Soil Dynamics and Earthquake Engineering 109 (2018) 286-298

Contents lists available at ScienceDirect

EARTHQUAKE
ENGINEERING

Soil Dynamics and Earthquake Engineering

journal homepage: www.elsevier.com/locate/soildyn

Quantification of model uncertainty and variability in Newmark )

Check for

displacement analysis i

Wengqi Du®, Duruo Huangb, Gang Wang™*

2 Institute of Catastrophe Risk Management, Nanyang Technological University, 50 Nanyang Avenue, Singapore
® Department of Hydraulic Engineering, Tsinghua University, Beijing, China
© Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

ARTICLE INFO ABSTRACT

Newmark displacement model has been extensively used to evaluate earthquake-induced displacement in earth
systems. In this paper, model uncertainty and variability associated with the Newmark displacement analysis are
systematically studied. Fourteen Newmark displacement models using scalar or vector intensity measures (IMs)
as predictors are compared in this study. In general, model uncertainty for the vector-IM models is found smaller
than that of the scalar-IM models, and remains consistent over different earthquake magnitude, distance and site
conditions. Yet, the model uncertainty of these Newmark displacement models is still much larger than that of
the ground-motion prediction equations (GMPEs) for IMs, indicating further development of the models is much
needed. Considering the variabilities contributed from both GMPEs and Newmark displacement models, the total
variability of the predicted Newmark displacements is rather consistent among the scalar- and vector-IM dis-
placement models, due to extra sources of variability introduced by incorporating additional IMs. Finally, a logic
tree scheme is implemented in the fully probabilistic Newmark displacement analysis to account for the model
uncertainty and variability. Sensitivity analysis shows that specific weights would not significantly influence the
displacement hazard curves as the results may be dominated by outlier models. Instead, selecting appropriate
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GMPEs and Newmark displacement models is more important in using the logic-tree framework.

1. Introduction

Since its introduction in the 1960s, Newmark's sliding block [1] and
other related models have been widely used to estimate earthquake-
induced displacements in natural slopes, earth dams, and solid-waste
landfills, etc. The Newmark model assumes the sliding mass is rigid
during earthquakes, and the deformation of the mass can be neglected.
Sliding occurs on a well-defined failure surface when the input accel-
eration exceeds a critical acceleration (a.), and the block continues to
slide until the relative velocity between the block and ground reaches
zero. The permanent displacement of the sliding block, namely the
Newmark displacement, is then calculated by integrating the velocity
time history of the sliding block (Fig. 1). The critical acceleration a.
represents the resistance of the mass against sliding, and it can be de-
termined by the strength, unit weight of the material and slope angle
[2]. The Newmark displacement has been widely used as an index to
categorize landslide hazard [3], or to evaluate earthquake-induced
shallow sliding in natural slopes, e.g. [4-7].

The first empirical equation to estimate the Newmark displacement
was proposed by Newmark [1], which is a function of a., peak ground
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acceleration (PGA) and peak ground velocity (PGV) based on regression
analysis of empirical data from four earthquakes. Throughout years,
many researchers [8-11] proposed various empirical equations using
different ground motion intensity measures (IMs) as predictor variables,
including PGA, moment magnitude of the earthquake (M,,), PGV and
spectral acceleration (Sa). Arias intensity (Ia) is also a commonly used
predictor, as it can effectively incorporate the cumulative effect of an
acceleration time history [12,13]. Hence, the Newmark displacement
can be predicted based on a single IM, termed as the scalar-IM model, or
multiple IMs, termed as the vector-IM model. In general, the vector-IM
models are advantageous over the scalar-IM models in that predictions
using multiple IMs can better satisfy the efficiency and sufficiency cri-
teria [14]. In other words, a vector-IM model usually yields a smaller
standard deviation, which is not much dependent on moment magni-
tude (My) and rupture distance (R.,,) of scenario earthquakes. For
example, Saygili and Rathje [10] reported that the Newmark models
using two IMs generally result in 40-60% reduction in the standard
deviations compared with the scalar-IM models.

Recently, Douglas [15,16] and Douglas et al. [17] studied the model
uncertainty and consistency of ground motion prediction equations
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Fig. 1. Computing Newmark displacement with critical acceleration a. = 0.2 g.
(A) Earthquake acceleration-time history. (B) Velocity of sliding block versus
time. (C) Displacement of sliding block versus time.

