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Estimating the earthquake-induced sliding displacement is important in assessing the stability of slopes during
earthquakes. Current Newmark displacement models generally use ground motion intensity measures (IMs)
as predictors, and the uncertainties of predicting IM values need to be accounted for in probabilistic seismic
slope displacement hazard analysis. This paper aims at developing a simple one-step predictive model for the
Newmark displacement based on only four seismological parameters (moment magnitude, rupture distance,
fault categories and shear wave velocity at top 30 m Vs30) rather than any IMs. The predictive model is suitable
for critical acceleration from 0.02 g to 0.25 g, covering most of the susceptible earthquake-induced landslide
cases. First, the proposed one-step model is compared with some recently developed IM-based Newmark dis-
placement models. It is found that both the median predictions and the variabilities of the proposed one-step
model are in reasonable agreement with those obtained by the IM-based models. Second, several hypothetical
slopes are used to compare the slope displacement hazard curves between the one-step model and the IM-
based models. The new model can be used as an alternative method for a fully probabilistic analysis of the
earthquake-induced slope displacements. In addition, spatial correlations of the Newmark displacement resid-
uals are also investigated using strong-motion data from the Northridge and Chi-Chi earthquakes.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Estimating the seismic displacement of natural slopes is particularly
important for risk assessment of earthquake-induced landslides.
Newmark (1965) proposed a rigid sliding block model, which assumed
that sliding is initialized when the shaking acceleration exceeds a criti-
cal acceleration, and the block continues to move along a shear surface
until the relative velocity between the block and ground is zero. The
critical acceleration (ac) is determined by the properties of slopes
(e.g., the strength of material, groundwater level and the geometric
slope angle). The velocity-time history of the block is calculated by inte-
grating the exceeded parts of acceleration with respect time; then the
velocity-time history is integrated versus time to compute the sliding
displacement for each sliding episode (Fig. 1). The cumulative sliding
displacement is called Newmark displacement D. Although the
Newmark model ignores the internal deformation of the sliding mass
during shaking process, it is still applicable to natural slopes or land-
slides in stiff materials (Jibson, 2007). Jibson (2011) stated that the
Newmark sliding-block analysis may provide the best estimation for
the stability of slopes, compared with other types of analysis.
Since Newmark's pioneering work, many researchers have proposed
predictive equations for the Newmark displacement using various
ground motion database and functional forms in terms of ac and
ground-motion intensitymeasures (IMs), such as the peak ground accel-
eration (PGA) and Arias intensity (Ia) (Arias, 1970) (e.g., Ambraseys and
Menu, 1988; Jibson, 2007; Saygili and Rathje, 2008; Hsieh and Lee, 2011;
Urzúa and Christian, 2013). For example, Ambraseys and Menu (1988)
proposed simple relationships to predict the Newmark displacement
based on the acceleration ratio, which is defined as ac over PGA, using
50 strong-motion records from eleven earthquakes. It is to be noted
that all these predictive equations are regressed using the computed
Newmark displacements rather than the observed slope displacement
data.

Using the IM-based Newmark displacement model, the seismic
slope displacement is estimated as a two-step approach: first, ground
motion prediction equations (GMPEs) are used to estimate the median
and variability of IMs; second, sliding displacement values can be pre-
dicted using the estimated IMs and ac. In design practice, the sliding dis-
placements are often estimated using ground-motion IMs at a specified
hazard level, which can be readily obtained fromground-motion hazard
maps based on probabilistic seismic hazard analysis (PSHA). Although it
is simple, the probability of exceedance of the predicted displacement is
actually unknown. Therefore, it is a pseudoprobabilistic approach. Since
the variabilities in the IMs and the predicted displacements are not
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Fig. 1. Demonstration of computing Newmark displacement with critical acceleration
ac = 0.2 g: (A) Earthquake acceleration-time history, (B) Velocity of sliding block versus
time and (C) Displacement of sliding block versus time.
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quantified rigorously, the pseudoprobabilistic analysis usually results in
non-conservative estimation in most cases compared with a fully prob-
abilistic method (Rathje and Saygili, 2011).

To conduct a fully probabilistic seismic slope displacement hazard
analysis (PSSDHA), the total variability of the computed displacement
should be quantified, which is contributed from both GMPEs and the
sliding displacement models. In addition, the epistemic uncertainty of
GMPEs and the sliding displacement models should be taken into ac-
count. In a recent study, the epistemic uncertainty and aleatory variabil-
ity in the two-step Newmark displacement analysis procedure have
been systematically studied (Du and Wang, 2013a; Du and Wang,
under review). The two-step approach would inevitably complicate
the computational process, as two levels of integration process should
be conducted to derive the probabilistic slope displacement hazard
curves. This computational inefficiency will be much more remarkable
if a large-scale region is studied (Du and Wang, 2014). In view of this,
for the Newmark displacement, it may be not entirely necessary to
use IMs as predictors, and, it is possible to estimate the sliding displace-
ment directly based on seismological information and geological condi-
tions rather than IMs. Then sliding displacement can be predicted
directly by just one step instead of using the traditional two-step ap-
proach. The framework for conducting a fully probabilistic seismic
slope displacement analysis using the proposed one-step model and
the IM-based models, as well as the pseudoprobabilistic approach, are
shown in Fig. 2.

