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Abstract Spatial correlations of ground-motion intensity measures (IMs) are es-
sential for seismic analysis of spatially distributed systems. In this paper, geostatistical
analysis is conducted to calculate the spatial correlations for cumulative absolute
velocity (CAV), Arias intensity (Ia), and spectral accelerations (SA) using a total num-
ber of more than 1500 earthquake records from nine recent earthquakes occurred in
Taiwan, California, and Japan. The results indicate that the spatial correlations for
these IMs are closely related to the regional site conditions, and they can be predicted
based on the spatial correlations of shear-wave velocity in the top 30 m (VS30). In
general, an IM recorded from a relatively homogeneous regional site condition tends
to have a larger spatial correlation range than that from a heterogeneous site condition.
Due to their intrinsic similarity to represent the integration of acceleration time his-
tories, CAV and Ia have similar spatial correlation coefficients. Besides, the range of
spatial correlation of SA generally increases as the spectral period increases. Simple
predictive equations are proposed in this study to quantify the spatial correlations of
CAV, Ia, and SA based on regional site conditions. Methods for data correction are also
proposed to eliminate artificial correlations due to biased distance scaling and VS30

estimation in the database. Finally, Monte Carlo method is used to generate spatially
distributed IMs. The results demonstrate that the annual frequency of exceedance
curves for spatially distributed IMs differ significantly if different ranges of spatial
correlations are used.

Introduction

Considering spatial distribution of ground-motion inten-
sity measures (IMs) is important in seismic-hazard analysis
of spatially distributed infrastructure systems such as long-
span bridges, lifelines, railways, or geohazards (Lee and
Kiremidjian, 2007). Traditional ground-motion prediction
equations (GMPEs) usually provide the statistical character-
istics of IMs at a particular location for a casual earthquake
event. However, the statistical characteristics of IMs at spa-
tially separated locations are often overlooked. In recent
years, spatial correlations of some important IMs, such as the
peak ground acceleration (PGA) and spectral acceleration
(SA), have been developed by several researchers (Boore
et al., 2003; Wang and Takada, 2005; Goda and Hong,
2008; Jayaram and Baker, 2009; Goda and Atkinson, 2010;
Sokolov et al., 2010, Esposito and Iervolino, 2011). The
influence of considering spatial correlation on developing
GMPEs for spectral accelerations is also studied (Jayaram
and Baker, 2010). To the best of the authors’ knowledge,
there is no spatial correlation study for cumulative absolute
velocity (CAV) available in the literature. The spatial corre-

lation of Arias intensity (Ia) was recently studied based on
ground-motion data from the Northridge and Chi-Chi earth-
quakes (Piggott and Stafford, 2012). However, the study con-
cluded that it is not executable to find a generic spatial
correlation model for Ia because the derived spatial correla-
tion coefficients differ significantly from event to event. This
study is aimed at developing predictive models for the spatial
correlation of these cumulative IMs and their relationship to
regional site conditions.

CAV has been found to be a good index that is well
correlated to structural damages (Electrical Power Research
Institute [EPRI], 1988). CAV is defined as the time integra-
tion of absolute acceleration as follows:

CAV �
Z

ttot

0

ja�t�jdt; (1)

where ja�t�j is the absolute value of the acceleration time
history, and ttot is the total duration of the ground motion
time history. Similar to CAV, Ia is the integration of the square
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of ground-motion acceleration time history over the total
duration, given by the following equation (Arias, 1970):

Ia � π
2g

Z
ttot

0

a�t�2dt; (2)

where g is the acceleration of gravity. By definition, CAVand
Ia share intrinsic similarity in that they both incorporate the
cumulative effect of an acceleration time history. Hence they
can capture multiple characteristics of ground motion,
including the amplitude, the frequency content, and duration
of the ground-motion time histories implicitly. Previous
researches indicate that these cumulative IMs, such as CAV
and its variants (e.g., CAV5 in Kramer and Mitchell, 2006) as
well as Ia, have improved efficiency in predicting soil lique-
faction and earthquake-induced landslides than the other IMs
related to the peak response of structures (e.g., SA; Kayen
and Mitchell, 1997; Liyanapathirana and Poulos, 2004;
Kramer and Mitchell, 2006; Jibson, 2007).