(GMPEs) for various IMs (e.g., PGA, PGV, Ia, significant duration) de-
veloped during the past four decades. Compared with the ground-mo-
tion IMs, two levels of model uncertainties are associated with the
Newmark displacement predictions, including uncertainties in the es-
timation of IMs from GMPEs and uncertainties in the predictions of the
Newmark displacement models based on IMs. Because different strong-
motion databases and functional forms were used in developing the
Newmark displacement models, it is not surprising that these models
would yield widely divergent predictions for some scenarios. Yet, un-
certainties associated with various levels of the Newmark displacement
prediction have not yet been systematically quantified

Uncertainty and variability in a prediction model have been widely
discussed in the literature (e.g., [18]). Model uncertainty due to limited
knowledge is epistemic. In principal, it can be reduced if more data
becomes available or the predictive models are improved. Aleatory
variability, on the other hand, represents inherent randomness of the
prediction that cannot be reduced. It is usually quantified by the var-
iation of the observed data against model predictions. In this study,
uncertainties and variabilities of various Newmark displacement
models are quantified under several representative earthquake sce-
narios. The model uncertainty is approximately evaluated by the dis-
persion of different prediction models, which employs different pre-
dictors, functional forms and databases. The model variability, on the
other hand, is approximately by the standard deviation of residuals
reported in a prediction model. Although the model variability is re-
portedly reduced in a vector-IM model as discussed before, inclusion of
an additional IM would inevitably induce additional variability asso-
ciated with the prediction of this IM. Therefore, the total variability of
the Newmark displacement prediction is still not clearly studied. The
present study will clarify how the model uncertainty and variability in
the GMPEs and Newmark models are added up together in the New-
mark displacement predictions. Then a logic-tree approach [19] is im-
plemented into a fully probabilistic Newmark displacement analysis
[20] to incorporate the uncertainties and variabilities associated with
GMPEs and the Newmark displacement models.

2. Selection of Newmark displacement models

In the past, many Newmark displacement models have been pro-
posed by different scholars. A total of eight groups of Newmark models
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are listed in Table 1. It is seen that the models developed recently
(typically later than 2006) were based on much more earthquake events
and strong-motion records than earlier models. Fourteen Newmark
displacement models proposed since 1988 are used in this study and
listed as follows. Among these equations, the unit of the Newmark
displacement D is cm; PGA, Sa and a. are in the unit of g PGV is in the
unit of cm/s; and I, is in the unit of m/s.

1. [PGA] AM88 model by Ambraseys and Menu [8]:

log (D) = 0215 + 2341 logy(1 — ie;) — 1.43810g;o (77 ):
OlogoD = 0.3 1)
2. [PGA Ia] RO0O model by Romeo [21]:
log,o(D) = 0.6071o (i) -3 719( de ) +0.852;
Bl = B 810\ 100 "\ pga T
OlogyyD = 0.365 2
3. [PGA, Sa(T = 1)] WAO06 model by Watson-Lamprey and

Abrahamson [22]:

InD = (547 + 0.451(In(S,(T = 15)) — 0.45)
+ 0.0186(In(S, (T = 1s)) — 0.45)2
+0.596(In(Arns) — 1) + 0.656(1n (S, (T = 15)/PGA))
— 0.0716(1In (S, (T = lS)/PGA)z)
+ O.SOZ(IH(DUI‘QC) —0.74) + 0.0763(1n(Durac) - 0.74)2
S GEA T 015

Onp = 0.53

3

where Agys is the root mean square of acceleration (unit in g) and
Dur,, is the duration (unit in s) that the acceleration is greater than
the critical acceleration. Prediction equations for Arys and Dur,.
are provided as follows [22]

In(Arms(g)) = —1.167 + 1.03 In(PGA); &)
In(Dur,(s)) = —2.775 + 0.956 In(PGA/a.) — m
— 0.597 In(PGA) + 0.381 In(S, (T = 1s)) + 0.334M,,
5)
4. [PGA] JO7 model by Jibson [9]:

a. ac .
log,,(D) = 0.215 + 2.341log,,| 1 — PGa) 1.438log,, 26a)
OlogoD = 0.51 6)

5. [PGA, M,,] JO7 model by Jibson [9]:
log,o(D) = — 271 + 2335 logy(1 — ie; ) — 1.47810g,o(7ec;)
+ 0.424M,,;
Olog;oD 0.454 @
6. [Ia] JO7 model by Jibson [9]:
log,,(D) = 2.401 log,,(I,) — 3.481log,,(a.) — 3.23;
OlogjyD = 0.656 8
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Table 1

Summary of Newmark displacement models.
Model name Predictors No. of earthquakes used No. of records used Reference
1. [PGA] AM88 PGA 11 (Ms 6.6-7.2) 50 [8]
2. [PGA Ia] ROO PGA, Ia 17 Italian EQ (M 4.6-6.8) 190 [21]
3. [PGA, Sa(T = 1s)] WA06 PGA, Sa(T = 1s) (M, 4.5-7.9) 6158 [22]
4. [PGA] JO7 PGA, Ia, M,, 30 (M 5.3-7.6) 2770 [9]
5. [PGA, M,,] JO7
6. [Ia] JO7
7. [PGA, Ia] JO7
8. [PGA, M,,] BT07 PGA, M,, 41 (M,, 5.5-7.6) 1376 [23]
9. [PGA] RS08 PGA, Ia, PGV 54 (M, 5-7.9) 2383 [10]

