefficients S can be
uniquely obtained from

S(t) = D(1)U(1), (2.14)
where D is the derivative operator
- 1 -
- 0 0
t
0 E 0
t
1
1 0 0 t
D(t) =— . 2.15
m 4., 0 (2.15)
dt
1 14d 1
" Tutaa w
3 d
0 0 —_— 4=
L ;s

Likewise given S the displacement coefficients U follow from
U(t) = 3(@)S(1), (2.16)
where J is the integration operator

100000
3I(t)=Hopt|0 1 0 0 0 0. (2.17)
001000

We remark that the displacements are only uniquely determinable from the strains up to a rigid body
displacement, which is set to zero here.
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2.3 The infinite problem

Let us now consider the solution of the infinite problem (2.4). Considering (2.13), (2.7) and (2.10)
expression (2.4) can be written as

u?(x) =0 " Us® = — / CfemnG?Z,e(x —y)dQ,,

imm “mn> imn
Q
1’ (2.18)
d .00 % o, E
Sij(x) = Szjfrjngwm? Szj’)?;n = 2 / (Ck/wm ik, ly (x y) + (Ckl/wm gkt (x y)>dQJ'
Q

The evaluation of U and S takes two forms (¢ = [ or @ = E) depending on the location of x. For

the spherical inclusion €, the tensors U">, U¥> and S"*°, S¥> can be written as
Ul () = U(1) - B (1), S;J?orjn(x) =8"*(1) - Oy (r), (2.19)

where the radial arrays U"*, U”* and 8"%, 8”* are given explicitly in Appendix A.

2.4 The Dirichlet problem

To solve the Dirichlet problem we write Somigliana’s identity (2.5) as

1 00 00
E’i(x) = 2 / (Cgl./mn (G}ci 4 (x - y) + G}cj.&' (x - y))de bm;z
(2.20)
/ (Ck/mw mn ka(x y) + Gk]?(x y))n/(y)dsw

an integral equation in terms of the unknown disturbance strain field &*. It can be solved exactly by
supposing the relation

&hix) = Sty (x)er,,  Vx €Q, (2.21)

%

to hold for the Dirichlet-Eshelby tensor s+, Substituting Eq. (2.21) into (2.20) and canceling &*, we
can write

St (x) =St (x) +SPD (x), (2.22)

ymn iymn igmn

where we have defined the Dirichlet boundary contribution

1
S (®) =75 / ChuStin @) (G35, — ) + 6%, (x — ) ) mulw)as,. (2.23)
oQ

Due to decomposition (2.8), Eq. (2.22) can be written as a relation for the radial basis arrays S.
Considering the two cases (¢ = [ or £) we thus obtain

SIP(t) = 8'°(t) + 8PP (1), 0<t<py, (2.24.1)
SEL (1) = 8P (1) + 8PP (1), py<t<1. (2.24.2)
We have shown in [15] that, by supplying SZ” (x) = S%P(t) - @ (1) and SED (y) =

ymn igmn

SEP(1) - @jmn(n), Eq. (2.23) can be integrated exactly to provide a relation between S”” and
S, namely
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SPP (1) = Kp(1)S¥P(1). (2.25)
Here Kp(t) = Ky(?) K, is a (6 X 6) matrix factorized into the contributions
242y 4y 2(1—v)
1—-2v 1-2v 0 1-2v 0 0
K, =pu 0 2 0 0 2 0 (2.26)
242y 4 2(1 —v)
0 0 1—-2v 0 1-2v 1-—2v
and
70(2v — 1) 28 4v(7 — 3t2)
0 28(5v —4) T7(4v —5) + 33(7T — 4v)
-1 0 0 6t2(10v — 7)
K(t)=——— 2.27
2(0) 420u(1 —v) 0 0 —24vi2 (2.27)
0 0 18vt2
0 0 0

Substituting Eq. (2.25) into (2.24.2) and evaluating it at ¢ = 1 furnishes an equation for 8¥(1),
S"P(1) = [Is — Kp(1)]'8">(1), (2.28)

where Igisthe (6 X 6)identity matrix. The solution of this equation together with Eqs. (2.25) and (2.24)
solves the Dirichlet-Eshelby problem. The explicit expression of the Dirichlet boundary contribution
S%L(t) is given in Appendix A. A summary of the Dirichlet-Eshelby tensor is given in Box 1.

The disturbance displacement field, as characterized by Eq. (2.10), now follows from the
application of Eq. (2.16). We thus obtain the description of #” as summarized in Box 2, which can be
seen in analogy to Box 1.

2.5 The Neumann problem

The Neumann BVP Problem (2.6), an integral equation in ud, can be solved directly on the
displacement level. Considering the decomposition

ul(x) =UY (%) & (2.29)

T mn mn’

Eq. (2.6) can be written as
U (x) = U (x) + UPY (x), (2.30)

mn mn imn

where we have defined the Neumann boundary contribution

Box 1. Dirichlet- and Neumann-Eshelby tensors

Dirichlet- and Neumann-Eshelby relation

SZ = S;]f;ma;‘nm (e =LE; * =D.,N)
Radial and circumference basis decomposition

Siimm (%) = 8% (1) - Oy (), Oy (r) from (2.9)
Radial basis equations

S (1) = 8" (1) + 8% (1), 0<t<py,

SE* (1) = 85°(1) + 8B+ (1), py<t<1.

Coefficients 8", 8%, 8% and S”V are given in Appendix A for the 3D spherically symmetric case
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Box 2. Dirichlet and Neumann disturbance displacement fields

Dirichlet and Neumann disturbance displacement field
ud =U" & (e =LE;*=D,N)

0 wmn “mn?

Radial and circumference basis decomposition
[U;';;n(x) = U.E*(t) 'Eimn (I‘) Eimn(r) from (2.]2)
Radial basis equations
U (1) = UM(0) + 0P (1), 0<t<p,
UP (1) = U5 (1) + U™ (),

Coefficients U"*, U**, U and UP* are given in Appendix A for the 3D spherically symmetric case

UL ) = [ G DB GF () (), 231)
0Q

Due to decomposition (2.11), Eq. (2.30) can be written as a relation between the radial basis arrays
U, which is

UN () =0 () + UPN (1), 0<t<p,, (2.32.1)
UPN (1) = UE< (1) + UPN (1), py<t<1. (2.32.2)
Substituting U (x) = UPN (1) - &, (r) and UZY (y) = UPN(1) - &, () into Eq. (2.31) and
performing the integration, we can find the relation [15]
UPN (1) = Ky (1)U (1), (2.33)
with
[2(1—2v) 2(1-5v) —2v(7 — 41%)
3 15 35
2
Kn (1) = - i . 0 7 155v 7(5—v) —11—06525 (4v—1) (2.34)
2
- 0 0 4(7 3;Ov)t |
Substituting (2.33) into (2.32.2) at t{ = 1 gives an expression for uEN (1), namely
U (1) = [l — Ky(1)] 07 (1), (2.35)

where I is the 3 X 3 identity matrix. The solution of this equation together with Egs. (2.33) and
(2.32) solves the Neumann-Eshelby Problem. The explicit expression of the Neumann boundary
contribution UPN(t) is given in Appendix A. The disturbance strain field according to (2.7) now
follows from differentiation of (2.14). A summary of the disturbance strain and displacement fields
can be found in Boxes 1 and 2.

2.6 The traction field

Finally, for the derivation of the composite finite Eshelby Tensors in Sect. 3, we need to discuss the
traction field. We introduce the disturbance traction field #* acting on the surface defined by the
outward unit normal r, i.e., the surface of any sphere placed concentrically within the RVE. In terms
of the prescribed eigenstrain &* this traction is given, for both the Dirichlet and the Neumann
problem (* = D, N), as
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cE (S[’* x) - I )V' x)e o Vx ey,

() = o () ) = { e St ) = B T55) 2 ' (2.36)
(Cijkk S];/mw (x) ¥y (x) S'frmﬂ vx € QE ’

where T* is the fourth order identity tensor which can be written as I, = I* - @y, for I =

[0, 1/2, 0, 0, O, O]T, and @, is given by Eq. (2.9). In analogy to the preceding developments we
can write the traction as

'.II‘[-’* .— C . S[.* ) TS .
t? (x) = ’]1‘;7’:;/'% (x) S;;m ’ Zn:z (x) gkl ( Eki’mn (.X') klmn ) ¥y (x) ) (2 37)
Ti'r;m (X) = (Cijvkl Skl‘mn (x ) 4 (x ) ’

where we have introduced the third order tensor T which can be decomposed as
T (x) = T(t) - Eign (1), (2.38)

with T(¢) = [T1(?), Tx(t), T5(1)] and E,,,,, given by Eq. (2.12).
Equations (2.38), (2.37) and (2.8) provide the relation between the arrays T*" and 8™, namely the
matrix equations

T (1) =K, [$"* (1) - F], T (1) = K;8%"(1), (2.39)
where K| is given by Eq. (2.26). In view of Box 1 we can thus write

T (1) = T (1) + TP (1) — T, 0<t<p,,

TE (1) = TE (1) + TO (1), py<t<1, (2.40)

where T, T, T8P TN and T = K, I° are given in Appendix A.