This paper focuses on proposing a one-step empirical model to
predict the Newmark displacement, directly based on seismological in-
formation and geological conditions rather than IMs. Themodel predic-
tors are moment magnitudeMw, rupture distance Rrup (closest distance
from the site to the ruptured area), shear wave velocity of the upper
30 m Vs30, and fault type. The Newmark displacement value can be
regarded as a specific parameter that can be determined by seismolog-
ical parameters associated with critical acceleration ac. Furthermore,
probabilistic seismic slope displacement hazard analyses for several
hypothetic slopes are conducted by using the one-step model as well
as the two-step IM-based models. The advantage of this one-step
model is that it can greatly simplify this computational process in
PSSDHA, meanwhile, the prediction results are generally similar with
the existing two-step models. In addition, spatial correlations between
the residuals of the proposed displacement model, which is required
for analyzing spatially distributed slopes, are also studied. Two well
recorded events, namely, the Chi-Chi and Northridge events, are used
to compute the spatial correlations of displacement.

2. One-step Newmark displacement prediction model

2.1. Strong motion database

In this paper, the subset of the Pacific Earthquake Engineering Re-
search Center's PEER-NGA strong motion database (Chiou et al., 2008)
is used to compute the Newmark displacement. Only horizontal record-
ings from free-field conditions are used in the analysis, resulting in a
total of 1560 pairs of ground motions of two horizontal directions
from 64 worldwide earthquake events (Campbell and Bozorgnia,
2008). The selected records have moment magnitude in the range of
4.26 to 7.9, rupture distance from 0.07 km to 194 km and Vs30 between
116.35 m/s and 2016 m/s. The distribution of these earthquake records
with respect tomagnitude and rupture distance, is shown in Fig. 3. For a
given value ac, the permanent displacement values can be obtained by
aforementioned Newmark's sliding block method. Two horizontal re-
cordings at the same station are treated as independent records. For
each record, the maximum value computed from both the positive
and negative directions for each record is taken as the permanent
displacement.

2.2. The functional form

Regression analysis was performed to predict the sliding displace-
ment as a function of seismological variables usingmixed random effect
algorithm proposed by Joyner and Boore (1993). The displacement pre-
diction model takes a form as follows:

ln Dij
� � ¼ ln Dij

� �þ ηi þ εij ð1Þ

where ln(Dij) and lnðDijÞrepresent the computed and thepredicted log-
arithmic displacement value for the j-th recording and i-th event, re-
spectively. ηi refers to inter-event residual (between earthquakes) and
εij denotes intra-event residual (within earthquakes), respectively.
This model assumes that displacement values (D) follow logarithmic
normal distribution. The mixed random effect model is widely applied
to develop ground motion prediction equations, such as the NGA
models (e.g., Campbell and Bozorgnia, 2008).

Since currently there is not any Newmark displacementmodel avail-
able in the literature using the mixed random effect regression, some
functional forms that have been used for GMPEs are first attempted.
More specifically, as the two commonly used predictors, PGA and Ia
have been found to have a strong correlation with Newmark displace-
ment (Wang, 2012). Therefore, the functional forms for predicting
PGA and Ia could be used as the preliminary functional forms. After sev-
eral trials and comparisons, the final functional expression is adopted
as:

ln Dð Þ ¼ c1 þ c2 � 8:5−Mwð Þ2 þ c3 þ c4 �Mwð Þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þ h2

q� �
þ c5 � Fr

þ c6 þ c7 �Mwð Þ ln R20

20

� �
þ v1 � ln

Vs30

1100

� �

ð2Þ

where R1 ¼ f Rrup if Rrup≤20km
20 otherwise

and R20 ¼ f 20 if Rrup≤20km
Rrup otherwise ; Mw

refers to moment magnitude; Rrup means rupture distance (km); R1 and
R20 are two distance parameters: R1 equals to Rrup when Rrup is smaller
than 20 km, controlling the short-distance scaling. R20 changes if Rrup is
greater than 20 km, controlling the long-distance scaling. Inclusion of R1
and R20 in the functional form aims at better fitting empirical data in
distance scaling. Fr is an indicator variable (1 for reverse and reverse-
oblique types of faulting and 0 otherwise); h is a fictitious depth in km

Image of Fig. 1


Table 1

Fig. 2. Flow chart for psudoprobabilistic and fully probabilistic analysis of seismic slope displacement using the IM-based Newmark displacement model and the one-step model.
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estimated during the regression, and Vs30 represents the averaged shear
wave velocity of the upper 30 m (m/s). The inclusion of fictitious depth
h is to better fit the empirical data at short distances. The influence of
site effects is incorporated in Eq. (2) by using the Vs30 term. It is empha-
sized that the regression process is performed for different groups of crit-
ical accelerations ac, due to the significant variations in various groups of
ac. This is unlike other IM-based displacement models that regress the
empirical displacements for all ac cases.