10. [PGA, Ia] RSO8
11. [PGA, PGV] RS08
12. [PGA, Ia, PGV] RS08

13. [PGA, M,,] RS09 PGA, M,, 54 (M,, 5-7.9) 2383 [20]
14. [Ia] HL11 Ia 6 (M,, 6.7-7.6) 1343 [11]
7. [PGA, Ia] JO7 model by Jibson [9]: 12. [PGA, Ia, PGV] RS08 model by Saygili and Rathje [10]:
log,o(D) = 0.561 log;o(l) — 3.83310g10(&) - 1474; In(D) = —0.74 — 4.93( % )— 19.91( % )2 + 43.75( % )3
PGA PGA PGA PGA
Olog,p = 0.616 s
oo © - 30.12(P(ZA) — 131n(PGA) + 1.04 In(PGV) + 0.67 In(L,);

8. [PGA, M,,] BT07 model by Bray and Travasarou [23]: Onp = 02+ 0.79(ac/PGA)

(16)
In(DID > '0") = —0.22 — 2.83 In(a.) — 0.333(In(a.))?
+ 0.566 In(a.)In(PGA) + 3.04 In(PGA) del b hi d i
— 0.244(In(PGA))? + 0278(M, — 7); 13. [PGA, M,,] RS09 model by Rathje and Saygili [20]:
onp = 0.66 10 2 3
P (10) In(D) = 489 — 4.85(L) - 19.64(L) + 42.49(&)
Note that the above prediction is only for “nonzero” displacements P CiA PGA PGA
(D > 1cm). The probability of “zero” displacements (D= 1cm) _ 29.06( ac ) + 0.721n(PGA) + 0.89(M,, — 7);
can be estimated as GA
omp = 0.73 + 0.79(a./PGA) — 0.54(a./PGA)?
P(D="0")= 1 - &(~1.76 — 322In(a,) + 3.52In(PGA))  (11) nP ( ) ( ) a7)
Finally, t}'le median (50th percentile) displacement is determined 14. [1a] HL11 model by Hsieh and Lee [11]:
and used in subsequent analyses:
05 log,,(D) = 0.847log,,(I,) — 10.62a, + 6.587a.log,,(I,) + 1.84;
InD= In(DID>"0")+ opp X P H1 - ——— —— = 02
(D] ) + Oinp ( [1—P(D= ,,0,,)]) a2) Olog,,D 0.295 (18)

In the above models, the [PGA] AM88, [PGA] J07, [PGA, M,,] JO7,
[Ta] JO7, [PGA, M,,] BT07, [PGA] RS08, [PGA, M,,] RS09 and [Ia] HL11
models employ only a single IM (PGA or Ia) as the predictor, so they are
550 4. 43( ac ) _ 20.39( a. )2 + 4261 ( ac )3 grouped as the scalar-IM.mc')dels. T.he M,, teljm appears in some of thes'e

PGA PGA scalar-PGA models to eliminate biases against the earthquake magni-

4 tude. The other six models employ multiple IMs (i.e., PGA, Ia, Sa(T =
) +0.72In(PGA); 15s) or PGV), and then they are categorized as the vector-IM models. It
Onp = 113 13) is worth mentioning that the [Ia] JO7 and the [Ia] HL11 models only
employ Ia as the predictor, which might provide biased estimates when
ground motions are small, since a small but finite displacement will still
be predicted by the scalar-Ia model even if the PGA is smaller than a..

9. [PGA] RS08 model by Saygili and Rathje [10]:

InD

- 28.74( de
PGA

10. [PGA, Ia] RS08 model by Saygili and Rathje [10]:

ac c 2 ac
In(D) = 2.39 - Szé‘(ﬁ) - 18'78( pGA) + 42‘01( pGA) 3. Model uncertainty and variability in the Newmark
a displacement predictions
- 29.15(PC;A) — 1.56 In(PGA) + 1.38 In(1,);

Onp = 0.46 + 0.56(a./PGA) (14) 3.1. Model uncertainty of predicted Newmark displacements
Model uncertainty of the above Newmark models is studied by
11. [PGA, PGV] RS08 model by Saygili and Rathje [10]: comparing the difference of the median predicted displacements for a
2 3 given earthquake scenario. Earthquake scenarios considered in the
InD = —1.56 — 4.58( de ) - 20.84( de ) + 44.75( de ) analysis are earthquakes with moment magnitude (M,,) of 7.5, 6.5 and
4PGA pGA pGA 5.5 occurred on a strike-slip fault. The site conditions are assumed to be
_ 30.5( o ) — 0.64 In(PGA) + 1.55 In(PGV); a stiff-soil site and a rock site, where the time-averaged shear wave
PGA velocity of the top 30 m (V,30) are 400 m/s and 760 m/s, respectively.
Onp = 041 + 0.52(a./PGA) (15) Four Next Generation Attenuation (NGA) GMPEs [24-27] are used to

288
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Fig. 2. Median predicted displacements by various Newmark models for (a) M,, = 7.5, (b) M,, = 6.5, and (c) M,, = 5.5, strike-slip events. a. = 0.1 g, V3o = 400 m/
s. Note: for each scenario, the average of the predicted median IMs are used as input parameters.

predict PGA, PGV, and response spectral acceleration at 1 s Sa(T = 15),
respectively. The GMPEs proposed by Travasarou et al. [28], Foulser-
Piggott and Stafford [29], and Campbell and Bozorgnia [30] are chosen
for predicting Ia. In order to eliminate the influence of model un-
certainty and variability existed in these GMPEs, the averaged values of
the median predictions of various GMPEs are adopted as the inputs to
estimate the median Newmark displacements.