One of the major challenges in developing spatial cor-
relation models for IMs is the availability of well populated
strong-motion data. A couple of independent earthquakes
with densely populated recording stations are often used in
previous studies, such as the 1994 Northridge and 1999 Chi-
Chi earthquakes (e.g., Boore et al., 2003; Wang and Takada,
2005; Jayaram and Baker, 2009). Pooled data of multiple
earthquakes in some specific regions are also used (e.g.,
Goda and Hong, 2008; Goda and Atkinson, 2010; Sokolov
et al., 2010, Esposito and Iervolino, 2011). In this study,
more than 1500 recorded strong-motion data from nine
recent earthquakes occurred in Taiwan, Japan, and California
are systematically compiled to evaluate the spatial correla-
tions of various IMs. Geological information for each record-
ing station is also assembled. The abundance of new data
enables more robust estimation of spatial correlations, as
well as a better understanding of their relationships to differ-
ent regional site conditions. In the following sections, meth-
ods to estimate empirical spatial correlations are briefly
described. Spatial correlations of CAV, Ia, and SA are calcu-
lated for each earthquake event. Simple empirical equations
are provided to relate these spatial correlations to regional
site conditions, which is represented by the spatial correla-
tion of shear-wave velocity of soils in upper 30 m (VS30).
Correction methods are also proposed in this study to elimi-
nate artificial correlations due to biased distance scaling and
VS30 estimation in the database. Finally, an illustrative exam-
ple is provided to highlight the importance of spatial corre-
lations in estimating the annual frequency of exceedance
curves for spatially distributed IMs.

Spatial Correlation Model

GMPEs typically assume that IMs follow lognormal
distribution. The observed logarithmic IM, denoted as lnYij,
of a ground-motion record can be written as follows:

lnYij � lnYij�M;R; θ� � ηi � εij; (3)

where Yij is the ground-motion IM of the jth record of the ith
earthquake event, and lnYij�M;R; θ� is the predicted median
value of lnYij based on the magnitude (M), rupture distance
(R), and other parameters (θ) of this event. In this study,
several recently developed GMPEs are used to estimate the
predicted median values for CAV, Ia, and SA, respectively
(e.g., Campbell and Bozorgnia, 2008, 2010, 2012), although
the results are not particularly sensitive to the particular
GMPEs used in the analysis. ηi and εij represent the inter-
and intra-event residuals, respectively, which are both
assumed to be normally distributed independent random var-
iables with zero means and standard deviations of τ i and σij

(Brillinger and Preisler, 1984, 1985; Abrahamson and
Youngs, 1992; Joyner and Boore, 1993). The standard
deviation of the total residual term can be calculated by

σT �
�����������������
σ2
ij � τ 2i

q
. Then the observed logarithmic IM follows

lognormal distribution, denoted as lnYij � N�lnYij; σT�.
Accordingly, the normalized intra-event residuals can be
computed as

ε0ij �
εij
σij

≈ lnYij − lnYij�M;R; θ�
σij

; (4)

where ε0ij is the normalized residuals, and σij is the intra-
event standard deviation for site j which can be either esti-
mated from samples or obtained from GMPEs. Note that
equation (4) approximates the intra-event residuals using to-
tal residuals. Because the interevent residual is constant for
each site during one earthquake event, this approximation
does not affect the results of spatial correlation presented
below.

For a given earthquake event, the interevent residual ηi is
identical for all sites, but the value of εij varies from site to
site. Therefore, the total spatial correlation can be expressed
as (Park et al., 2007)

ρT�h� �
τ 2i � ρε�h� × σ2

ij

τ 2i � σ2
ij

; (5)

where ρε�h� � ρεi;j1;εi;j2�h� represents the empirical spatial
correlation obtained from normalized intra-event residuals
ε0ij, and it is a function of the separation distance h between
different sites. The values of and are usually provided by
GMPEs, and ρε�h� can be estimated using empirical semivar-
iogram that will be discussed in details in the following
session.

Estimation of Empirical Semivariogram

Semivariogram is a useful statistical tool widely used to
estimate the empirical spatial correlation of IMs. The semi-
variogram γ�h� measures the average dissimilarity between
data separated by a vector h (Goovaerts, 1997). Under the
assumptions that the spatial correlation is isotropic and
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second-order stationary, a scalar variable h � khk can be
used in the empirical semivariogram formulation:

γ�h� � 1

2
Var�zui�h − zui � � Var�z��1 − ρε�h��; (6)

where zui is a random distributed variable at position ui.
zui�h is a random variable at a position separated by distance
h from position ui (Cressie, 1993). In this paper, zui refers to
the normalized intra-event residual ε0ij. As an estimate of the
theoretical semivariogram equation (6), an empirical semi-
variogram can be calculated from a sample dataset using
estimators. For an earthquake event, all empirical data pairs
are grouped if the separation distance of the data pair falls
into a bin bounded by [h −Δh=2, h�Δh=2], where Δh is
the size of the bin. A classical estimator based on the method
of moments can be defined as