It is to be noted that Eq. (2) is regressed based only on sliding dis-
placements larger than 0.01 cm. The probability of “zero” displacement
(D b 0.01 cm) should also be predicted by seismological parameters. It is
straightforward that the “zero” probability decreases as Mw increases,
and increases as Rrup and Vs30 increase. Using a probit regression analy-
sis (Green, 2003), the probability of “zero” displacement (D b 0.01 cm)
can be expressed as:

P D ¼ 0ð Þ ¼ 1−Φ c8 þ c9 �Mw þ c10 � lnRrup þ c11 � ln Vs30ð Þ� � ð3Þ

where Φ is the standard normal cumulative distribution function. The
total displacement data (including smaller than 0.01 cm) are collected
Fig. 3. Distribution of earthquake recordings with respect to moment magnitude and
rupture distance.
to derive Eq. (3). Themodel coefficients are estimated using the standard
maximum likelihood procedure in R software. Therefore, the non-zero
displacement values are estimated by Eq. (2), while Eq. (3) is used to
specify the probability of zero displacement (D b 0.01 cm). Consequently,
the predicted displacement according to a specified percentile p (in dec-
imal form, i.e. p= 0.5 for the 50th percentile) can be determined as:

lnDp ¼ lnDþ σD �Φ−1 p−P D ¼ 0ð Þ
1−P D ¼ 0ð Þ

� �
ð4Þ

A total of thirteen coefficients are included in the one-step model.
The regression process can be implemented in statistical programming
using software like R, especially the ‘nlme’ function (Pinheiro et al.,
2008). The regression coefficients for seven ac values (0.02 g, 0.05 g,
0.075 g, 0.1 g, 0.15 g, 0.2 g and 0.25 g) are tabulated in Table 1. All coef-
ficients yield small p-values, so they are statistically significant. For the
cases that ac ≥ 0.15 g, c4 and c7 are statistically insignificant, so they
Coefficients of the proposed displacement model.

Coefficient Critical acceleration (ac)

0.02 g 0.05 g 0.075 g 0.1 g 0.15 g 0.2 g 0.25 g

c1 8.15 8.23 7.11 7.29 7.13 6.12 15.21
c2 −0.14 −0.18 −0.08 −0.14 −0.21 −0.25 −0.27
c3 −5.04 −4.57 −5.17 −4.10 −2.77 −2.42 −5.33
c4 0.45 0.31 0.40 0.22 – – –
c5 0.54 0.64 0.75 0.72 0.80 0.74 1.04
c6 −2.25 −4.84 −3.21 −4.67 −1.35 −1.65 −0.72
c7 – 0.31 0.09 0.38 – – –
h 6.32 5.72 4.19 4.23 4.55 5.53 14.3
ν1 −1.26 −1.26 −0.92 −0.86 −0.55 −0.57 −0.43
τ 0.45 0.39 0.50 0.54 0.45 0.42 0.29
σ 1.33 1.55 1.56 1.60 1.78 1.78 1.76
σt 1.40 1.59 1.63 1.70 1.84 1.82 1.78
c8 1.04 3.69 4.52 4.13 4.10 2.76 1.53
c9 1.46 0.97 0.76 0.64 0.37 0.28 0.26
c10 −1.71 −1.74 −1.76 −1.78 −1.51 −1.27 −1.14
c11 −0.37 −0.51 −0.52 −0.39 −0.37 −0.25 −0.15
No. of records
used*

1168 934 715 562 381 270 192

Note: * denotes only recordswith PGA values larger than ac can generate positive displace-
ment values; τ: standard deviation of inter-event residuals; σ: standard deviation of intra-

event residuals; σt: standard deviation of total residuals (σ t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ τ2

p
).

Image of &INS id=
Image of Fig. 2
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are removed in the final functional form. The reported inter- and intra-
event standard deviations (in natural logarithmic scale) are also listed in
this table. It is clear that the total standard deviation value generally in-
creases as ac increases, mainly due to the fewer available records used
for larger ac values. If a studied ac value is not included in Table 1, it is
suggested to interpolate the displacement in log space linearly between
these obtained from neighboring ac. Thus the one-stepmodel is suitable
for critical accelerations ac ranging from 0.02 g to 0.25 g. For a case with
Mw =7, Rrup=10 km, Vs30 = 600m/s and ac = 0.1 g from a strike-slip
fault, the estimated displacement by Eq. (2) is 4 cm, and the probability
of “zero” displacement P(D = 0) by Eq. (3) is 0.02. The median (50th
percentile) estimated displacement can be calculated by Eq. (4) as
3.82 cm.
Fig. 4. Distributions of inter-event and intra-event residuals with respect to moment magn
respectively.
2.3. Inter-event and intra-event residuals

The distributions of inter- and intra-event residuals against predic-
tors (Mw and Rrup) for ac = 0.05 g and ac = 0.1 g are shown in Fig. 4.
The trend lines obtained by the simple linear regression are also plotted
in these figures. No obvious biases between the residuals and the pre-
dictors can be found. The slightly biased trends in the intra-residuals
versus the moment magnitude plots are possibly caused by a paucity
of data at small magnitudes (Mw b 5). The distributions of the residuals
imply that the proposed model can yield unbiased predicted displace-
ment over a large magnitude and distance range.