3 Composite Eshelby Tensors

In the preceding section, we have solved Somigliana’s identity considering either a pure Dirichlet
problem, #® = 0 on 9, or a pure Neumann problem, £* = 0 on 9Q. Realistically the considered RVE
is embedded within a surrounding elastic medium. Therefore we can argue that the Dirichlet problem
corresponds to assuming the surrounding medium to be infinitely stiff (thus #” = 0 on 9Q). On the other
hand the Neumann problem corresponds to assuming the surrounding medium to have zero stiffness (so
that £ = 0 on 0Q). It becomes apparent that the Dirichlet and the Neumann-Eshelby solutions are two
extremes, and that a general, more realistic, solution must lie in between those two extremes.

With this motivation in mind we present, in this section, an extension to the Dirichlet and
Neumann result reported previously.

3.1 The general problem

We start by solving Eshelby’s inclusion problem for a finite RVE with no boundary conditions
prescribed. We thus seek the general solution of Somigliana’s identity

) == [ €565 - wa9a, + [ w6 - w)as,
0Q

N (3.1)
+ / ijkguﬁ(y) G2 (x —y)ni(y)dS,, Vx,ycQ,
0

where neither #? or ¢ are considered zero on the boundary, so that both boundary integrals are still
present.
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Before deriving the general solution let us consider the convex combination of the Dirichlet and
Neumann disturbance displacement fields

() = o (x) + (1 — o™ (x), (3:2)
with ul? = U & and uf™ = UY ¢ according to Box 1. It can be shown, by linear

superposition, that this simple combination (3.2) satisfies. Somigliana’s identity (3.1) exactly. We
note that Eq. (3.2) corresponds to the combination of the displacement tensors

UrCx) =2 U @) + (1 - o) U (x), (33)
so that we can write u’f = U;;fns,’;m. Likewise the disturbance strain field follows as

0C % o, ° .
8?7 = Sij?nnng,w S C(x) =aS D(x) + (1 - O() S N(x)« (34)

Here and above the superscript C is used to denote the combination or composition of the Dirichlet
and Neumann solutions. Even though (3.2) satisfies Somigliana’s identity (3.1) for any o, it is not the
most general result. This is derived next and we will see that further important contributions are
picked up.

3.2 The general solution

Since the Finite Eshelby tensor $*¢ is a combination of the Dirichlet- and Neumann-Eshelby tensor,
it can also be written in decomposition (2.8) discussed in the previous section. As we have seen for
the Dirichlet and the Neumann problem, this decomposition allows us to recast the integral equation
(3.1) into an algebraic equation. We will therefore rewrite the three integrals appearing in (3.1) using
the developments of Sect. 2.

The first integral, the domain contribution, can be written, in view of Egs. (2.18) and (2.19), in the
following two ways:

U™ - Eipmen, = — / CklmnG?;,(Z(x —y)dQye;,,,
Q

(3.5)

. * 1 o0 o0 k
S Ghj””"%’m’o == § / ((Ckl/m'n Gik,ﬁj (x - y) + CW”’WLij,M (x - y))dgygmn'
Q

The third integral, the Neumann boundary contribution, can be expressed by the two alternative

statements
KN(t)UE'C(l) . Eimngjnn = / (Clcfs[ug(y) }C;;_[(x - y)nt(y)dsya (361)
0Q
E,C * 1 d 0 o)
DRV OIU(1) - Ot = 5 / Crastt! () (G755 + G5 ) 1 9)S,. (36.2)

0Q

Here, the equation of the displacement field, (3.6.1), follows from using Egs. (2.31), (2.11), (2.29)
and (2.33). Note that in using Eq. (2.33) superscript N is replaced by C since we are not considering
the Neumann-Eshelby problem but the more general Composite Eshelby problem. The equation of
the strain field, (3.6.2), follows by differentiation of (3.6.1). In view of Eq. (2.14) this means
application of operator . Note that the differentiation D only operates on Kx(t) and does not affect
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UE’C(I),G)@;WI, or &, Also note that the Neumann boundary contribution (3.6) is zero in the
Dirichlet case (C = D), since ¢ = 0 then.
The Dirichlet boundary contribution, i.e. the second integral in (3.1), can be written as

[3(OKp(®)]SEC(1) - Ejpunel,,, = / Crest 1l (9)Grs (x — y)n,(y)ds,, (3.7.1)
oQ
1
Ko(1)S7°(1)- @y, = & / Conatly ) (675, + G35, ) e ), (3.7.2)
oQ

Here (3.7.2) follows from the use of Egs. (2.23), (2.8), (2.21) and (2.25) (now by replacing D by C),
whereas (3.7.1) follows from the application of (2.16) to (3.7.2). Note that the Dirichlet boundary
contribution is zero for the Neumann problem (¢* = 0 on 0Q). Further note that J only operates on
Kp(t) and does not affect S¥(1).

Now, Somigliana’s identity (3.1), either expressed in terms of the displacement u® or expressed in
terms of the strain &%, can be rewritten as an algebraic equation. Using the preceding Egs. (3.5), (3.6),
(3.7) and the decompositions (2.11), (2.29), (2.8), (2.21) we obtain the two coupled equations

U (1)
0!

Ky (1) UPC(1) + [3() Kp(1)]S (1) + U™ (1),

[D(t) Kn (1)) UEC(1) + Kp(1)SFC (1) + 8= (1). (38:8)

In particular, on the surface of the RVE (t = 1, ® = E), we have
U%C(1) = Ky (D)UP(1) + [S()Kp(1)],-, 87 (1) + U>(1),
S"(1) = [D()Kn ()], U (1) + Kp(1)879(1) + 87%(1),
which can be written in the matrix form

I — Ky(1) f[S(wKD(t)H {UE‘C(U}
~[POKy@)],-y  Ts —Kp(1) SC(1)

[+l

We have thus transformed the integral equation (3.1) for the unknown vectorial displacement field

(3.10)

u® into an algebraic equation for the unknown radial basis arrays UZC(1) and S°(1). We remark
that due to the coupling we cannot solve for the coefficients U” "C(l) or $”(1) alone. Further note
that (3.10) represents the generalization of (2.28) and (2.35), which are the corresponding statements
for the (decoupled) Dirichlet and Neumann special cases.

Next we derive the general solution of (3.10). Let us therefore denote the coefficient matrix by

T LK) —BOKW),
E= | mnkl, LK) | (3.11)

which is a singular matrix since the two matrix equations in (3.9) are dependent on each other: We
obtain (3.9.2) by application of the derivative operator D(¢) to (3.9.1) and then setting t = 1. Vice
versa (3.9.1) can be obtained by application of the integration operator 3(¢) to (3.9.2) and then
setting ¢ = 1.

It is straightforward to verify that both the Dirichlet (C = D) and the Neumann problem (C = N)
are solutions of (3.10), i.e.,

[ - [S5) e o) 850

(Note that U¥P(1) = 0 and TV(1) = K, S¥¥(1) = 0). Furthermore, consider the arrays
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1 0
Hyt 0 0 !
0 0

=10 |,8%)= ol U @t) = [ Hot |, 8"@) = ol (3.13)
0 . 0 o
_O_ _O_

where U° and 8° as well as U and S® are related by the operators D(t) and 3(t) according to Eqs.
(2.14) and (2.16). In can be easily verified that the arrays 0% S° U and S® form two zero
eigenvectors (corresponding to zero eigenvalues) of K, i.e. they satisfy

u'@)] _fo U] _[o
K{So(l)_f_O]’ ’C_SOO(I) =10l (3.14)
In view of (3.12) and (3.14) we thus have the three zero eigenvectors
v o] (o] (e 3.15)
SE’D(I)_ _SE.N(I)_v SO(].) ’ SOO(].) . .