~γ�h� � 1

2jN�h�j
XN�h�

i�1

�zui�h − zui �2; (7)

where ~γ represents empirical semivariogram, and N�h� is the
number of data pairs within this distance bin, zui�h and zui
represents the ith data pair in this bin. Alternatively, a robust
estimator (Cressie and Hawkins, 1980) is less sensitive to
data outliers, and it is defined as

~γ�h� �

�
1

N�h�
PN�h�

i�1 jzui�h − zui j0:5
�
4

0:914� 0:988=N�h� : (8)

An example of the empirical semivariogram for the normal-
ized intra-event CAV residuals for the Chi-Chi earthquake is
demonstrated in Figure 1. Both classical and robust estima-
tors yield similar empirical semivariograms. To get consis-
tent results, the robust estimator is chosen throughout the

study. As a suitable size of distance bin is also essential for
the empirical estimation, some rules are applied. It has been
proposed that size of the bin shall be no larger than a half
of the maximum separation distance between data pairs,
and each bin shall contain at least 30 pairs of data (Journel,
1978).

Parametric Function

A parametric function is useful to represent the empirical
semivariogram. Three basic second-order stationary and
isotropic models can be considered, namely, Gaussian,
spherical, and exponential models (Goovaerts, 1997). Be-
cause the exponential model has distinct advantage of sim-
plicity, it is adopted in this study. The exponential model
approximates the empirical semivariogram using the follow-
ing functional form:

~γ�h� � a�1 − exp�−3h=b��; (9)

where a is the sill of the semivariogram and also the popula-
tion variance of empirical data, b is the range of the semivario-
gram, defined as the separation distance h at which ~γ�h�
equals 95% of the sill. In another word, the range b is the sep-
aration distance where 95% of the correlation vanishes. For
illustration, the sill and the range are marked in Figure 1. It
is worth pointing out that intra-event standard deviation
[Var�z�] only affects the estimate of sill a, and it will not affect
thevalue of rangeb if the function formof equation (9) is used.
By normalization process, ε0ij follows a normal standard dis-
tribution. Therefore, the sill should be equal to 1.Accordingly,
the relationship between the spatial correlation and semivario-
gram can be simplified via equations (6) and (9) as

ρε�h� � exp�−3h=b�: (10)

Therefore, range b is the only unknown parameter to quantify
the spatial correlation. Several approaches have been pro-
posed in previous studies to fit the empirical data using the
exponential model, such as the weighted-least-square method
and the manual fitting method (Jayaram and Baker, 2009).
Although the manual fitting method is relatively subjective,
it has greater flexibility to better fit the empirical data. There-
fore, it is employed in this study.

Spatial Correlations for CAV, Ia, and SA

Strong-Motion Database

A total of 1588 ground-motion recordings from nine
earthquakes are compiled to develop the spatial correlation
models for CAV, Ia, and SA. These earthquakes occurred in
California (1994 Northridge earthquake, 2004 Parkfield
earthquake, 2005 Anza earthquake, 2007 Alum Rock earth-
quake, and 2008 Chino Hills earthquake), in Japan (2000
Tottori earthquake, 2004 Niigata earthquake, and 2007
Chuetsu earthquake), and in the Taiwan region (1999 Chi-Chi

Figure 1. Example of empirical semivariogram of normalized
intra-event CAV residuals for the Chi-Chi earthquake using classical
and robust estimators. The color version of this figure is available
only in the electronic edition.
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earthquake). The recorded time histories for these events are
obtained from CESMD, COSMOS for U.S. earthquakes, and
K-NET for Japan earthquakes. The seismic information and
site conditions are obtained from the Pacific Earthquake
Engineering Research–Next Generation Attenuation (PEER–
NGA) database and the table S1 database provided by Kakla-
manos and Baise (2011). The VS30 data for recording stations
for the Chi-Chi earthquake is updated according to the Taiwan
Strong-Motion Instrumentation Program (TSMIP; Kuo et al.,
2012). The detailed information of the earthquakes is summa-
rized in Table 1. The moment magnitude and rupture distance
distribution of the data in the database is illustrated in Figure 2.