The distribution of intra-event residuals against rupture distance
shows a strong trend: the scatter of residuals generally increases with
itude, rupture distance and shear wave velocity for (a) ac = 0.05 g and (b) ac = 0.1 g,

Image of Fig. 4
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increasing rupture distance. Hence, it is tempting to get the standard de-
viation of intra-event residuals within varying rupture distance bins, as
shown in Fig. 5. The distance bins are partitioned into overlapping inter-
vals in logarithmic scale from 0.1 km to 200 km, where the horizontal
bar indicates the range of the interval in each bin. A simple trilinear
model is used to represent the empirical data:

σ ¼
a if Rrup≤1 km
aþ b � lnRrup if 1 km b Rrup b 100 km
aþ 4:6 � b if 100 km≤Rrup≤200 km

8<
:

ð5Þ

where a = 0.62, b = 0.21 for ac = 0.02 g; a = 0.76, b = 0.23 for ac =
0.05 g; a = 0.89, b = 0.237 for ac = 0.075 g and a = 1.05, b = 0.22
for ac = 0.1 g. For the case of ac ≥ 0.15 g, the rupture distance has little
influence on the sigma value, so the reported constant values in
Table 1 (e.g.,σ=1.78can be used for the case of ac= 0.15 g) are recom-
mended. For the standard deviation of the inter-event residuals, the
constant values reported by regression analysis can be directly used
since no obvious trend is observed.

3. Comparison with the IM-based displacement models

In this section, the proposed one-step model is compared with the
IM-based Newmak displacement models in literature.

3.1. Median predicted values

Fig. 6 shows the predicted displacement of the proposed one-step
model (Eq. (2)) with respect to rupture distance for various earthquake
scenarios (generally large magnitude combined with small critical ac-
celerations). The estimated displacement values from other Newmark
Fig. 5. Left: Distribution of intra-event residualswith respect to rupture distance; Right: trilinear
of each bin, and the horizontal bar indicates the range of the interval, respectively. Each range
displacementmodels are also shown for comparison. For simplicity pur-
pose, one predictive model from each recent publication is selected in
this study. These displacement models as well as their standard devia-
tions are listed as follows:

1. [PGA] AM88 model (Ambraseys and Menu, 1988):

log10 Dð Þ ¼ 0:9þ 2:53 log10
ac
PGA

	 

−1:09 log10

ac
PGA

	 

; σ log10D ¼ 0:3 ð6Þ

2. [PGA, Mw] BT07 model (Bray and Travasarou, 2007):

ln Dð Þ ¼ −0:22−2:83 ln acð Þ−0:333 ln acð Þð Þ2 þ 0:566 ln acð Þ ln PGAð Þ
þ 3:04 ln PGAð Þ−0:244 ln PGAð Þð Þ2 þ 0:278 Mw−7ð Þσ lnD ¼ 0:66

ð7Þ

3. [PGA, Ia] J07 model (Jibson, 2007):

log10 Dð Þ ¼ 0:561 log10 Iað Þ−3:833 log10
ac
PGA

	 

−1:474;σ log10D ¼ 0:616 ð8Þ

4. [PGA, Ia] RS08 model (Rathje and Saygili, 2008):

ln Dð Þ ¼ 2:39−5:24
ac
PGA

	 

−18:78

ac
PGA

	 
2
þ 42:01

ac
PGA

	 
3
−29:15

ac
PGA

	 
4

−1:56 ln PGAð Þ þ 1:38 ln Iað Þσ lnD ¼ 0:46þ 0:56 ac=PGAð Þ ð9Þ

5. [Ia] HL11 model (Hsieh and Lee, 2011):

log10 Dð Þ ¼ 0:847 log10 Iað Þ−10:62ac þ 6:587ac log10 Iað Þ
þ1:84;σ log10D ¼ 0:295

ð10Þ
relationship of intra-event standard deviations, where the point denotes themedian value
interval has at least 30 samples to get statistically reliable results.

Image of Fig. 5


Fig. 6. Comparison of the one-stepmodel (this study, Eq. (2)) with the other IM-basedmodels (Eqs. (6)-(11)). The computed empirical displacement data using the NGAdatabase are also
shown for each scenario: (a)Mw=6, strike-slip fault, Vs30= 400m/s and critical accelerations ac= 0.05 g; (b)Mw=7, reverse fault, Vs30= 400m/s and ac= 0.05 g; (c)Mw=7, strike-
slip fault, Vs30 = 400 m/s and ac = 0.1 g and (d) Mw = 7, reverse fault, Vs30 = 400 m/s and ac = 0.1 g.
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6. [PGA, Ia, T] UC13 model (Urzúa and Christian, 2013):

log10 Dð Þ ¼ −0:1−4:3
ac
PGA

	 

þ log10

Ia � T
PGA

� �
ð11Þ

In the above IM-based models, PGA, Ia, Mw and T are employed as
predictors. For producing Fig. 6, the averaged PGA values from four
NGA GMPE models (Abrahamson and Silva, 2008; Boore and Atkinson,
2008; Campbell and Bozorgnia, 2008; Chiou and Youngs, 2008) and
the averaged Ia values from three predictive models (Travasarou et al.,
2003; Foulser-Piggott and Stafford, 2012; Campbell and Bozorgnia,
2012) are regarded as input IMs for these IM-based models. In
Eq. (11), T is predicted using the empirical equation of Tavg from
Rathje et al. (2004). The empirical data computed from the selected
NGA database are also shown in these plots. They are selected based
on a combination of magnitude bin [Mw − 0.25, Mw + 0.25] and shear
wave velocity bin [Vs30 − 200 m/s, Vs30 + 200 m/s]. For example, Fig.
6(a) displays the empirical displacement data for 5.75 b Mw b 6.25,
200 b Vs30 b 600 m/s, strike-slip fault and ac = 0.05 g.