Therefore the rank of K can be at most 6, i.e. rank () <6. On the other hand we know that the
submatrix Is — Kp(1) is invertible, therefore the rank of K is at least 6 (rank(K) >6). So we
conclude that rank(K) = 6 and that therefore the complete solution of (3.10) can only be the
combination

UPC(1) = aUPP (1) 4 (1 — ) UEN (1) 4 pU° (1) + 9 U (1),

(3.16)
S7C(1) =« 857(1) + (1 = w)8"V(1) + p 8"(1) + 8™ (1),
Y o, B, 7. (Note that U¥(1) = 0. Plugging Egs. (3.16) into (3.8) we arrive at
UC(t) = a0 (1) + (1 — )UM (1) + pU° (1) + yU(2),

(3.17)

S (1) = aS*P (1) + (1 — 0)S*M (1) + pS°(t) + yS™(1),

which is the equation for the radial basis arrays U~“ and 8 of the Composite Eshelby tensors
U and S*° which solve Somigliana’s identity (3.1) exactly. Note that the two Egs. (3.17.1)
and (3.17.2) depend on each other via D(¢) and 3(¢). Using the definition of U*", U™, §* and
S*V (from Box 1 and 2), Eq. (3.17) can equivalently be written as

UC(t) = U () + aUPL (1) + (1 — ) UPN (1) + pU° (1) + y U (1),

S',C(t) = So,oo(t) + O(SBJ)(I) + (1 — OC)SB'N(I) + BSO(Z) + ySOO(t). (318)

Here, all the individual contributions to U*“ and 8™, for both = I.E, are given in Appendix A.
We finally remark that the traction basis corresponding to the zero eigenvectors U® and U is

3K 2.
) =K S't)=| 0|, TV =K S"F) = |2u]. (3.19)
0 0

where 1 =k — %u Thus T° and U° are associated with a pure volumetric deformation, while
T — %TO and U — %UO are associated with a pure deviatoric deformation. A summary of the
Composite Eshelby tensors is given in Box 3.
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Box 3. Composite Eshelby tensors

Disturbance displacement, strain and traction fields (e = [, E)
d _ 1190 % d _ q*C .« d _ me.C _x
Uy = Uimngmn gi,j - Sy’jmn Emno ti, - Ti?rz,’)zgmn'

Radial and circumference basis decomposition

U;,r’y?n(x) = U.vc(t) “Ein (), Eimn(r) from (2.12),
:Jrcnn (x) = S.’C(L) . G)I?jmn (r)7 @7}]’7»171,(") from (29),
T:ﬂ([ym(x) = T°>C(t) . E‘imn(r)~

Radial basis equations
UC(t) = aUP (1) + (1 — ) UN(t) 4+ pU°(t) 4+ y U (1),
S*C (1) = aS*P (1) + (1 — 0)S*N(t) + pS°(t) + 7 8P(t),
T*C(t) = TP (1) + (1 — &)T*N(t) + f TO(t) + T (1).

See Box 1, Box 2, Egs, (2.40), (3.13) and (3.19) for individual contributions

3.3 The physical solution

To satisfy Somigliana’s identity (3.1) by solution (3.17), «, § and y can be arbitrary. However not
any choice will make physical sense. Next we derive physical meaningful values of these
parameters. The derivation is based on the work by Luo and Weng [19]. Their idea is to consider the
two-phase RVE to be embedded within the surrounding homogenized composite €2, an isotropic
elastic medium with stiffness x, and p,, and Poisson’s ratio v,, as shown in Fig. 2. This assumption
will provide us with physical conditions at the interface between composite and RVE from which o,
p and y can be solved.

We begin by studying the case of a deviatoric deformation. Adopting the spherical coordinates
{r, ¢, 8}, as displayed in Fig. 2, it has been shown by [2] that the displacement field can be
expressed as

u, = U,(r) sin 0 cos 2¢,
ug = Up(r) sin 6 cos 0 cos 2¢, (3.20)
Uy, = U,y(r) sinfsin2¢,

Fig. 2. RVE embedded within a surrounding
Composite €.
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where U,, U, and Uy are functions of the radial coordinate 7. For the disturbance displacement field
of the composite surrounding the RVE region, u’, these are

3Cs b5—4v.C
Ui =S5+ T o
o 3.21
. 3C; 204 . (3:21)
Upr) =3 =~z = ~Us(),

where C; and C, are unknown constants to be determined. Employing the strain displacement
relation (2.13) and the constitutive relation ¢ = C° : &, where C° is the isotropic elasticity tensor
of the composite, the stress components acting on the surface of a sphere centered at the origin

follow as
¢ 603 5— 4\), 04 604 .
of = — {4 . [7 +1- 2vz F} Je 7—3} sin® 0 cos 2¢,
. 4Cs  1+v. Cq| . .
0y = —4it, {7—5 T 2\:0 7_3] sin 0'sin 2¢, (3.22)

403 1+V; C4 .
oy =4 °[F+ i _2;07—3} sin 0 cos 0 cos 2¢,

where 1, and v, are the shear modulus and Poisson’s ratio of the surrounding composite. The
disturbance displacement field is in a state of shear when we consider the prescribed eigenstrain
contribution

& =(e;®e —exe)e’, (3.23)
where e" is some constant. We note that this corresponds to shearing of the e;, e, plane, the
consideration of which suffices for our needs. For this eigenstrain &¢* the disturbance displacement

field, given in Box 3 and evaluated at the boundary of the RVE (¢ = 1), follows in spherical
coordinates as

r

ul(y) = [(1 —a) [ZUZE'N(I) + UgN(l)} +2yUg°(l)} sin® 0 cos 2¢ e,

uff,(y) = —2[(1 — o) UM (1) + yUgo(l)} sinfsin2¢ e*, (3.24)

uy(y) = —uff,(y) cos 0 cot 2¢,

which does not depend on the Dirichlet-Eshelby coefficients UP? since UF(1) = 0. Likewise, for
the prescribed eigenstrain (3.23), the disturbance traction field (see Box 3) on the RVE surface
becomes

thy) = [a[ZTf‘D(l) + Tg‘D(l)] +2y Tgo(l)} sin® f cos 2¢ e*,

ti(y) =-2 [ach’D(l) + yTgo(l)} sinfsin2¢ e*, (3.25)
()
which does not depend on the Neumann-Eshelby coefficients TEN since TZV(1) = 0. Also note that

both (3.24) and (3.25) are independent of f. At the interface between RVE and surrounding
composite, where » = H,,, we require the continuity of the displacement field

ul (y) = ug(H),
ug(y) = u(G(HO)a

—14(y) cos 0 cot 29,

(3.26)

and the continuity of the traction field
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1} (y) = a7, (Ho),
d

t5(y) = ayy(Ho).

Note that the conditions on %, and ¢y are mathematically equivalent to the conditions on %, and ¢,

and have therefore been omitted. Equations (3.26) and (3.27) give four expressions for the 4
unknowns «, 7, C3 and C,. These can be solved for o and 7, giving

(3.27)

4#((7 — IOV)
) | 3.28
* T ap (T—100) + (7 + 5v)’ .
and
f _ _ :uc(7 — 5‘)0)
o | 3.29
y=35@=7), 7 17— 5ve) +2u(4 — 5v,) -

We note that y depends on both the bulk modulus . (via v.) and the shear modulus y. of the
composite whereas « only depends on p.. Physically, the surrounding composite must satisfy
0 < u. < 0. We can see from Eq. (3.28) that this leads to the restriction O < o < 1. The limit
case i, = o0, implying o = 1 and y = 0, corresponds to the Dirichlet problem as discussed earlier.
Conversely the limit p, = 0 implies o = 0 and y = 0, which corresponds to the Neumann problem.