Following the procedures illustrated in the previous sec-
tion, the normalized intra-event residuals of recorded ground
motions from each event are computed and used to derive the
empirical semivariograms for CAV, Ia, and SA, respectively.
As will be discussed in details in later sections, the spatial
correlations of these IMs are observed to be dependent on
regional site conditions. The shear-wave velocity in the top
30 m (VS30) at the record station is chosen as an index of the
local site condition. Accordingly, the spatial correlation of

VS30 among the recording stations for each event is quanti-
fied and used as an index to represent the characteristics of
site conditions for that region.

Spatial Correlations of CAV and Ia

Before proceeding, the distribution of the residuals of
IMs is examined against the rupture distance as well as the
VS30 data to check whether the data exhibits significant
biases. Figures 3 and 4 plot the distribution of the residuals
against rupture distances and VS30 values for nine earthquake
events, together with their linear trend lines, respectively.
It is noted that GMPEs used in this study (e.g., Campbell
and Bozorgnia, 2008, 2010, 2012) are developed from the
PEER-NGA database. Therefore, it is not unexpected to
observe significant biases in distance scaling for events out
of the NGA database (e.g., all events except for the Chi-Chi
and Northridge earthquakes). These residual terms, if used
without correction, would result in artificial spatial correla-
tion due to systematical predictive biases in the distance
scaling (Piggott and Stafford, 2012) or in the local site con-
dition represented by VS30 (Sokolov et al., 2010). On the
other hand, the residual terms of events in the PEER-NGA
database, such as the Chi-Chi and Northridge earthquakes,
exhibit no obvious bias. It is also noted that presently no pre-
dictive equation for CAV and Ia is available to incorporate
these events out of the NGA database. Therefore, in order to
reduce artificial correlations, a distance term and a VS30 term
are added to correct the residuals for each event as follows:

εcorr � lnYij − lnYij�M;R; θ�
− �φ1 � φ2 ln�Rij� � φ3 ln�Vs30��; (11)

where Rij is the rupture distance of the jth recording and ith
event, and φ1, φ2, and φ3 are the coefficients obtained by
linear regression. The corrected residuals show no significant
bias against rupture distances and VS30 values for all events.

The second step is to calculate the normalized intra-event
residuals. Because only two earthquakes (the Northridge and
Chi-Chi earthquakes) are selected as part of the PEER-NGA
database to develop GMPEs, it is not surprising that other

Figure 2. Magnitude and rupture distance distribution of re-
cords in the database. The color version of this figure is available
only in the electronic edition.

Table 1
Earthquake Events Used in This Study

Earthquake Name
Date

(yyyy/mm/dd)
Moment
Magnitude

Hypocenter
Latitude (°)

Hypocenter
Longitude (°) Fault Mechanism

Number of
Recordings

Chi-Chi 1999/09/20 7.62 23.860 120.800 Reverse-oblique 381
Northridge 1994/01/17 6.69 34.206 −118.554 Reverse 149
Parkfield 2004/09/28 6 35.817 −120.365 Strike-slip 89
Anza 2005/06/12 5.2 35.533 −116.578 Reverse-oblique 111
Alum Rock 2007/10/30 5.4 37.432 −121.776 Strike-slip 161
Chino Hills 2008/07/29 5.4 33.955 −117.765 Reverse-oblique 337
Tottori 2000/10/06 6.61 35.275 133.350 Strike-slip 112
Niigata 2004/10/23 6.63 37.307 138.839 Reverse 134
Chuetsu 2007/07/16 6.8 37.538 138.617 Reverse 114

Only recorded data within rupture distance of 120 km is included for Japan earthquakes.
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Figure 3. Distributions of residuals versus rupture distance (km) for nine earthquakes. The color version of this figure is available only in
the electronic edition.

Figure 4. Distributions of residuals versus VS30 (m=s) for nine earthquakes. The color version of this figure is available only in the
electronic edition.
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events’ sample variations are somewhat different from these
provided by GMPEs. In this study, the event-specific sample
variances are used instead of these provided by GMPEs. Based
on the total number of sites and their separation distances, the
size of distance bins varies from 2 to 6 km for different events
to ensure at least 30 pairs of data in each bin.

The empirical semivariograms and the manually fitted
parametric functions for CAV and Ia are shown in Figure 5.
All fitting curves perform reasonably well at the short distance
range, which is the most concerned and important region. The
computed values of range b are compiled in Table 2. The con-
siderable difference in range b implies that the spatial effects
of IMs may be influenced by other factors, such as the char-
acteristics of regional site conditions.