The comparison leads to the following observation: First, empirical
data are almost evenly distributed around the predicted curves of the
one-step model (this study), implying that this newmodel can get rea-
sonably unbiased predictions for these earthquake scenarios. Second,
the curves obtained by different models are generally comparable. De-
spite the difference in the functional forms and predictors that these
equations are based on, quite consistent predictive values (especially
for median rupture distance) can be seen from these plots. Large scat-
ters can be observed in the far distance range, where the predicted dis-
placements are very small with little engineering significance. Besides,
although there are some discrepancies among thesemodels, the predic-
tive curves from the one-step model (this study) are generally located
within the clusters of others. Hence, the new one-step model can rea-
sonably predict the displacement values based directly on seismological
variables.

The probability of zero displacement (D b 0.01 cm) is computed as a
combination of the seismological parametersMw, Rrup andVs30 (Eq. (3)).
Fig. 7 shows the relationship between the predicted zeroD probabilities,
P(D= ′0′), and these parameters and ac. As expected, the probability of
zero displacement increases significantly as ac and Rrup increases, while
it decreases if Mw increases.

The median predicted displacement of the newmodel can be calcu-
lated via Eqs. (2)-(4). Fig. 8 compares the median predicted sliding dis-
placements by different models with respect to various ac cases. For
small ac cases, all the models tend to predict similar displacement. For
large ac cases (ac N 0.2 g), the new model and the BT07 models would
result in generally smaller displacement predictions, mainly due to the
probability of ‘zero’ (non-sliding) displacement considered during the
regression. It is noted that the predicted displacements are generally
small for large ac cases and therefore they have little engineering
significance.
3.2. Comparison of sigma values

As shown in Table 1, the total standard deviations of the one-step
model are about 1.4–1.84 in the natural log scale for different ac cases.
It appears to be larger than any other reported sigma values of the IM-
based models (Eqs. (6)-(11)), which range from 0.7 to 1.5 when

Image of Fig. 6


Fig. 7. (a) Predicted probability of “zero” displacement (Eq. (3)) versus ac for earthquake scenarios: Rrup = 20 km, Vs30 = 400 m/s; and (b) Predicted probability of “zero” displacement
versus rupture distance for earthquake scenarios:Mw = 7 and Vs30 = 400 m/s.
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converted in the natural log scale. Yet, the total variability of the predict-
ed Newmark displacements may still be comparable if the variabilities
of the predictors, i.e., IMs, are also considered.

In this section, Monte-Carlo simulation is used to compute the total
variability of the one-step and the two-step IM-based models for given
earthquake scenarios. For the two-step models, vector IMs (e.g., PGA
and Ia) can be reasonably assumed to followmultivariate normal distri-
bution with median and standard deviation specified by GMPEs. The
joint occurrence of multiple IMs is specified by using empirical correla-
tions. The correlation coefficient between PGA and Ia is specified as
ρ(PGA, Ia) = 0.88 (Campbell and Bozorgnia, 2012). First, 100 sets of
correlated vector IMs are generated for a specific earthquake scenario.
Second, for each set of vector IMs, 100 Newmark displacements can
be simulated following a lognormal distribution with the median
value and standard deviation specified by the predictive models
(Eqs. (6)-(11)). The standard deviation of the resulted 10,000 displace-
ment values is then calculated to estimate the total variability for each
IM-based displacement model. For the one-step model, only 100 dis-
placement residuals are required for each scenario.

Fig. 9 shows the standard deviations versus rupture distances for
earthquake scenarios Mw 7.5 and Mw 6.5, respectively. For the IM-
based models, the total sigma values considering both the variabilities
of GMPEs and Newmark displacement models is about 1.5–2.5 for
Fig. 8.Median predicted sliding displacement of various models against ac values for earthquak
Rrup = 5 km, strike-slip fault, Vs30 = 400m/s. Note:D0.5in Eq. (4) is used for the one-step mode
averaged Ia values from three Ia models are used as input parameters.
ac = 0.1 g. By comparison, the sigma of the one-step displacement
model reveals generally consistent curves. The new proposed model is
not intended to reduce the total sigma values but to simplify the compu-
tational procedure.

4. Probabilistic seismic slope displacement hazard analysis
(PSSDHA)

Traditional PSHA computed the ground motion hazard in terms of
IM as:

λIM zð Þ ¼ λ0

Z
m

Z
r

P IMNzjm; r½ � f mð Þ f rð Þdmdr ð12Þ

where λIM(z) refers to mean annual rate that IM (i.e., PGA) exceeds a
given level z; λ0 is the activity rate for this earthquake scenario; f(m)
and f(r) represent probability density functions for earthquake magni-
tude (m) and source-to-site distance (r), respectively. P[IMNz |m,r] is
the conditional probability of IM exceeding z for a given m and r,
which can be determined from a GMPE with the assumption that the
IM follows a lognormal distribution. As is commonly used in practice
(Abrahamson, 2000), the IM values are limited in the range of median
value ±3 standard deviations in integrating Eq. (12).
e scenario (a)Mw = 7, Rrup = 10 km, strike-slip fault, Vs30 = 400 m/s and (b)Mw = 7.5,
l (this study). For the IM-based models, the averaged PGA from four NGAmodels and the
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Fig. 9. Standard deviations considering the variability of GMPEs and Newmark displacement models, for ac = 0.1 g and (a)Mw 7.5 (b)Mw 6.5, strike-slip fault, Vs30= 400m/s earthquake
scenarios. Cut-off displacement value is 0.01 cm. It is noted that small displacement values have to be excluded, since they are of little engineering importance but appear to be highly
scattered in logarithmic scale.
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Similar with λIM, themean annual rate of exceedanceλDfor the sliding
displacement value D can be represented as (Rathje and Saygili, 2008):

λD xð Þ ¼
Z

P D≥xjIM ¼ z½ � � d λIM zð Þð Þj j ð13Þ

where λD(x) is the mean annual rate that displacement exceeds a given
value x; P[DNx | IM=z] denotes the probability that the displacement
value x is exceeded for a given IM value z (computed by scalar
Fig. 10. (a) Locations of the three hypothetic slopes and the fault trace; (b) hazard curves for PGA
Campbell and Bozorgnia (2008, 2012) are used to estimate the median and the variability of P
displacement equations e.g., Eq. (9)); and |d(λIM(z))| is the probability
of occurrence for IM= z.

For the displacement models with two IMs as predictor variables
(e.g., Eq. (8)), the joint probability density function for the vector IM
must be considered (Bazzurro and Cornell, 2002). The analytical dis-
placement hazard curve is calculated as:

λD xð Þ ¼
Z

P D≥x IM1 ¼ yj ; IM2 ¼ zð Þ f IM1 ;IM2
y; zð Þdzdy ð14Þ
; (c) hazard curves for Ia. For demonstration purpose, only predictivemodels proposed by
GA and Ia, respectively.

Image of &INS id=
Image of Fig. 10
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where fIM1,IM2
(y,z) denotes the joint occurrence probability for IM1

equals y and IM2 equals z, which can be given as:

f IM1 ;IM2
y; zð Þ ¼ λ0

Z
m

Z
r

f IM1
yjm; rð Þ � f IM2 jIM1

zjy;m; rð Þ f mð Þ f rð Þdmdr

ð15Þ

where the term fIM1
(y |m,r) refers to probability density function for IM1

conditional on m and r, and fIM2|IM1
(z |y,m,r) is the probability density

function for IM2 conditional on m, r and IM1 equals y. It is noted that
the correlation coefficient ρIM1,IM2

between IM1 and IM2 is required to
obtainfIM1,IM2

(y,z).
Eqs. (12)-(15) clearly illustrate the analytical displacement curves

for the two-step models, which incorporates the GMPEs as well as the
displacement models. For the vector IMs models, the correlation coeffi-
cients between two IMs are also necessary. On the other hand, for the
one-step model, the corresponding displacement hazard is computed
simply as:

λD xð Þ ¼ λ0

Z
m

Z
r

P DNxjm; r½ � f mð Þ f rð Þdmdr ð16Þ

where P[DNx |m, r] is computed by the proposed displacement equa-
tions Eqs. (2)-(4). For Eq. (16), only displacement model is required to
compute the displacement hazard curves.
Fig. 11. (a) (b) (c): Displacement hazard curves using different displacement models for Slop
Campbell and Bozorgnia (2008, 2012) are used in this example.
4.1. An illustrative example

Ahypothetical area is investigated to compare the different displace-
ment models in PSSDHA. Three slopes (slope A, B and C in Fig. 10(a))
located on stiff soil conditions (Vs30 = 400 m/s) are used to derive dis-
placement hazard curves. The slopes A, B and C are assigned the follow-
ing parameters: Rrup = 5 km, ac = 0.2 g; Rrup = 15 km, ac = 0.1 g;
Rrup=25 km, ac=0.05 g, respectively. The locations of the three slopes,
as well as a 30 km-long linear strike-slip fault source, are shown in Fig.
10(a). The following Gutenberg–Richter relationship is assumed to de-
scribe the seismicity of the source:

log10λm ¼ 4:4−1:0Mw ð17Þ

where λm is the mean annual rate of exceedance for the moment mag-
nitude Mw. A total of 32 earthquake scenarios ranging from 4.4 to 7.6
with amagnitude bin of 0.1 are generated for this fault. Note that choos-
ing the above simple recurrence law is only for demonstration purpose.
The location of rupture is randomly distributed along fault. The empiri-
cal equation fromWells and Coppersmith (1994) is used to estimate the
fault rupture length for each scenario:

log10 Lð Þ ¼ −3:22þ 0:69Mw ð18Þ

where Mw is moment magnitude and L represents surface rupture
length. As discussed previously, Eqs. (12)-(15) are used to derive the
displacement hazard curves for the IM-based models. For the one-step
es A, B and C respectively. For IM-based models, only the predictive models proposed by

Image of Fig. 11


Table 2
Predicted Newmark displacement at specified hazard levels obtained from different dis-
placement models.