To obtain f# we need to consider hydrostatic deformation. For this radially symmetric case the only
nonzero displacement component is [2]

Co
Uy = Clr+T—2, (3.30)

for some constants C; and C». In the surrounding composite the disturbance field due to the inclusion
must decay so that C; = 0 and we can write

_02

c
U =3 (3.31)
For a linear elastic isotropic composite the stress in radial direction then becomes
Cy
O';ir = 76K{*ﬁ (332)

The hydrostatic eigenstrains can be expressed as ¢j; = €*0;;, for some constant ¢ . Thus the radial
1

components of the disturbance fields, ¢ = u?-e, and (¢ = ¢*-e,, follow from Box 3 as

ul(y) = [(1 —2) [3 UPN (1) + 2 UBY + U§N(1)} 4 3pH, + 2yHO} &,

r

) = [2[3 TP () +2 797 + 5P ()] + 36T +9[3T1°(1) + 278 (1)] e 2
As for the shear case, we impose the continuity conditions
ul(y) = u(Ho), (3.34.1)
t(y) = o}, (Ho), (3.34.2)

at the interface between the RVE and composite. This provides two equations for the final two
unknowns 8 and C,. For f# we find

_f 5 R n_ 4:“0(1_2")
F=30-F. P=ga oz

(3.35)
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With the specified values of «,  and y the Composite Eshelby tensors U*C(x) and S*(x) are
completely determined by the expressions in Box 3 and Appendix A. Note that these tensors depend
on the volume fraction f, the comparison solid (i, k) and the composite solid (g, k.). As a
concluding statement of the preceding derivation, let us remark that the Composite Eshelby tensors
U*C and S* satisfy Somigliana’s identity exactly for any volume fraction f and coefficients o, 3, .
For the particular o, f§ and y above we furthermore satisfy the continuity of all elastic fields at the
interface of RVE and surrounding composite.

Similar to the limits of y we obtain § = 0 for both the Dirichlet case (1. = c0) and the Neumann
case (4. = 0). The fact that  and y are zero for the Dirichlet and Neumann special cases is very
important, because it shows (from Eq. (3.17)) that the Dirichlet- and Neumann-Eshelby results are
special cases of the Composite Eshelby tensor. Another special case is y. = u and v, = v, which
corresponds to considering the composite and the comparison solid to have the same properties.
Computing the particular values of o, f and y it can be shown from (3.18) that this case will give us
the original infinite Eshelby Tensor S**. The three special cases discussed above can be
summarized as follows:

$*C(t) =8*P(t) for u, = 00,
S*C(t) = 8*>(t) for u, =, (3.36)
S*C(t) =8"N(t) forpu, =0.

Figure 3 shows a plot of the coefficients of the displacement Eshelby tensor U for shear modulus
U 1= {O,ﬁ, 1,3,00} and inclusion ratio py = 0.4. Poisson’s ratio of both the matrix (the
comparison phase) and the composite is chosen as v = v, = 0.3. According to Eq. (3.36), which
holds analogously for U™, u, = o0, p, = p and p, = 0 correspond to the Dirichlet-, the original
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infinite and the Neumann-Eshelby problem. We observe that the components of U°(¢) are continuous
functions of ¢ with a kink at the material interface ¢ = po. They vary smoothly with u.. Note that for
composite moduli y. differing significantly from p the Composite Eshelby tensor will differ
significantly from the original Eshelby tensor. This is despite the fact that the volume fraction is
small, i.e. f = py = 0.064.

We remark that since the strain and traction bases S*¢ and T are related to U*° (by (2.14) and
(2.39)), the behavior of both S and T will be similar to the behavior of U™, shown in Fig. 3.

3.4 The average solution

We finally discuss the spatial average of the Composite Eshelby tensor. As we have shown in [16]
the domain average of S''“ over the interior domain €, and the average of S*C over the exterior
domain Qf can be written as

(6l = 4B, + 5L

ymn ymn ymn

. (3.37)
E,C EC (1 EC m(2
(Sijmn)as = $1 EE]?‘)}'N’L + Sy ]E7<j7>nn )
where IE;;)M and IEEJZ,)W are the isotropic basis tensors
1 1 1
EE;V)IL’I’L = géijémn s E,(Jzy),m = é (5im5jn + 52'72 5jm) - g(sz’j(smn - (338)
The coefficients SII’C, 512’0 and S‘TJ’C, s%"c are related to the radial basis 8"C and S%¢ by
IC 3 2 11 % l
S| 3 3 (31287C)
Jdo| 02 0 0 4 9 [0,p0] 2
2 2
L 3 15
(3.39)
EC 3 2 11 é l
S1 . 3 3 <3tst7c>
SEC 02 0 0 4 2 [po-1]
2 2
L 3 15
with
b
) 1
a
Due to Eq. (3.17) we can immediately write
s?C = st 4 (1 —a)s?™ 4 Bs? 49 s (3.41)

fori = 1,2 and ® = [, E. The individual pieces are all given in Appendix A. We will see that an
important object is the difference

IC E.C 1 2
<S7;imn>91 - <Szjjmn,>QE = AS? Ei]v)rm + Angf(W)rm ’ (342)
where we have defined
As¢ = shC — 0 = 4AsP 4+ (1 — w)AsY. (3.43)

The coefficients As? := sﬁ‘D — SZE’D, AsY = sg’N — sf‘N and As{ are also given in Appendix A for
the o reported in Eq. (3.28).
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4 The dual eigenstrain method

In this section we illustrate how the Composite Eshelby tensor affects the computation of the
effective elastic modulus C. Therefore we introduce a general homogenization method termed the
‘Dual Eigenstrain Method’, which, as we will see, contains the classical dilute distribution, Mori-
Tanaka and self-consistent homogenization methods while further defining some entirely new
methods.

4.1 The dual eigenstrain homogenization

Consider a two phase composite solid with phase moduli C/ and CZ. The phases are arranged
concentrically in regions €; and Qp as illustrated in Fig. 4. The idea of the dual eigenstrain method
is to prescribe an eigenstrain in both the inclusion and matrix phase as

« B S}F, x €y,

As before we focus on constants & and g;. This formulation admits the two special cases
g, = 0and & =0 as shown in Fig. 4: In the interior eigenstrain approach, where g; =0, ¢/ is
introduced to account for the misfit in the material response arising from setting C¥ as the stiffness
of both phases. Likewise, in the exterior eigenstrain approach, where & = 0, &5 accounts for letting
C! be the comparison stiffness. As we prescribe nonzero & and &}, the comparison solid can neither
have stiffness C/ nor CZ. We thus introduce the elasticity tensor C to characterize the comparison
solid of the two phases within the framework of the dual eigenstrain method. In taking such a

homogenization approach the average stress consistency condition becomes
C (4 (eg) = C: (" + (7)o, — &), xeQy, (42)
CZr (" + (e)g,) = C: (& + (6%, — &), X €Qp.

We remark that from g5 = 0 follows C = C and that & = 0 implies C =C. The Eshelby tensor
following from Eq. (4.2) depends on C, the modulus of the homogenized comparison solid. Since we

(CI (CE

dual homogenization
exterior

eigenstrain

method

interior
eigenstrain

method dual eigenstrain

method

Fig. 4. Dual eigenstrain homogenization
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are prescribing two eigenstrain fields & and &;, we have two Eshelby tensors. The first, S"C, gives
. . . . . . <.C

the disturbance strain field & caused by the interior eigenstrain &. The second, S™, relates the

disturbance field sg to the exterior eigenstrain gj. Therefore the total disturbance strain field is

written as

&' (x) = & (x) + e (x) |
& (x) =S"C(x) : g, (4.3)
<oC

(x) :gp.

ep(x) =S

Note that both & and &} are given for all x € Q through the use of the interior Eshelby tensor
(e = I for x € ©;) and exterior Eshelby tensor (¢ = E for x € Q). S*“ has been derived earlier
(see Box 3 and Appendix A). The simple illustration of Fig. 5 shows that S;J’C can be written as

go,C(x) _ SI,C(x) szl _ S"C(X). (44)

Let us emphasize that the material constants appearing in S*¢ are those of the comparison solid, i.e.
v =7V and u = ji. Further note that s*¢ depends on the volume fraction of the interior phase, i.e.
S =J1, and that we can write fz = 1 — f. The validity of Egs. (4.3) and (4.4) can be proved by
showing that they satisfy Somigliana’s identity (2.3) exactly. We note that the superposition
procedure displayed in Fig. 5 can also be used for 7 nested shells. Such a shell model has been
investigated in [16].

4.2 The effective modulus

With the above relation we can now derive the effective modulus of the dual eigenstrain method. We
start by defining the concentration tensors A; and Ar and rewrite the average stress consistency
condition as

~ -1 -
&+ (61, = Ar g xeq, AI::[(C—(C]} . C, s
~ -1 ~ :
4 (o, —Agigy,  xeQq, AE::[C—CE] .C.