Spatial Correlations of VS30

The effects of the regional geology conditions on the
spatial IM correlation have been observed (e.g., Jayaram
and Baker, 2009) due to the fact that the travel path and fre-
quency contents of earthquake waves are strongly dependent
on the regional geological conditions. For this purpose, the
VS30 values are normalized using the mean and standard
deviation of VS30 values at all sites of the event. The normal-
ized VS30 values have a zero mean and a unit variance to
enable direct comparison of the semivariograms. The corre-

lation range of the normalized VS30 values can be used to
represent the homogeneity of the regional geological condi-
tions, as a larger correlation range of the VS30 implies a more
uniform geological condition.

However, most VS30 values in the strong-motion data-
base are not directly measured but inferred from other geo-
logical information. In this situation, a constant VS30 value
is often assigned to sites that are identified as being in the
same site category. The inference results in reduced variabil-
ity of the VS30 distribution compared with the variability of

Figure 5. Experimental semivariograms for intra-event CAV and Ia residuals. The color version of this figure is available only in the
electronic edition.

Table 2
Values of Correlation Range b (km) for CAV, Ia, PGA,

and VS30

Earthquake CAV Ia PGA Original VS30

Redistributed
VS30

Chi-Chi 23.9 37.5 42.5 27 26
Northridge 12.6 7.6 7.9 0 0
Parkfield 8.6 8.2 6.4 3.2 3.5
Anza 37.7 35.4 40.2 31.2 20.26
Alum Rock 27.0 30.1 23.5 17.1 14.2
Chino Hills 22.6 16.8 17.5 33 14.5
Tottori 16.2 16.5 20.4 19.1 18.75
Niigata 36.2 34.8 54 26 21.8
Chuetsu 21.0 19.0 25 27 20.8
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measured data for some regions. These inferred VS30 values
tend to imply a more uniform geological condition than the
actual case, and consequently, an artificially increased spatial
correlation range of VS30 (Baker and Miller, 2011). Table 3
lists the number of inferred and measured VS30 values for all
events. Even for well-recorded events such as the Northridge
earthquake, the number of measured VS30 values is less than
40% of the total data. In addition, only approximately 5%
of measured VS30 values are available for the Anza and
Chino Hills earthquakes. Figure 6a,c displays the distribution
of original VS30 values against the rupture distance for the
Chino Hills and Anza earthquakes, where a large number of
identical VS30 values are inferred. As is explained previously,

the situation could greatly increase the range of spatial cor-
relation for VS30.

A simple correction method is implemented to reduce
the fake spatial correlations of VS30. First, all VS30 data are
randomly redistributed around its value using Monte Carlo
method by assuming VS30 follows a lognormal distribution
with a specific standard deviation. The standard deviation of
lnVS30 is assumed to be 0.1 for measured data and 0.3 for
inferred data, as was provided by Chiou et al. (2008). It is
worth pointing out that the random redistribution does not
consider spatial correlation of VS30 residuals (i.e., the differ-
ence between the redistributed value and the original value).
They are independent even for neighboring sites. In reality,
the residuals may also be spatially correlated. However, the
uncertainty associated with the VS30 is mainly due to meas-
urement errors, human errors, errors associated with the
inference of VS30 from geological conditions and estimated
site categories, and so on. Presently, there is no systematic
approach to quantify the spatial correlation of this uncer-
tainty. Our preliminary study also reveals that the spatial cor-
relation of VS30 residuals is usually much smaller than that of
the normalized VS30 values, and they would not significantly
affect the latter. Figure 6b,d displays one realization of the
randomly redistributed VS30 values for each event. Second,
the Monte Carlo simulations are repeated for two thousand
times. For each realization, the value of correlation range b of
the normalized VS30 is obtained. Finally, the mean value of

Table 3
Numbers of Measured and Inferred VS30 in Database

Earthquake
Name

Number of
Recordings

Number of
Measured

VS30

Number of
Inferred
VS30

Percentage of
Measured

Data

Chi-Chi 381 256 125 67.2%
Northridge 149 50 99 33.6%
Parkfield 89 12 77 13.5%
Anza 111 7 104 6.3%
Alum Rock 161 17 144 10.6%
Chino Hills 337 16 321 4.8%
Tottori 112 35 77 31.3%
Niigata 134 19 115 14.2%
Chuetsu 114 18 96 15.8%

Figure 6. Original and redistributed VS30 values versus rupture distances for (a,b) the Chino Hills earthquake, and (c,d) the Anza earth-
quake. The color version of this figure is available only in the electronic edition.
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these computed b values are chosen as the corrected range of
(normalized) VS30. After this correction, the correlation
ranges of VS30 for some events are greatly reduced as ex-
pected. For instance, the VS30 range for the Chino Hills event
is reduced from 33 to 14.7 km after correction. The corrected
VS30 ranges for nine aforementioned earthquake events are
also listed in Table 2.