Predicted Newmark
displacement (cm)

Slope A Slope B Slope C

Probability of exceedance
in 50 years

10% 2% 10% 2% 10% 2%

Models [PGA] AM88 36.4 67.5 31.2 65.1 48.4 97.0
[PGA Mw] BT07 35.9 74.8 25.6 58.0 31.4 68.6
[PGA Ia] J07 47.2 225.0 20.2 111.2 30.5 187.8
[PGA Ia] RS08 20.3 58.8 10.7 32.3 12.5 35.9
[Ia] HL11 19.1 76.0 24.2 63.4 46.2 97.5
[Mw Rrup Vs30]
This study

32.7 89.5 12.5 40.0 10.7 38.2
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displacement model, Eq. (16) is the only equation needed to derive the
displacement hazard curves.

For each slope, the 32 earthquake scenarios are considered to con-
volve IM hazard curves, which are necessary to derive displacement
hazard curves for the IM-based models. Fig. 10 (b) and (c) show the
hazard curves of PGA and Ia for the three slopes. For illustration pur-
poses, only the predictive models proposed by Campbell and
Bozorgnia (2008, 2012) are adopted to describe the median and the
variability of PGA and Ia, respectively. Again, the IM values are limited
in the range of median value ±3 standard deviations in integration.
Fig. 11 (a), (b) and (c) show the comparison of displacement hazard
curves between the one-step model and the IM-based models for the
slopes A, B and C, respectively. Integration in Eq. (16) is also limited
within ±3 standard deviations.

In general, the proposed one-step model can yield reasonably simi-
lar curves compared with the other models. If we select two hazard
levels: 10% and 2% probability of exceedance in 50 years, the corre-
sponding Newmark displacement obtained from different models are
listed in Table 2. It is not our intention to judge whichmodel is superior
to the others orwhichmodel results in themost accurate prediction, but
to provide an illustrative comparison between the one-stepmethod and
the two-step approaches. Since the one-step approach eliminates the
necessity to predict the IMs, the computational process of the new
model is much more efficient compared with the two-step models.
This efficiency is much more predominant for complicated cases such
as a regional-scale studied area. In addition, since selection of specific
GMPEs would significantly affect the predicted displacement in the
IM-based methods, the one-step approach can eliminate the epistemic
uncertainties of predicting IMs.

5. Empirical spatial correlations of the displacement residuals

During an earthquake, the observed records show that the intra-
event residuals of IMs are spatially correlated at nearby sites, due to
the same source, similarwave propagation and similar geological condi-
tions. Some researchers have quantified the spatial correlations of IMs
as functions of separation distance (e.g., Boore et al., 2003; Jayaram
and Baker, 2009; Du and Wang, 2013b), as well as the spatial correla-
tions of building response parameters (e.g., DeBock et al., 2014). These
spatial correlation models are indispensable to estimate seismic losses
accurately for spatially distributed structures and infrastructures.
Table 3
Detailed information and computed ranges for the Chi-Chi and Northridge earthquakes.

Earthquake name Date (dd/mm/yyyy) Moment magnitude

Chi-Chi 09/20/1999 7.62
Northridge 01/17/1994 6.69

a The computed spatial correlation ranges for PGA and Ia are obtained by Du andWang (20
Similarly, this section focuses on studying the spatial correlations of
the displacement residuals.

Semivariograms are frequently used to quantify the spatial correla-
tion of a random field (Goovaerts, 1997). Under the assumptions that
the displacement field is isotropic and second-order stationary, the em-
pirical semivariogarms of intra-event residuals of displacement can be
computed as:

~γ hð Þ ¼ 1
2 N hð Þj j

XN hð Þ
i¼1

zuiþh−zui
� �2 ð19Þ

where ~γ represents empirical semivariogram; N(h) is the number of
data pairs within this distance bin h, and zui+h and zui

represents the
ith data pair of intra-event residuals with separation distance h. An ex-
ponential function is usually adopted to fit the empirical semi-
variograms:

γ hð Þ ¼ a 1− exp −3h=bð Þð Þ ð20Þ

where h refers to separation distance (km), and a and b are the sill and
the range of semivariograms, respectively. The spatial correlation rela-
tion can be simplified as (please see more details in Goovaerts, 1997):

ρε hð Þ ¼ exp −3h=bð Þ ð21Þ

where ρε(h) denotes the estimated correlation coefficient between the
intra-event residuals with a separation distance h. It can be seen that
once the correlation range b is obtained, the spatial correlation against
any separation distance h can be fully quantified. Clearly this correlation
ρ equals 1 at zero separation distance and decreases to zero if h
increases to infinity.

The intra-event displacement residuals of the Chi-Chi and
Northridge earthquakes are used in this paper. This is because only
these two earthquakes in current dataset can provide sufficient data, es-
pecially in small separation distance bins. The detailed information for
the two earthquakes is shown in Table 3. Fig. 12 displays the distribu-
tion of empirical data for the case of ac = 0.1 g. The computed ranges
of displacement residuals are 16 km and 8 km for the Chi-Chi and
Northridge events, respectively. By contrast, the previously estimated
spatial ranges of the PGA and Ia for these two earthquakes are shown
in Table 3. Similar ranges can be found for the Northridge earthquake,
while for the Chi-Chi event, the correlation range of the Newmark dis-
placement D is significantly smaller than that of IMs. This is possibly
due to the fact that the sliding displacement represents highly nonlinear
structural response. Therefore, their spatial correlations are limited in
range compared to the range of the IMs. In addition, the available re-
cords for estimating the correlation of displacement residuals are
much fewer than the records used to estimate the correlation of IMs.
Since currently only two events are available in the database, and the
spatial correlations of displacement are dependent on specific ac values,
it is not feasible to propose a generalized spatial correlation model for
Newmark displacement.