Figs. 2 and 3 show the median predicted Newmark displacements
versus rupture distances for the soil sites and rock sites with a. = 0.1 g.
Three strike-slip earthquake scenarios with M,, = 7.5, 6.5 and 5.5 are
considered in these plots. It can be observed that the predicted dis-
placements by different Newmark displacement models vary sig-
nificantly for a given earthquake scenario. For example, the estimated
median displacements in Fig. 2(a) range from 4 cm to 18 cm for M,, 7.5
at a rupture distance of 10 km. Model uncertainty is expected to be
higher if the predicted median displacements among these models are
more scattered. As seen from these plots, the predicted median dis-
placements (in natural logarithmic scale) are more scattered as rupture
distance increases, especially for the M,, 5.5 event. Since very small
displacement amplitudes are of little engineering significance, it is more
rational to focus only on large displacement amplitudes. For the M,, 5.5
scenario, it can also be observed that the two scalar-Ia models ([Ia] JO7,
[Ta] HL11) exhibit systematically different trends compared with the
other models. As explained previously, the scalar-la models might
provide biased estimates for the small-amplitude ground motions
compared with the other models.

Fig. 4 shows the corresponding standard deviations of logarithmic
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predicted median displacement (shown in Figs. 2 and 3) for the soil
sites and rock sites. Note that the data is only plotted for the rupture
distance up to 30 km, 20km and 10km for M,, = 7.5, 6.5, 5.5, re-
spectively. The displacement data within this range is generally greater
than 0.1 cm. The standard deviations would become significantly larger
for longer rupture distances, yet the displacements are small and of
little engineering importance. For the scalar models, the model un-
certainty for the large-magnitude events is generally smaller than that
of the small-magnitude events. The standard deviations of the In(D)
predicted by the scalar models are approximately in the range of
0.4-1.0 for M,, 7.5 and 6.5, and 1.2-1.7 for M,, 5.5. This is not un-
expected since the number of moderate-to-large magnitude events
(M,, > 6) is usually dominant in the strong-motion databases that have
been used to develop the Newmark displacement models. It is also
worth mentioning that for the scalar models, the standard deviations in
the rock site are up to 25% larger than that of the soil site. Because the
displacement models were usually developed from strong motions re-
corded mostly on soil sites. The scalar models based on PGA inherently
predict displacements representative of lower Vg 3o motions. Therefore,
application of the scalar model to the rock site involves larger un-
certainty.

On the other hand, the model uncertainties associated with vector
models are generally smaller than those of the scalar models for most
cases, as shown in Fig. 4. The standard deviations of In(D) for the vector
models fall into a narrow range (0.4-0.6) for all these M,,, R and Vs3,
considered, implying that the model uncertainties associated with
vector models are quite consistent for all cases because the vector IMs
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Fig. 3. Median predicted displacements by various Newmark models for (a) M,, = 7.5, (b) M,, = 6.5, and (c) M,, = 5.5, strike-slip events. a. = 0.1 g, Vi30 = 760 m/
s. Note: for each scenario, the average of the predicted median IMs are used as input parameters.

represent different aspects of ground motion characteristics. To put it
simple, the second IM in a vector (either Ia or PGV) is important to
characterize the frequency content of ground motions. When only PGA
is used in a scalar model, it is difficult to distinguish between a near-
field M,, 6 motion on rock versus a far-field Mw 7.5 motion on soil, since
they may have the same PGA but very different frequency contents. The
second IM allows one to distinguish these motions. Therefore, un-
certainties estimated for the rock site and the soil site are consistent
using the vector models.

Furthermore, the model uncertainties in both the GMPEs and
Newmark displacement models are considered collectively in the sub-
sequent analysis. Instead of applying the averaged median IMs to
compute the Newmark displacements as before, the median predicted
IM from each individual GMPE (i.e., one from the four NGA models for
PGA, PGV; one from the three GMPEs for Ia) is used to compute the
median displacements of all the 14 Newmark displacement models
without differentiating the scalar and the vector models for the soil site,
as shown in Fig. 5. Altogether, there are 168 (4 X 3 x 14) combina-
tions of GMPEs and displacement models in each subplot. The predicted
Newmark displacements are significantly scattered, indicating that the
selection of specific GMPEs and Newmark displacement models would
considerably influence the final results. For example, the estimated
median displacements range from 2cm to 40 cm for M, 7.5 at the
rupture distance of 10 km.