Predictive Models Based on Regional Site Condition

In this subsection, relationships between the ranges of
IMs (CAV, Ia, and PGA) with that of VS30 values are exam-
ined. The GMPE (Campbell and Bozorgnia, 2008) is used to
compute the ranges of PGA as well as SA (T). As is shown in
Figure 7, the ranges of IMs are in general positively corre-
lated with the range of VS30. That is, the correlation range of
an IM increases if the range of VS30 values increases. For
practical purpose, three simple fitting functions are provided
as follows:

CAV : bCAV � 10:9�0:8bvs �σ� 7:7 km;R2 � 0:46�
(12)

Ia : bIa � 5:8� 1:1bvs �σ � 7:4 km; R2 � 0:65�
(13)

PGA : bPGA � 7:45exp�0:07bvs� �σ� 9:2 km;R2 � 0:72�;
(14)

where bvs, bCAV, bIa, bPGA represent the correlation range (in
km) related to the normalized VS30 and the normalized IM

(CAV, Ia, PGA) residuals, respectively. As is shown in
Figure 7, the predictive model shows reasonably good agree-
ment with the empirical data. The standard deviations σ
for the predicted models are also provided in equations (12)–
(14) to quantify the uncertainty associated with the estima-
tion. R2 indicates the proportion of data variability that can
be explained by the proposed model. It is observed that the
ranges of spatial correlations for CAV, Ia, and PGA are similar
if the range of VS30 is smaller than 15 km (the site condition
is relatively heterogeneous), whereas the difference becomes
more pronounced when the range of VS30 increases (the site
condition is more homogeneous). For a relatively homo-
geneous geological condition (the range of VS30 larger than
15 km), PGA appears to have a stronger spatial correlation
(i.e., a larger correlation range) than CAV and Ia. In mean-
while, Ia have a slightly larger correlation range than that of
CAV, probably due to its stronger correlation with PGA. For
example, if the range of the normalized VS30 is 20 km, the
predicted range for CAV, Ia, and PGA are 26.9, 27.8, and
30.2 km, respectively.

The spatial correlations of spectral accelerations at a
spectral period T [termed as SA (T)] are also studied. Figure 8
shows the distribution of the ranges of SA (T) versus these of
VS30 for spectral periods equal 0.5, 1, 2, and 5 s, respectively.
Again, a linear regression can be used to reasonably approxi-
mate the relationship between two ranges, expressed as

bSa�T� � c1 � c2 · bvs; (15)

where c1 and c2 are regression coefficients listed in
Table 4. At the spectral period of 10 s, a constant value

Figure 7. Ranges of CAV, Ia, and PGAversus ranges of normalized VS30 values for nine events. The color version of this figure is available
only in the electronic edition.

1124 W. Du and G. Wang



bSa�T�10 s� � 60 km can be assigned to all cases. Linear in-
terpolation between these bSa�T� values can be employed for
periods other than 0, 0.5, 1, 2, 5, or 10 s. The results indicate
that, as the spectral period T increases, the influence of the
regional site condition (represented by the range of VS30 val-
ues) on the spatial ranges of spectral accelerations becomes
weaker. The observation is consistent with the results by
other scholars (e.g., Jayaram and Baker, 2009). This is not
unexpected because the high-frequency component of the
earthquake waves is sensitive to the heterogeneities of the
regional site conditions during wave propagation. However,
the long-period component of the earthquake waves is less
affected by the regional site condition, especially for the
spectral accelerations at periods longer than 2 s.