We note that A; and Ay are ill-defined for the cases C = and C = CE. To avoid this problem
the following derivation can alternatively be written using only Afl and Agl. This, however, comes
at the expense of clarity.

o
%

d_ge,C. o% d_,C| ,_ €% d_g%C. g%
ed=8""r¢e7 ed=8"|r=1"€% ed=8""rey

Fig. 5. Superposition of the exterior eigenstrain
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The average disturbance strain in the two phases follows from (4.3) as

* 71,C *
<3d>g, = <SLC>Q, g + (S >Q, Y&,
£.C

_ (4.6)
(€)q, = (8")q, 1 &/ + (5

*

)t ek
Substituting these two expression into (4.5) yields the system of linear equations
=IC
A= (%, —E"), } . { } _ H (47)
—E.C . * - 0" .
_<SE"C>QE Ap — (87 )q, & &

We note that the entries in the matrix equation above are fourth order and second order tensors.
Solving (4.7) for & and g}, gives

e =[Ag—AS] M, g =[A—AS]: Mg (4.8)
with

48 = ("), ~ (8")a, (= "o, = ). (491)
M := [Al - <SI’C>QJ : [AE - <§E‘C>Ql~::| - <§[,C>QI : <SEYC>QE' (492)

We note that in (4.9.1) we have used the fact that s ’C|f:1 is constant and we therefore have
(sh¢ l=1)q, = (s ’C|f:1)gl. Further note that all tensor contractions above commute since we are
considering isotropy.

The average strain in the two phases now follows from (4.5) and (4.8) as

(8)g, == & + <ad>91 =Ar:Bg:e", Bp:=[Ag—AS]:M,

4.10
(8)q, = &+ <8d>QE =Ag:By:&”, By:=[A —AS]: M, (4.10)

so that the average strain of both phases becomes
(e)q =S (e, + (1 =f)(e)o, = [f Ar:Bp+ (1 —f) Ap : By : &". (4.11)
On the other hand the average stress in the two phases is given by Eq. (4.2) which can be written as

(6)g, = C: (e + (e%)g, — &) =C: [A/—T]: B : &,

~ ~ 4.12
()0 = €+ (" + (&), — 25) = € : [Ap — ] : By : &, (412
and therefore the average stress of both phases is
(o)q, =S (o)g, + (1 —f)(0)q,
(4.13)

- [f(é J[Ar—T]:Bg+ (1 —f)C : [Ag — I¥] :BI} e
The effective modulus C of the two phase composite is defined by the relation
(6)g =C: (g)q, (4.14)
from which follows
{f((NI:[AI—]IS]:BE+(1—f)@:[AE—HS]:BI}:so w15
=C:[fA:Bp+ (1 —f)Ag :B] ' &

Note that ¢ and the cumbersome tensor M~ cancel. Expression (4.15) still does not admit
C = C! or C = CF yet. However we can further pull out the tensors A; and Az on both sides. The
final expression for the effective elastic modulus then becomes
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C=[fC: Ap + (1 -NCF A« [flp + (1 =) AT, (4.16)
with
Ap =T —Ag' 1 AS, A =T —A;':AS. (4.17)

The formula now admits the cases C = C* or C = C' which arise from setting g, =0o0reg =0.In
terms of the effective bulk modulus k and shear modulus g of the composite, Eq. (4.16) corresponds to

S (1= (1 =5)AsT) + (1 —f) k(1 = (1 = 2)AsT)
FO-1-2)A0) + 1 -f)(1 - (1 -9)As?)
(1= (1) asg) + (-t (1 (1-%)As)

g (1= (1-t2)asg) + (1) (1 (1-2)as5)

where k and fi are the moduli of the comparison solid. Further ASIC and Asg are the coefficients
given explicitly in Eq. (A.15) by setting v =" and u = [i.

K =

(4.18.1)

=

(4.18.2)

4.3 Four special cases

We now discuss the possible applications of Eq. (4.16) or (4.18), respectively:

1. Setting both & =0ande, =0 (.e. C=C in Q; and C=CF in Qp) gives
A;' =0and Ag*' = 0. We therefore arrive at the Voigt bound C = fC’ + (1 —f)C¥,

2. Similarly one can obtain the Reuss bound. We therefore need to consider the homogenization of
the RVE in terms of an eigenstress 6*. We can then arrive at a formula for the compliance D
analogous to Eq. (4.16). (As long as Cis equal in both domains Q; and Q;; this formula for D
will be equal to the inverse of C). For the same special case as above (i.e., C=Cin Q; and
C = C” in Q) the formula for I specializes to the Reuss bound D = f I/ + (1 —f) DF.

3. Setting &5 = 0 gives the interior eigenstrain method as noted in Fig. 4 We then have C=cCF
and thus Agl = 0. From Eq. (4.16) then follows that

C=CF—fCF:[A;— (1 —f)AS] !, (4.19)

where AS takes the properties of the exterior phase Qg, since C =CP. Note that
Ay =[CF — ] : CF here. Expression (4.19) is the modified Mori-Tanaka method as derived
in [16]. It resorts to the original Mori-Tanaka method if an infinite RVE is considered so that
(SF>) . = 0 and thus AS = (S'*°)),;. We note that (4.19) is equal to the modified Mori-
Tanaka method reported in [19].
If we consider a composite of two materials we are faced with two possibilities: (i)

placing material 1 in Qg and material 2 in €, and (ii) the flipped case of placing material 2
in Qz and material 1 in Q;.

4. The exterior eigenstrain method is obtained by setting & = 0 so that C = C’ and thus Agl =0.
We thus obtain

C=C'—(1-HC":[Ag—f AS] ", (4.20)

where AS takes the properties of the interior phase €;, since C =C/. Note that
Ag =[C' - CF rl : €' here. Expression (4.20) can be considered as the flip of the modified
Mori-Tanaka formula (4.19), which arises when flipping the properties of Q; and Qg, i.e. flipping
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C! « CF and f; < fz. Equation (4.20) gives the flip of the original Mori-Tanaka method if
considering an infinite RVE where (S¥*°)Qz = 0 and thus AS = (S/ -

Again for two given materials 1 and 2 we are faced with two possible placing choices,
denoted by (iii) and (iv) in the following.

The four cases discussed above are displayed in Fig. 6. Here we consider two materials with
K1 < Kp and u; < up. The plots are normalized by x; and u;. The material ratios are chosen as
Ky = 4y and pp = 10u,. Furthermore Poisson’s ratio of either matrix or inclusion phase must be
specified. Here we have chosen v; = 0.4 giving v, = 0.2727. Figure 6a shows the effective bulk
modulus ¥, normalized by x; and given by Eq. (4.18.1). The effective shear modulus z, given by
(4.18.2), is displayed in Figs. 6b and 6d. In Figs. 6a, 6b and 6d the two green curves show the Voigt
and Reuss bounds according to cases 1 and 2 above. The modified Mori-Tanaka Method comes in
two versions: the interior eigenstrain method (4.19) and the exterior eigenstrain method (4.20). Both
depend on the shear modulus of the surrounding composite yu.. Varying p. does not affect the bulk
modulus k. Therefore Eqs. (4.19) and (4.20) only give the two blue lines shown in Fig. 6a. Here the
lower blue line corresponds to the placements (i) and (iv), which are equal in case of the bulk
modulus. On the other hand, the upper blue line corresponds to the placements (ii) and (iii), which
are also equal here. In the deviatoric case, however, p. has a strong influence on the effective shear
modulus p. Furthermore placements (i) and (iv), and (ii) and (iii) now yield different results.
Figure 6b displays the results obtained from Eq. (4.19), and Fig. 6d displays the results obtained
from Eq. (4.19). Varying pu. in (4.19) gives the two grey regions corresponding to placements (i) and
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Fig. 6a. Effective bulk modulus; Effective shear modulus b for the interior and d for the exterior eigenstrain
method; ¢ Bandwidth of the shear bounds
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(ii), while the variation of y. in (4.20) gives the two grey regions corresponding to placements (iii)
and (iv). The upper boundary of the four grey regions is given by p. = oo (the Dirichlet case) while
the lower boundary is given by y, = 0 (the Neumann limit.) The special case u, = i, which
corresponds to the original Mori-Tanaka result, is shown in red. (We note that the red lines of
Figs. 6b and 6d agree exactly.) The blue lines show the case for yu, = i, which is an implicit method.
In Sect. 5 we consider the Hashin-Shtrikman bounds and we will see that the red set of lines above
corresponds to the original Hashin-Shtrikman result. The blue set of lines, on the other hand,
corresponds to a modified Hashin-Shtrikman result. It can be seen that these bounds are significantly
tightened. Figures 6b and 6d look very alike and it is difficult to see much difference. Therefore in
Fig. 6¢c we display the bandwidth (upper bound minus lower bound) of the original Mori-Tanaka
(MT) method (i, = [i, in red) and the two modified MT methods (4.19) and (4.20) using u, = [i.
One can see that the new methods have considerably lower bandwidth as the original method and
that there is a subtle difference between (4.19) and (4.20).