Fig. 6 shows the corresponding standard deviations of the dis-
placements oy, p. The standard deviations by considering both model
uncertainties in GMPEs and Newmark displacement models is generally
0.2-0.4 larger than the previous analysis by considering only the
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displacement model uncertainty. The results are generally consistent
with the reported standard deviations of the model uncertainties for
PGA, PGV and Ia, which are approximately 0.2-0.4 on the natural
logarithmic scale [15,16]. The model uncertainty of the Newmark
displacement models appears to be much larger than those of the
GMPEs, probably due to the inherent difficulty in correlating the
Newmark displacements with IMs by using simple function forms. It
then calls for more research effort to develop advanced Newmark dis-
placement models in the future. In summary, the standard deviations of
model uncertainties considering both the input IMs and Newmark dis-
placements are approximately 0.6-1for larger magnitude events
(M,, > 6) and 1.3-1.5 for smaller magnitude events (M,, < 6), all re-
presented on a natural logarithmic scale. The large standard deviations
imply that both of the two levels of model uncertainties should be well
quantified in the Newmark displacement analysis.

3.2. Model variability of predicted Newmark displacements

In this subsection, the model variability of the Newmark displace-
ment models is compared for different earthquake scenarios. Although
the vector-IM models usually reported smaller standard deviations
(o p) compared with the scalar-IM models, inclusion of additional IMs
as predictors may also introduce extra variability in the IMs themselves.
Therefore, the total variability of the Newmark displacement for an
earthquake scenario should account for the contribution of variability
in GMPEs and variability in Newmark displacement models.

Monte-Carlo simulation is used herein to evaluate the total varia-
bility of the estimated Newmark displacement. Firstly, 100 sets of



W. Du et al.

ad1s ; : :
. — - —Vector models (Soil)
e — — — Scalar models (Soil)
< Vector models (Rock)
8 11 Scalar models (Rock) |1
°
©
o
o —
5 05— —
pe
(0]

0 i i i i i

0 5 10 15 20 25 30

Rupture distance (km)

Soil Dynamics and Earthquake Engineering 109 (2018) 286-298

(o)

15

)

£

ko] [

g

RS

e]

o

o

5 0.5

:9:

(dp]

0 L L L
0 5 10 15 20

Rupture distance (km)

C o

a

£ 15¢

©

Q

©

-O L

3 1

o

© 05

ie]

175
O i
0 2

4 6 10

Rupture distance (km)

Fig. 4. Standard deviations of the median predicted Newmark displacements (in natural log scale) by different models, for (a) M,, = 7.5, (b) M,, = 6.5, (¢c) M,, = 5.5,
strike-slip events. The site condition is rock (Vs30 = 760 m/s) or soil (V3o = 400 m/s).

properly correlated vector IMs are generated for a given earthquake
scenario. The vector IMs are assumed to follow a multivariate log-
normal distribution with means and standard deviations specified by
GMPEs. For the vector-IM models, the joint occurrence of multiple IMs
can be specified by the empirical correlations between the residuals of
IMs. A strong positive correlation coefficient pyy, 1\, indicates that large
values of IM; are closely in association with large values of IM,. The
correlation coefficients among PGA, PGV, Ia and Sa(T = 1s) are ob-
tained from previous studies and listed in Table 2. Secondly, for each
set of vector IMs, 100 Newmark displacement values are simulated by
assuming that the displacements follow a lognormal distribution, with
the mean and standard deviation (o, p) specified by the Newmark
displacement models. The standard deviation of the resulting 10,000
displacement values is then calculated to estimate the total variability
for each Newmark displacement model. It is noted that very small
displacement values have to be excluded, because they are of little
engineering importance, but appear to be highly scattered on the
logarithmic scale. In this study, only displacement values greater than
0.01 cm are considered.

Figs. 7 and 8 show the obtained total standard deviations versus
rupture distances for M,, 6.5 and M,, 7.5 strike-slip events using various
Newmark displacement models. The averaged oy, pga Obtained from
four NGA models is also plotted in Fig. 7(e) for comparison. The stan-
dard deviations of the predicted Newmark displacements have quite
similar trend for all scenarios, which generally falls into 1.5-2 at short
rupture distances and remains around 2 when R > 10km. Note that
exclusion of displacements smaller than the cutoff value (0.01 cm) re-
duces the data scatter artificially, and results in a slightly decreasing

trend at larger distances, which is the case particularly for Fig. 8(b). The
total variabilities are significantly larger than the reported oj,p in the
Newmark displacement models. For example, although the reported
standard deviation of the [Ia] HL11 model is 0.295 on log;, scale (0.68
in natural logarithmic scale), the total standard deviations of Newmark
displacements are as high as 1.5, due to the large variability for pre-
dicting Ia (O, = 1).