Comparisons and Discussions

In previous sections, particular GMPEs are chosen to
compute the correlation range of the IMs, so the results might
be influenced by the choice of GMPEs. In this study, other
GMPEs available in literature are also used to compute the

empirical semivariograms. For Ia, the GMPE by Travasarou
and Bray (2003; termed as TB03) and Piggott and Stafford
(2012; termed as PS12) are chosen and compared with
Campbell and Bozorgnia (2012; termed as CB12). For spec-
tral accelerations, three other NGA GMPEs by Boore and At-
kinson (2008; termed as BA08), Chiou and Youngs (2008;
termed as CY08), and Abrahamson and Silva (2008; termed
as AS08) are used and compared with Campbell and Bozorg-
nia (2008; termed as CB08). Figure 9 shows the obtained
empirical semivariograms computed by these GMPEs for the
Chi-Chi earthquake for Ia and PGA, respectively. Although
not presented here, the results from an alternative GMPE for
CAV (Du and Wang, 2012) are also compared with that from
Campbell and Bozorgnia (2010) model. In general, very sim-
ilar results can be derived by using different GMPEs, indicat-
ing that obtained spatial correlations are not dependent on
specific GMPEs.

Compared with a previous study (Piggott and Stafford,
2012) on the spatial correlation for Ia using only the Chi-Chi
and Northridge earthquakes, the present study shows com-
parable results. For instance, the reported correlation range

Figure 8. Ranges of spectral accelerations at T � 0:5, 1, 2, and 5 s versus the range of normalized VS30 values for nine events. The color
version of this figure is available only in the electronic edition.

Table 4
Model Coefficients of Predictive Equation for the Correlation Range of SA (T)

Model
Coefficients SA (T � 0:2 s) SA (T � 0:5 s) SA (T � 1 s) SA (T � 2 s) SA (T � 5 s)

c1 4.4 8.5 22.8 32.3 41.4
c2 1.1 1.1 0.8 0.5 0.4
σ 8 5.3 11.8 14.1 12.6
R2 0.63 0.79 0.29 0.11 0.08
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for the Chi-Chi earthquake is about 31 km in Piggott and
Stafford (2012) compared with 38 km obtained in this study.
The difference can be attributed to the epistemic uncertainty
by using different GMPEs and fitting technique, and it is
insignificant for application. There is no published result
for spatial correlation of CAV available in the literature for
comparison.

Furthermore, the spatial correlations of spectral acceler-
ations are compared with a previous study. Figure 10a plots
the range of empirical semivariograms versus periods for
nine events, and Figure 10b plots the predicted values of cor-
relation ranges computed by equation (13) versus periods,
assuming bvs is 1, 10, and 20 km, respectively. In compari-
son, the correlation ranges of SA (T) are specified as a func-
tion of the spectral periods T in Jayaram and Baker (2009):

bSa�T� � 8:5� 17:2T; if T < 1 s

and homogeneous site conditions;

bSa�T� � 40:7 − 15T; if T < 1 s

and heterogeneous site conditions:

bSa�T� � 22� 3:7T; if T > 1 s

and applicable for all site conditions: (16)

Their results (termed as JB09) are compared with the present
study in Figure 10b. Similar trend can be observed for two
models, except that the present study gives a slightly larger
range compared with JB09’s model at periods greater than
2 s. The discrepancy may be due to different databases used
in each study: this study included an addition of three recent
earthquakes that occurred in Japan, and they were not con-
sidered in the previous study (Jayaram and Baker, 2009).

Finally, an illustrative example is provided to highlight
the importance of the spatial correlation of IMs in seismic-
hazard analysis. Considering a hypothetical region 40 km ×
40 km in size located near a point source at the origin, the
area is divided into cells of 1 km × 1 km in size. Assuming
that the style of faulting is a reverse fault, and the regional
average site conditions are deep soils (the averaged VS30 �
240 m=s). For illustration purposes, a scenario earthquake
with moment magnitude of 7 and corresponding annual rate
of exceedance λM � 1=500 alone is considered, for which
the predicted median and the standard deviation of Ia values
can be obtained by GMPEs (i.e., Campbell and Bozorgnia,
2012) at each site location. Based on equation (13), the
correlation range of the intra-event residuals for Ia can be
calculated given a certain range of VS30. Copula functions
(Nelson, 2006) are used to generate the intra-event residuals,

Figure 9. Empirical semivariograms computed by various GMPEs for the Chi-Chi earthquake for Ia and PGA, respectively. The color
version of this figure is available only in the electronic edition.

Figure 10. (a) Ranges of spectral accelerations versus periods for nine events; (b) comparison of predicted ranges by assuming varying
bvs values with results from JB09 (Jayaram and Baker, 2009). The color version of this figure is available only in the electronic edition.
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which are normally distributed with a zero mean and a stan-
dard deviation specified by GMPEs at each site, whereas at
the same time, they are spatially correlated according to the
given spatial correlation. Detailed procedures can be found in
the references (e.g., Johnson, 1987; Sokolov and Wenzel,
2011a). Two Monte Carlo realizations of Ia values (in natural
log scale) are shown in Figure 11 by assuming the correlation
ranges of 10 and 40 km, respectively. As is expected, a large
correlation range corresponds to a more uniform spatial dis-
tribution of Ia, as shown in Figure 11b.