4.4 General cases

So far we have considered four special cases of the Dual Eigenstrain method. Let us now look at the
general case where both &/ and gj; are nonzero. In other words C is neither equal to €’ nor equal to CE.
However, in the following, we restrict ourselves to C being bounded by C! and CF. Since the extreme
cases C = C! and C = C* give the curves (i), (ii), (iii) and (iv) displayed in Fig. 6, we expect that an
intermediate C should also yield intermediate curves. It turns out that the Dual Eigenstrain (DE)
method can be used to produce any curves between cases (i) and (iii), or between (ii) and (iv). In the
following let us focus on the transition between (i) and (iii), i.e. the case where material 2 is located
inside ;and material 1 is located inside Q. Let us further consider the choice u, = ft (which produces
a smooth transition between the original MT results shown in red in Fig. 6 (b) and (d)).
As a first application of the DE method let us consider the convex combination

C=aC' +(1—-a)C? ac|0,1]. (4.21)

Figure 7 displays the effective bulk and shear moduli for a = {0.05, 0.15, 0.3, 0.5, 0.75}. We can
see how the parameter a allows for a smooth transition between the interior eigenstrain method
(a = 0) and the exterior eigenstrain method (a = 1), both shown in red. Since for an arbitrary
isotropic composite, k¥ and g lie in between the bounds posed by @ = 1 and a = 0, the DE method
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Fig. 7. Effective bulk a and shear modulus b using the dual eigenstrain method with the convex combination
(4.21)
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Fig. 8. Effective bulk a and shear modulus b using the dual eigenstrain method with various predictors

may be useful for curve fitting purposes of experimental data. We note that letting a = af(y), i.e. a
function of the volume fraction of the interior phase, any response between the interior and exterior
eigenstrain methods can be produced.

As a second example of the DE let us consider C to be predicted by some other homogenization
scheme. For instance we have the Voigt and Reuss predictors

C=/sC'+(1-s)C",

4.22
Cl=sc " ya-ncEt, 422)

the original MT predictor, i.e. C given by Eq. (4.19) | to—pp OF (4.20) | o=ty ? and the Self Consistent
predictor if we let Cc=C. Figure 8 shows the DE for the special cases C =C and C = C” (both in
red), and the five predictors given above. Here, as in Fig. 7, we have applied the Dual Eigenstrain
method to the original Mori-Tanaka method, i.e., we have set u, = fi. The results of both Figs. 7 and 8
are qualitatively similar when considering other choices of y,, e.g., the Neumann case (u. = 0), the
self-consistent case (u, = i) or the Dirichlet case (¢, = o0). Figure 8 shows that the plotted methods
form a nested structure of subsequently narrower pairs. In particular the self consistent choice (the black
line) of using ¥ = K and y, = jt = u deserves further comment. It can be formally shown that this
scheme gives exactly the same curve for all four placements (i) through (iv), and that furthermore this
scheme is equivalent to the original Self Consistent scheme proposed by Hill [11], [12]. We can
therefore conclude that the Dual Eigenstrain method unifies all the discussed homogenization schemes
— i.e., the Voigt, Reuss, Original Mori-Tanaka, Luo and Weng’s modified Mori-Tanaka, Hill’s Self
Consistent method, and, as we shall see, the Hashin-Shtrikman bounds — since they are all special cases
of the DE method.

5 Modification of the Hashin-Shtrikman variational bounds

In this section we show how the Hashin-Shtrikman bounds are modified due to the Composite
Eshelby tensors. Let us first consider the two special boundary conditions, the Dirichlet (u, = o0)
and the Neumann Problem (g, = 0). It is most appropriate to work with the principle of minimum
potential energy (PMPE) when confronted with the Dirichlet problem. On the other hand, given the
Neumann Problem, the principle of minimum complementary potential energy (PMCPE) is suitable.
The respective results for these two special cases have been reported in [16]. Let us now consider the
general case p. € (0,00), for which neither the disturbance displacement field u® nor the disturbance
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traction field £* can be supposed to vanish on the boundary of the RVE. To see how this affects the
Hashin-Shtrikman bounds we construct the following modified Hashin-Shtrikman Variational
Principle based on the PMPE.

Consider two comparable boundary value problems: First, the BVP of the heterogeneous
composite RVE, characterized by a spatially varying modulus C(x) (as, for example, is shown in
Fig. 1), and which is governed by the equations

dive=0, 6=C(x):e, ¢=Vu inQ u=¢x+a’ on dQ, (56.1)

where @ is the prescribed value of the disturbance displacement field #? on the RVE boundary,
which is supposed to be non-zero in general. The value of #? can be determined from enforcing
displacement continuity across the RVE/composite interface, as is considered in Sect. 3 by Egs.
(3.26) and (3.34.1). Second, let us consider the comparison BVP

dive=0, 6=C:&, &=V'm inQ (5.2.1)
a= (" + (")) x ondQ, (5.2.2)
which corresponds to a homogenized version of the first BVP, both in terms of the constant elastic

modulus C and in terms of the averaged boundary displacement. BVP (5.2) can be solved exactly
and the solution is given by

a=&, =&+, VxeQ (5.3)

where the strain & is constant. The solution of the first BVP (5.1) can be expressed by the
decomposition

u=u’+u’, = +¢, vxeQ (5.4.1,2)

where u’ = £’x. The major idea of the particular choice of the comparison BVP is to ensure that the
strain field solution of this BVP, &, is the average of the strain field solution of the composite BVP, ¢, i.e.,

=Vu=2¢"+¢,

=Ve=¢" + (&%) = (g)g.

™

(5.5)

M

As is seen in Eq. (5.2.2) this is achieved by prescribing the average & of the solution to the first BVP
as a boundary condition on the second BVP. According to Eq. (5.5) the misfit in the strain field of the
two BVP’s is characterized by

e—g=2e" — (). (5.6)

To characterize the misfit in the stress field between the composite and homogenized solid we define
the stress polarization

p=6—C:e=AC:¢ AC:=C(x)—C. (5.7)
From the equilibrium equation div ¢ = 0 of the first BVP follows (in component form)
(Cureeiie)j +9155 = 0, (5.8)

which is also termed the subsidiary condition. Let us now revisit the original Hashin-Shtrikman
variational principle [6], [7], [10] for displacement boundary value problems. In the original
formulation the quantity (sd>g is zero and thus does not appear in the consideration of the
comparison BVP. The solution of the comparison BVP is therefore characterized only by & rather
than by & = ¢° + (¢?),,. Further, in the original formulation, the misfit in the strain field of the two
BVP’s is only given by & rather than by & — (¢?),. In view of this we propose that the quantities
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gand (e — (¢)) should now play the roles that were formerly played by &” and &?. We thus arrive
at the following modified Hashin-Shtrikman variational principle:

Theorem (Modified Hashin-Shtrikman theorem): Consider u¢ € U,0u® € V and p € S, where
U={uucH(Q),u=("gx ondQ},

V={vjpcH (Q),v=0 ondQ}, (56.9)
S ={alo c L*(Q)}.