It is also important to note that, in general, there is no systematic
difference in the total variabilities between the scalar and vector
models. This is actually an encouraging result since the total variability
represents the inherent randomness, which, in principle, should not
vary significantly from model to model. Yet, [Ia] JO7 and [PGA, Ia] JO7
appear to have quite different trend than all other models. As shown in
Egs. (8)(9), the standard deviations of these two models are sub-
stantially larger than others (along = 0.656 and 0.616 is equivalent to
omp = 1.51 and 1.42), which results in high standard deviations at
short distances in Figs. 7 and 8. On the other hand, these two models
predict relatively low displacements shown in Figs. 2 and 3. Therefore,
they are mostly affected by data cutoff and standard deviation shows a
decreasing trend over the rupture distance.

4. Probabilistic Newmark displacement analysis
4.1. Displacement hazard curve
In engineering practice, Newmark displacements are usually esti-

mated based on a pseudo-probabilistic approach: first, the hazard
curves of IMs are generated from conventional probabilistic seismic
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slip events, a. = 0.1 g, V3o = 400 m/s.

hazard analysis (PSHA); second, the corresponding IM value at a certain
hazard level (e.g., a return period of 500 years) is used as input to
compute the Newmark displacement. The significant limitation of the
pseudo-probabilistic approach is that, the annual rate of exceedance of
the computed displacement remains unknown. On the other hand, fully
probabilistic Newmark displacement analysis [7,34] provides the an-
nual rate of exceedance of the Newmark displacement directly. The
fully probabilistic seismic displacement approach accounts for the
model variabilities in both IMs and the Newmark displacements. The
procedure will be briefly described below.

In conventional PSHA, the mean annual rate of exceedance of an IM
can be determined as:

@ =20 [ [ PIIM > zlm, rIf (m)f (r)dmdr 19)

where Ay (2) refers to the mean annual rate of an IM exceeding a given
value of z (also called the IM hazard curve); A, is the activity rate of the
source; f(m) and f(r) represent the probability density functions of
earthquake magnitude m and site-to-source distance r, respectively.
P[IM > zlm, r] denotes the probability of IM exceeding z value, given
an earthquake scenario (m, r). This term can be obtained from GMPEs.
Accordingly, the derivative of the IM hazard curve, f;,,(z), which re-
presents the mean annual rate density of a scalar IM = z, is computed
as [35]:

d (A (2))

fm@ = dz

=20 [ [ fiu @m, POf (r)f (r)dmdr 0

where f;,,(zlm, r) refers to the lognormal probability density function
of an IM, given m and r:
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Similar to the above PSHA analysis, the mean annual rate of ex-
ceedance Ap for the Newmark displacement value D can be re-
presented as:

Ap(x) = f P[D > xIIM = z]-fiy, (2)dz

(21D

(22)

where Ap(x) is mean annual rate of D exceeding a given value x;
P[D > xlIM = z] denotes the probability that a displacement value x is
exceeded for a given IM value 2z, as computed by the scalar-IM
Newmark model; f;,,(z) is the probability of occurrence of IM = z, as
computed by Eq. (20).

If two IMs are used in the Newmark models, the joint probability
density function of these two IMs need to be well addressed [35]. The
displacement hazard curve is calculated as:

() = /‘ P(D > x[IM; =y, IM; = 2)fyy 1, 0> 2)dzdy (23)

where fi,, 1, 0, 2) is the joint probability of occurrence for IM; = y
and IM, = z. It is worth mentioning that the correlation coefficient
between two IMs, as shown in Table 2, is required to get the joint
probability density function f1M1,1M2 (¥, 2)- Egs. (22) and (23) can be used
to derive the displacement hazard curves analytically using a single IM
or two IMs, respectively. The analytical procedure would be more
complicated if more than 3 IMs are involved. Therefore, we will limit
the following analysis to the scalar-IM models and the vector models
with 2 IMs.

The two levels of model variabilities (i.e., o,y and oi, p) can be
fully incorporated in the above analytical procedures. Model un-
certainty, on the other hand, can be accounted for by a logic-tree
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Table 2
Correlation coefficients between the IMs used in Newmark displacement
models.

IMs PGA Ia PGV Sa(T = 1s)
PGA 1 0.88 0.69 0.53

Ia 0.88 1 0.74 0.7

PGV 0.69 0.74 1 0.77

Sa(T = 1s) 0.53 0.7 0.77 1

Note: the following references are used to obtain the correlation coefficients:
p(PGA, Ia), p(PGA, PGV) and p(la, PGV) [30]; p(PGA, Sa(T = 15s)) [31]; p(Ia, Sa
(T = 15s)) [32] and p(PGV, Sa(T = 15s)) [33].