6. Discussions

Newmark displacements are commonly taken as a measure of
regional-scale seismic landslide hazard estimation (e.g., Jibson et al.,
Fault mechanism Computed spatial correlation rangea (km)

Newmark D
(ac = 0.1 g)

PGA Ia

Reverse-oblique 16 42.5 37.5
Reverse 8 7.6 7.9

13b).



Fig. 12. The empirical semi-variograms and fitted exponential curves for the intra-event residuals of displacements for (a) the Chi-Chi earthquake and (b) the Northridge earthquake. The
predicted Newmark displacement is calculated assuming ac = 0.1 g.
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2000; Jibson andMichael, 2009; Saygili and Rathje, 2009). The distribu-
tion of computed Newmark displacements is often used to identify po-
tential landslide zones. Since it is particularly important to assess the
seismic hazard of infrastructures or lifelines, the large-scale estimation
of seismic landslide susceptibility should be studied as top priority
(Wasowski et al., 2011). To conduct a probabilistic seismic slope dis-
placement hazard analysis (PSSDHA) in a large scale, the uncertainties
in the GMPEs and in the displacementmodels should bewell incorporat-
ed over the whole region. This would inevitably bring in significantly
computational cost. The purpose of this paper is to try to simplify the
computational process: the Newmark displacement can be estimated di-
rectly by seismological information as well as geological conditions.
Therefore, the proposed one-step displacement model is particularly
suitable for PSSDHA in regional-scale cases. It is noted that earthquake-
induced rock-falls in steep mountains are not considered in the present
study. They are mainly triggered by high levels of ground shaking due
to topographic amplification (e.g., Sepúlveda et al., 2005).

The proposed model includes thirteen coefficients changing with
critical accelerations. Although it seems complicated, the model is still
convenient to use once the input parameters and critical accelerations
are obtained. For any ac values in the range of 0.02 g to 0.25 g, the sliding
displacement can be linearly interpolated in log space between neigh-
boring ac in Table 1. As mentioned previously, since using the simplified
pseudoprobabilistic approach would yield inaccurate estimation, the
proposed one-step method is indeed a simplification for fully probabi-
listic displacement analysis. This paper intends to provide an alternative
displacement model, rather than reducing the use of IM-based models.
Both the one-stepmodel and IM-basedmodels can be used for practical
cases, and engineers can choose themost appropriatemodel depending
on specific engineering applications.

One major challenge to improve the evaluation of seismic slope sta-
bility is to obtain accurate critical acceleration maps across the region.
Some scholars (e.g., Dreyfus et al., 2013) have pointed out that the esti-
mation of shear strength played a vital role in predicting the sliding dis-
placement, and, generally overly conservative (low) shear-strength
values would result in an over-estimation of landslide susceptibility.
On the other hand, failure depth, material strength and groundwater
data may vary significantly over a large region. Due to this challenge,
more attention should be paid to a reliable estimation of the spatial dis-
tribution of ac values in the future.

7. Conclusions

This paper provides a newone-stepNewmarkdisplacementmodel for
critical acceleration within 0.02 g–0.25 g. Unlike most current Newmark
displacement models using IMs as parameters, the proposed model
gives an estimation of the sliding displacement directly based on seismo-
logical information and site conditions (i.e.,Mw,Rrup, Vs30 and fault catego-
ry). Compared to the IM-based displacement models, the newmodel can
result in reasonably consistent estimation of displacement for various
cases. Therefore, it can be used as an alternative model to estimate the
Newmark displacement.

The intra-event residuals of the one-stepmodel clearly reveal signif-
icant trends with respect to rupture distance. A heteroskedastic intra-
event standard deviation structure is adopted in this model, which can
better predict the variance components than a homoscedastic model.
The estimated total standard deviations are in the range of 0.6 to 2.1
in natural log scale, depending on the ac values as well as rupture dis-
tances. Although it appears to be much larger than any IM-based
models, this total variability of the Newmark displacement obtained
from the one-step method is actually comparable with that obtained
from IM-based models, if the variabilities of both the Newmark dis-
placement predictions and IMs are incorporated in the two-step
procedure.

Application of the one-step model in probabilistic seismic slope dis-
placement hazard analysis (PSSDHA) is also demonstrated using several
hypothetic slopes. It is observed that the one-step model can result in
displacement hazard curves comparable with the two-step models.
Yet, the one-step model can greatly simplify the analytical procedure
and computational cost, and ismore suitable for large scale applications.

The spatial correlations for the residuals of the Newmark displace-
ment are also investigated using two earthquake events. As a general
recommendation, the correlation ranges obtained from the Northridge
and Chi-Chi events, namely, 8 km and 16 km, are suggested to represent
the spatial correlations of displacement residuals for heterogeneous and
homogeneous fields, respectively.
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