The Monte Carlo method is applied to generate 10,000
realizations of spatially correlated Ia values over the region.
Given a specified value of Ia (denoted as Ia�) and its exceed-
ance area ratioAR� (defined as ratio of the areas for which the
Ia values exceed the specified Ia� value against the total area
of the region), the annual rate of exceedance can be com-
puted from the Monte Carlo realizations as

λ � λM · P�Ia > Ia� & AR > AR��: (17)

Several special cases are considered for comparison by as-
suming that the intra-event residuals of Ia are independently
distributed without spatial correlation (correlation range is
zero), or spatially correlated with the correlation range of 10
and 40 km, respectively; or perfectly correlated (correlation

range is infinite such that the residuals are identical over the
region). Figure 12 shows the annual exceedance curve for Ia
with the exceedance area AR� of 5% and 25%, respectively.
The results imply that, considering spatial effect does not
always increase the designed IM value, which actually de-
pends on the specific seismic-hazard level as well as the ex-
ceeded ratio being considered. For example, given an annual
rate of exceedance as 10−4, the predicted Ia values for 25%
area of exceedance is 1:06 m=s for an uncorrelated distribu-
tion, and 1:45 m=s for a correlated distribution with a range
of 40 km. It is obvious that the hazard level will be under-
estimated if no spatial correlation is considered in this case.
However, if a relative low seismic-hazard level (an annual
rate of exceedance value of 10−3) is considered, the predicted
Ia values for 25% area of exceedance for uncorrelated dis-
tribution and correlated distribution with a range of 40 km
will be 0:65 m=s and 0:6 m=s, respectively. Hence, the haz-
ard is slightly overestimated for the case of uncorrelated
spatial distribution. Nevertheless, the spatial correlation does
increase the probability of rare occurrence, especially when
the mean annual rate of exceedance is smaller than 10−4 in
this case study. The results corroborate some recent studies,
for example, Esposito and Iervolino (2011). These annual
curves can be further used for the damage and loss estimation

Figure 11. Examples of realized spatially correlated field of Ia (in natural log scale, unit of m=s). (a) correlation range 10 km, and
(b) correlation range 40 km. The color version of this figure is available only in the electronic edition.

Figure 12. Annual exceedance hazard curves for Ia considering different spatial correlations for (a) exceedance area ratioAR� as 5%, and
(b) AR� as 25%. The color version of this figure is available only in the electronic edition.
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of spatially distributed infrastructure, such as Sokolov and
Wenzel (2011b).

Conclusions

In this study, the spatial correlations of CAV, Ia, and SA
are obtained by semi-empirical estimation using a compre-
hensive database containing more than 1500 recorded
ground motions from nine recent earthquakes. The correla-
tion range of normalized VS30 values among the sites has
been found to be a good indicator to represent the homo-
geneity of the regional site conditions, and it is closely re-
lated to the correlation ranges of IMs. In general, an IM
recorded from a more homogenous regional site condition
tend to have a larger spatial correlation range than that from
a heterogeneous site condition. In addition, the range of spa-
tial correlation of SA generally increases as the spectral
period increases. Methods for data correction are proposed
to reduce the artificial correlation arising from biased dis-
tance scaling of the GMPEs and the estimation of VS30 values.

Simple predictive equations are proposed in this study to
quantify the spatial correlations of CAV, Ia, and SA based on
regional site conditions. The model can be easily used in
seismic-hazard analysis or lose estimate by generating spa-
tially distributed IMs following the specified range of corre-
lation. An illustrative example is provided to highlight the
importance of the spatial correlation.

Data and Resources

Strong-motion data used in this study are obtained
from resources in the public domain, including CESMD
strong-motion database (http://strongmotioncenter.org/, last
accessed September 2011), COSMOS strong-motion data-
base (http://www.cosmos-eq.org/, last accessed September
2011), K-NET strong-motion database (http://www.k-net
.bosai.go.jp/, last accessed September 2011), and PEER-
NGA database (http://peer.berkeley.edu/nga/, last accessed
September 2011). VS30 values for Taiwan sites are obtained
fromTaiwan Strong-Motion Instrumentation Program (TSMIP;
http://egdt.ncree.org.tw/, last accessed August 2012).
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