framework. The logic-tree approach has been widely used in PSHA to
capture the uncertainties in seismic sources and GMPEs (e.g., [36]).
Logic-tree branch weights need to be assigned to represent the con-
fidence or the acceptance of specific models. Issues related to logic trees
and weighting schemes in PSHA have been discussed in previous stu-
dies (e.g., [37-39]). One important requirement for an appropriate
logic tree is that the selected prediction models should be both mutually
exclusive and collectively exhaustive [37]. The “mutually exclusive-
ness” requires the selected model at each logic-tree branch to be dif-
ferent in theory (without model redundancy), and the “collectively
exhaustiveness” requires that one of the models should be implicitly
“true”. In other words, logic trees should incorporate all appropriate
models, and the models in logic-tree branches should be independent
with each other. Hence, to remove model redundancy, it would be
desirable if only one Newmark displacement model is selected from
each publication to build the logic-tree framework.
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4.2. Illustrative examples

To demonstrate the probabilistic Newmark displacement analysis
with logic-tree branches, three hypothetical slopes with critical accel-
eration a. as 0.05g, 0.1 g and 0.2 g are considered. The slopes are lo-
cated on a stiff soil site (V39 = 400 m/s), at a rupture distance of 10 km
from a point source. The seismicity of the source is assumed to follow
the Gutenberg-Richter relationship as:

log oA = 4.4 — 1.0M,, 24

where 4,, is the mean annual rate of exceedance of the moment mag-
nitude M,,. The minimum and maximum magnitudes are set as 4.4 and
7.5, respectively. A total of 31 magnitude scenarios with a magnitude
bin of 0.1 are sampled. The aforementioned GMPEs are used in the
PSHA procedure to compute the hazard curves of PGA and Ia at the site,
as shown Fig. 9. It can be seen that using different GMPEs would result
in considerably different hazard curves. For instance, the PGA values at
Ay = 0.0021(i.e., 10% probability of exceedance in 50 years) are in the
range of 0.53 g to 0.87 g. The mean hazard curve is also plotted in Fig. 9
by averaging the computed IMs of different models at each hazard level.

Based on the aforementioned fully probabilistic displacement ha-
zard procedures, the displacement hazard curves are calculated and
compared in Fig. 10 using seven selected scalar- and vector-IM models
for slopes with a. values as 0.05, 0.1 and 0.2 g, respectively.

These seven models are selected based on the consideration of
“mutually exclusiveness” and “collectively exhaustiveness” require-
ments as discussed before, including three scalar-PGA models, one
scalar-Ila model and three vector [PGA, Ia] models. Newmark dis-
placement models employing three IMs are not considered herein due
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(e) Standard deviations of In(PGA).

to its complexity involved in the analytical procedure. At the return
periods generally considered in engineering applications (i.e.,
500-2500 years), the [PGA Ia] RS08 model gives the lower bound of
the displacement hazard curves, whereas the [PGA Ia] JO7 and [PGA Ia]
RO0 models yield the upper bound. Fig. 10 clearly highlights significant
model divergence in the probabilistic Newmark displacement analysis.
For the case of a, = 0.1 g (Fig. 10 b), the Newmark displacements at the
1000 years return period (1p = 0.001) are approximately in the range of
60-300 cm. The range of scatter becomes more significant at higher
hazard levels (1p < 0.001), implying that great model uncertainty is
involved. Besides, it can be observed that the mean displacement ha-
zard curve is largely affected by models with the highest displacement
estimates, in particular, the [PGA Ia] JO7 model. The results would be
more consistent if this model is not selected.

Another issue related to the logic-tree analysis is how to distribute

the weights among the selected models in the analysis. The logic-tree
weights are generally assigned based on expert judgments or model
rankings. To test the sensitivity of weighting schemes in the displace-
ment hazard analysis, six different weighting schemes are used. The
details of each weighting scheme are summarized in Table 3. They in-
clude: equal weights, four experts’ weighting schemes and random
weights. Expert 1 preferentially weighted the models proposed recently
(later than 2007); Expert 2 preferentially weighted the vector-IMs (PGA
and Ia) models; Expert 3 only selected and equally weighted the PGA-
based models, which is applicable for cases where Ia is difficult to
predict. The weights of Expert 4 were ranked based on the relative
accuracy of these displacement models, and the reported standard de-
viation oy, p of each model was used to arrange the sequences.

The displacement hazard curves for various a. cases considering
different weightings are shown in Fig. 11. It can be seen that except for
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Expert 3's weights, where only three PGA-based models are employed
and all other vector-IM models are neglected, the overall curves are
generally consistent, even for the case of random weights. This in-
dicates that the specific weighting schemes would not notably influence
the resulting displacement hazard curves, while the selection of proper
displacement models seems to play a more important role. Therefore,
more attention should be drawn to establishing appropriate branches
(models) of the logic-tree framework rather than assigning specific
weight to each branch. This result corroborates with findings from
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other scholars [40,41].