Then the potential I1: S xU — R

H:ﬁ—l/[p:AC_I:p—p:(sd—<sd)g)—2p:é]dV,

2
Q
(5.10)
- 1 ~ ~
with, HZE/E:(C:ECZV, AC=C(x)—C, p=AC:g,
Q
satisfies the variational statements
1.0l =0 <= (@UMGZZ)’J' +Dij; = 0,
, I >0, ifAC<0 (pos.definite), (5.11)
D SPII<0,  if AC > 0 (neg. definite).
Proof First note that the variation of the constant & = (g), = &° + (&), vanishes since
S/ 1 d d 1 d d d
S = g7 | (ouly+ouy)av = o [ (oulms+ouln;)as =0, Vou'ev.  (5.12)
Q o0
The first variation of 7 is:
1

oIl = —5/[251) AC :p—0p: (e — (eMq) —p : 08" —25p:§;] av

Q

(5.13)
1
= —5/[51) (67 — (&")g) —p 1 0] AV,
Q

where we have used AC™! : p = ¢ = & + (&% — (&?),) according to Egs. (5.7) and (5.5.1). In view of

the definition (5.7) and (5.1) we have p := 6 — C : (¢” 4 &%), thus 6p = 56 — C : Je? and it follows
that

- 1 ~

oIl = —5/ [56 (e — (")) —o: 08" + 567 C s} av. (5.14)
Q

Since 6 = C : & is a constant symmetric tensor the last contribution vanishes with the help of the

divergence theorem, i.e.

/&sg GidV = /(mj Gyj) ; AV = / oul GymjdS =0, v ouleV. (5.15)

Q Q o0

By further use of the divergence theorem, the remaining part can be rewritten as
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1 .
M=~—5 / 60y (u — (&) gr) — 03y 6uf]n; dS
0
(5.16)
+1/[5a¢- (ud = (ed)or) — a5 oul] dv.
) INANG ik QUK ijj Ot
)

On the boundary 3Q, we have uf = (¢2 )2, and dud = 0, so that STT = 0 is satisfied iff ¢,,= 0,
which implies the subsidiary condition (5.8).
Considering Eqgs. (5.12) and (5.13), we find that the second variation of © becomes

52n:_/[5p:A<C*1 1 0p —op : 8¢ AV
Q

(5.17)
- 7/[5p:A(C*1 op + 8% C 58d} dav,
Q
where we have used op = 66 — C : 5&’ and
/ So0e, AV = / 30y oul m;dS — / 36y 0ul AV = 0. (5.18)
Q o) Q
Clearly AC > 0 = 6°I1 < 0. By virtue of (5.18), we obtain
=1 =1 d. . sud
/5p;<c ;5pdvz/[5a:<c 96 + 0t ;c;as}dv, (5.19)
) Q
so that we further have
ST > —/[51) AC!:op +0p: C! :5p}dV
° (5.20)
_ _/5p; ((C—l . C(x) : Ac—l) LopdV,
o)
which yields AC<0 = 6°IT > 0. O

We note that the theorem contains the original Hashin-Shtrikman variational principle as a special
case when (¢%)q = 0.

We now consider the homogenized RVE with effective elastic modulus C. The potential energy of
the homogenized solid

ﬁ:%/é:@:édy (5.21)
Q

is bounded by

Mp.&)|  <infTI() <T(p,&") (5.22)

AC>0 " gles ‘AC<0'
From this statement we derive the bounds for the effective bulk and shear moduli ¥ and g for an
isotropic solid. To decouple the dilatational and deviatoric response let us consider the comparison
strain & and the polarization stress p to be of the form
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By = 0+ By 0, i#j’ 1, i#j

We first apply the interior eigenstrain method to Eq. (5.22), where ¢ and thus p are nonzero only
within Q, i.e.

Dij :pblj + Tﬁz’j 5{/]. _ { 1, i=j ﬁy}i = {0’ 1=] (523)

P xeQy,
plx) = { 0 xeQp (5.24)

Given the Composite Eshelby tensor S*C of Box 3, all the terms in Eq. (5.22) can be directly
evaluated without approximation: We first note that the stress polarization is related to the
eigenstrain by p = —C : &*, so that in view of the Eshelby relation ¢* = S*© : &* we have

~-1
¢ =-sC.C :p. (5.25)

Dividing by the volume V = |1 Q | of the RVE the first four individual contributions to Eq. (5.22)
become

S L A e

) = i+ 67"

L= 9 9 ..

§H—§K£ + 6177,

1 - Vi 37 (5.26)
— AC ' ipdV = — + —

av ) P p 20k — %) 2(u — )

<=

Q
/p 1 edV = 3fpe + 6f1y.
Q

To evaluate the final contribution we employ the structure of the Composite Eshelby tensor given in
Box 3. There we have

e = g (1 — a)e™ 4 pe0 4 00, (5.27)

and since g0, g0

e — () = g™ 4+ (1 — ) (e™ — (e™V)y). (5.28)

are constant and since (¢*"), = 0 we obtain

In view of Eq. (5.25) the final piece in Eq. (5.22) gives

1 1 ~_ ~_
T LE ePav = 5 [ P st Cc i pav = —f;p H(S")g, : C i p, (5.29)
Q Q
and, since (S*V), =fT¢,
1 b sy |
o7 [P (&N — (gPN))aV = —5P: (S"M)g, —fF) : C" : p. (5.30)
Q

Combining the last two equations by using Eq. (5.28) we finally conclude for an isotopic material that

1 SHSp2 3SHS‘L'2 D ;
o7 (e —(&))g)dV = 12’2 + 5/1 with s =ast? 4 (1-0)(s!V —f), i=1,2,  (5.31)
Q

.D N
sy

and where s;, are given in Appendix A. With Egs. (5.26) and (5.31) all contributions of II are

specified and we can set the derivatives %—2 and %—l;l equal to zero to obtain the two equations
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.
+%—2«;:0. (5.32)

p | sp T
K W=

_ —35=0,
K — K

These can be solved for the stress polarization parameters p and t. Plugging these into II by
considering the two choices y = 0 and ¢ = 0 we find the two equations

nm 98 f M 672 f

— = kL —= | p+—. 5.33

A L 72 1 s (5:33)
K=K © K [

We are now in the position to state the new Hashin-Shtrikman variational bounds. Let us consider
two materials with k; < K, and u; < up. From Eq. (5.22) we now obtain

Jo _ N
Kl +——— <K<Ky +——5,
1 +Sl_ ;_'_sl_
P Ki—Ky | Ky (5.34)
Ja _ Si |
Mt — s SES i+ — 5

HS
1

Sy
Ha— H Hi—Hg Ha

Explicitly, for the value of o given in Eq. (3.28) we have

HS 1+V1

Sl _3(1 _vl)fh

2\ 2 (5.3b)
S _ 8 — 1OVlf 91 e (1 _fz) 2(pe — )
2 731 —w)! 5(1—vy) 4p.(7—10v1) + 1, (7 +5vy)’

for the lower bound, and

S 1+ v

51 *mfz,

2.9 (5.36)
SHS:8_10V2f 911 —SY) 21, — Hy)
2 T 31—y 5(1 — vs) 4. (7 — 10v2) + 113(7 + Hvs)

for the upper bound. It can be seen that s is independent of u., the stiffness of the surrounding
composite, and that si is equal to the corresponding expression of the original Hashin-Shtrikman
formulation. Thus the bulk modulus bounds are identical to the original Hashin-Shtrikman bulk
modulus bounds. For the shear modulus, however, the new bounds are different from the original
HS
2

solution. Since both expressions for s, depend on p,, the Hashin-Shtrikman shear bounds become

explicitly dependent on the surrounding composite phase. In particular we note the special cases

. p =0 — Neumann HS bounds,
U, = u; forlower bound .

2. — Original HS bounds, (56.37)
U, = Uy forupper bound

3.y, =0 — Dirichlet HS bounds.

The Dirichlet and Neumann special cases have been reported in [16]. It is known that the original
HS bounds coincide with the original Mori-Tanaka method. Moreover it can be shown that the more
general ‘interior eigenstrain HS’ bounds, given by (5.34)-(5.36), are identical to the ‘interior
eigenstrain modified Mori Tanaka’ formula given in Eq. (4.19). Due to this equivalence, Fig. 6 also
serves to illustrate the Hashin-Shtrikman bounds. In this figure we have used k, = 4x; and p, = 10
uy. The original HS bounds (in red) and the modified HS bounds for the implicit case y, = p (in blue),
are shown in Figs. 6a and 6b. (In case of the bulk modulus the original and modified HS bounds are
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equal.) It can be seen that the modified Hashin-Shtrikman shear bounds, using p, = pt are
substantially narrower than the original bounds. The grey regions in Fig. 6b marks the variation of the
lower and upper Hashin-Shtrikman bounds for the possible range 0 < p, < co. The Neumann-Hashin-
Shtrikman bounds (y, = 0) are formed by the lower boundary of these grey regions while the
Dirichlet-Hashin-Shrikman bounds (¢, = o0) are formed by the upper boundary of the grey regions.
It can thus be seen that the Neumann-HS bounds constitute a downward shift compared to the original
HS bounds while the Dirichlet-HS bounds constitute an upward shift. This tendency can also be
observed in the computational homogenization results obtained by Lohnert [17].