It is also interesting to compare some of the displacement hazard
curves. As shown in Fig. 10, three vector [PGA Ia] models developed by
different researchers clearly show quite divergent results. On the other
hand, the displacement hazard curves developed by the same authors
using the same strong motion database appear to be quite consistent, as
is clearly illustrated in Fig. 12 for the scaler model, [PGA M,,] RS09,
and two vector models, [PGA Ia] RSO8 and [PGA PGV] RS08. There-
fore, the performance of the Newmark displacement models is mainly
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Fig. 9. Hazard curves for ground-motion IMs using different GMPEs. (a): PGA hazard curves using four GMPEs: AS08 [24], BA0O8 [25], CB08 [26] and CY08 [27],
respectively. (b): Ia hazard curves using three GEMPs: TBAO3 [28], FPS12 [29] and CB12 [30].
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dependent on the ground-motion database and functional forms used,
rather than specific IMs employed as predictors.

5. Discussions and conclusions

In this paper, the model uncertainties and variabilities associated
with the Newmark displacement analysis are systematically studied. A
total of fourteen Newmark models using scalar- and vector-IMs are
selected from eight publications in this study. The model uncertainty of
the Newmark models is first assessed by examining the distribution of
median displacement predictions under scenario earthquakes. The
standard deviations of the model uncertainty in these scalar Newmark
displacement models are within 0.4-1.0 for large events, and 1.2-1.7
for small events on a natural logarithmic scale. The standard deviations
for vector models are quite consistently within 0.4-0.6. If the model
uncertainty in the GMPEs is also considered, the standard deviations
would generally increase by 0.2-0.4. The results indicate the model
uncertainty contributed from the Newmark displacement models alone
is significantly larger than that in GMPEs. More effort should be de-
voted to developing advanced Newmark displacement models to reduce

Table 3
Summary of various weighting schemes in logic-tree approach.

the model uncertainty in the future.

The total variability of the predicted Newmark displacements is also
studied for some representative earthquake scenarios. Considering both
the model variabilities in the GMPEs and the Newmark displacement
models, the total standard deviations of the predicted displacements are
found to be 1.5-2 on natural logarithmic scale if the cutoff value is
chosen as 0.01 cm. It is found that the model variabilities are rather
consistent among the scalar- and vector-IM models. Using vector IMs
does not significantly reduce the total variability of the predicted dis-
placements, due to extra sources of variability introduced by in-
corporating additional IMs. However, the model uncertainty for the
vector-IM models is generally smaller than that of the scalar models.
Another advantage of using vector IMs is that the vector-IM models can
better satisfy the sufficiency criterion [14]. For scalar-IM models, M,,
should be incorporated to eliminate bias against earthquake magnitude.

Choosing appropriate IMs as predictors is one of the key aspects for
developing Newmark displacement models. Among the employed pre-
dictors in the existing models, PGA seems to be a necessary IM, because
PGA > a. is an essential prerequisite for triggering sliding in the
Newmark model. The other IMs, such as Ia, PGV, Sa(T = 1s), could be

Model name Equal weights Expert 1 weight Expert 2 weights Expert 3 weights Expert 4 weights Random weights
[PGA] AM88 0.14 0.1 0.1 0.33 0.05 0.29
[PGA Ia] ROO 0.14 0.1 0.2 0 0.2 0.28
[PGA Ia] JO7 0.14 0.16 0.2 0 0.05 0.11
[PGA M,,] BT07 0.14 0.16 0.1 0.33 0.2 0.19
[PGA Ia] RS08 0.14 0.16 0.2 0 0.15 0.03
[PGA M,,] RS09 0.14 0.16 0.1 0.33 0.15 0.04
[Ia] HL11 0.14 0.16 0.1 0 0.2 0.05
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used together with PGA to quantify different characteristics of the
ground motion. It is beyond this paper's scope to distinguish which IM is
superior in association with PGA, because we believe more elaborate
work needs to be done. However, we do demonstrate that three [PGA
Ia] models provide quite differed displacement hazard curves. On the
other hand, displacement hazard curves developed from [PGA Ia] and
[PGA PGV] models can be quite consistent. Interestingly, these models
were developed by the same researchers.

Finally, several illustrative examples are provided to highlight the
importance of quantifying model uncertainties and variabilities in the
fully probabilistic displacement hazard analysis within a logic-tree
framework. The results show that the model uncertainties in the GMPEs

and Newmark displacement models are significant. Sensitivity analysis
indicates that different weighting criterion may not significantly affect
the hazard curves as the results may be dominated by models with the
highest estimates (which may be outliers). Instead, it is more vital to
select appropriate GMPEs and Newmark displacement models in the
logic-tree framework. Attention should be paid to the applicable range
and regional preference of these models.

It is worth mentioning that, most recently, a one-step model [7] is
proposed to predict Newmark displacement directly based on seismo-
logical parameters rather than any IM. The one-step model can greatly
simplify the analytical procedure and computational cost of fully
probabilistic Newmark displacement analysis. Furthermore, with recent
advancement in simulation-based seismic analysis, it is also possible to
directly calculate Newmark displacements based on a large number of
simulated strong-motion waveforms without the need of a Newmark
displacement prediction model. For example, recent work on stochastic
simulation of ground motions [42-44] shed light in this direction.
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