The bounds reported in Egs. (5.34)—(5.36) are derived by considering the eigenstrain &* to be
prescribed within ;. Let us finally consider the case where ¢*, and thus p, is prescribed within Qg, i.e.

p(x):{o .X,'EQ[7

P xe€Qg (5.38)

Under this condition, termed the exterior eigenstrain method in Section 4, we can derive a second set
of HS bounds. The relation between &% and p is now given by

o«,C."’

¢ =-S8":.C"':p, (5.39)

where §™° is given by Eq. (4.4). From here the derivation follows the same steps as above and is
therefore omitted. The second set of bounds we obtain can also be expressed in the form (5.34) but

where now
s = —osfP — (1 —a) (PN — ), i=1,2. (5.40)
Explicitly, by using (3.28), (A.11.2) and (A.12.2), this becomes
. 1+
s = IV
1 3(1 — vl)fla )
21 4 (5.41)
g5 8— 10w, 1_42f1 (1 fl) -
3(1 =) 5fa(1—v1) 4p,(7—10v1) + py (7 + 5v)’
for the lower bound, and
1+ v
HS _
SRy
2\ 2 (5.42)
of1 _ ¢
SIS — 8 —10vs 425 (1 f2) He — Ha

2 T30 —vf®  BA(—va) 4u (7T — 10vs) + py(7 + Bvy)’

for the upper bound. It can be shown that the ‘exterior eigenstrain HS’ bounds given by Egs. (5.34),
(5.41) and (5.42) are identical to the ‘exterior eigenstrain MT* formula (4.20). The original HS
bounds and the modified ‘exterior eigenstrain HS’ shear bounds for the parameters k, = 4
and p, = 10y, are thus shown by the red and blue curves in Fig. 6d. For the bulk bounds the
modified and original HS bounds are identical and are as shown in Fig. 6a

In the following let us denote the shear modulus bounds of the interior HS method by ,ué <u< ,u{,,
and the shear modulus bounds of the exterior HS method by pf << p£. Since the two sets of
bounds are both valid we can combine them and write

max (p), 1) < o< min(pl,, 1). (5.43)
From Fig. 6¢ one can see that the exterior eigenstrain HS gives the narrowest bounds for the chosen

material parameters (1,/k; = 4, p/u; = 10 and v; = 0.4). For this case the modified HS bounds are
up to 25% tighter than the original bounds.
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We conclude this section on the remark that no approximations, as are needed in the derivation of
the original HS bounds [30], are made here. Moreover, the new bounds derived here are significantly
narrower than the original bounds.

6 Conclusions

This work serves three major purposes: First, in Sects. 2 and 3, we have derived the Composite
Eshelby tensor S*C. It is the solution of the general Micromechanical BVP and it is summarized in
Box 3. We then showed that the parameters «, § and y can be found by placing the RVE within a
surrounding medium with stiffness k. and u. and imposing the continuity of both the traction and
displacement fields. Secondly, we have introduced the Dual Eigenstrain method, which unifies
previous homogenization schemes. In particular it unifies the Voigt-, Reuss-, original Mori-Tanaka-,
Luo and Weng’s Mori-Tanaka- and Hill’s Self Consistent scheme. Thirdly we have shown that the
Hashin-Shtrikman bounds are modified due to the new Composite Eshelby Tensor, since it captures
the elastic disturbance fields more precisely than the original, infinite Eshelby tensor. In particular,
for the optimal choice it = p, we can show that the Hashin-Shtrikman shear bounds are significantly
tightened.

The Composite Eshelby tensor is a convenient tool to use. The derivation of the Hashin-Shtrikman
bounds and the modified Hashin-Shtrikman bounds are straightforward and do not require any
approximations, such as where employed in the original derivations of Hashin-shtrikman principles.
We therefore believe that the Composite Eshelby tensor is an important contribution, especially since
homogenization techniques and variational bounds are widely used in material modelling.

Further extensions to this work could be the consideration of an RVE whose phases are not
concentrically aligned. It may also be interesting to study the generalization to non constant
eigenstrains &*, which, for radially symmetric problems, should admit the same radial isotropic
structure as the Composite Eshelby tensor.

Appendix A
List of coefficients

In this Appendix we list all the radial basis arrays needed to construct the Eshelby tensors S**, U**
and T** as given in Boxes 1, 2 and 3. The coefficients of the Infinite Eshelby tensor are

5y — 17 [ 8p2/12 +10v -5 ]
4 -5y 3p2/t2 —10v+5
S],oe(t) — 1 0 SE,:)O(t) — pg/trs 15(1 - p%/tz)
1=y o |’ 30(1 —v) | 15(1 — 2v — p2/t2)
0 15(v — p2 /1)
L 0 | | 16(7p/t* —5)
by — 1] 3p2/t> +10v =5

4—bv|, UPe@) = 2ot/ 3p2/12 — 10V +5 |, (A.2)
30(1 —v)
15 — 15p3 /1

(A1)

Hyt

U0 =51y

and
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O =151y

[(1—12v+52)/(2v - 1)
4 — by ,
i 0
[—12p3/t* + 10(1 — v)
—12p%/2 +5(1 +v)

60(p7/12 — 1)

The contributions from the Dirichlet boundary are

B.D pg
MR E i)
3
poHot
U0 = -5 - v)
and
2u )
.D _ 0
TP = 5y
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5y —1 2(7 — 10v?)
4 — b5y 7(5% — 3) — 20vi?
0 po(L — pj) —1062(7 — 10v)
0 20(1 — v)(7 = 10v) —40v? ’
0 30w
0 0
5y —1 — 102
4—bv| +557 =107 | 76° —3) = 20v7 |,
0 (L=)(T =10 | Ty 027 — 10v)
[1—12v + 5v? ,
2v -1 pp(1 = pp) 20 +5v)
7(5t% — 3) + 10wt
4 — by 10(1 - V)(7 - 10‘)) 10t2(7 _ 5\1)
0

Further, from the Neumann boundary we get

BN Pg
§70 = 30(1 —v)
Ut (1) paHot

( 30(1 —v)
and
TSN 1P
)=~ 15(1—v)

2 —10v] 2(7 — 10vi?)
7—5y 7(5% — 3) — 20ve?
0 | pl-p3) —1062(7 — 10v)
0 5(1 —v)(7 + 5v) —40vt? ’
0 30v2
0 | 0
2 — 10y P31 = p)Hot 22(7— 10ve2) )
7T —5v — m 7(5t — 3) — 20vt B
0 | —1062(7 — 10v)
2(1 +5v) 31 2 2(7 + 5vi?)
[ 7 5v } —% [7(5152 —3) +10vt2].
0 106%(7 — 5v)

Associated with the eigenstrain ¢* we have the traction array

1
T () = K, F =

When we average the Finite Eshelby tensors according to Egs. (3.37) and (3.41) we find

1-—2v

2v
1—-2v|.
0

} |

(A.3)

(A4)

(A5)

(A7)

(A.9)

(A.10)
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o (L+v)(1 =) 1D

U (=T
ED _ _ d+vf ED _ _
1 3(1 ) 2
and

IN 1+V+2(1 72V)~f IN 2
S = v Sg =
3(1—v)

ey _ 2(1 —2v)f BN _ (75w
! 31—v) 7 72 T 15(1—v)

with

S —f*P)

T T00 — (7 — 10" T

The differences between these coefficients are

1
N e v

T30y
As) =5y = sy :%,
Asf =" — 5" = 121 —5:)
Asy =55 — 5N = (( z; 21y,

Furthermore we have

1+4+v
AsY = sjlc —sf’c =

— 2(4 - 5\))(1 _f) _ 21"/ (1 _f2/3)

+21y,(1 — %3,

10(1 = w)(7+5v)

3(1—v)’
2(4 —bv)
AsC = IC _ GFC _
2% T8 TR )
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