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A B S T R A C T

In this study we quantitatively examined how the variabilities of slope property parameters influence the seismic
slope displacement predictions based on two commonly used methods, namely the Newmark's rigid-block and
the fully coupled deformable methods. A suite of 20 acceleration time-series were selected as input motions, and
Monte Carlo simulations were performed to account for the influence of slope parameter variabilities. The results
show that, for both Newmark's and fully coupled analyses, modeling the variability of the effective friction
angle ϕ' significantly increases the geometric mean D and standard deviation σlnD of the resultant displace-
ments, while modeling the variability of the other slope parameters (i.e., soil cohesion c', thickness, and water
table level) results in a similar estimate of D and a slight increase of σlnD. The other sources of uncertainty exist
in fully coupled analysis are the characterizations of the average shear wave velocity Vs, and the nonlinear soil
properties. Modeling the variability in nonlinear soil properties yields a reduced D estimate, and modeling the
Vs variability causes a slight reduction of D . Also, incorporating the variability of slope property parameters in
fully coupled analysis consistently increases σlnD, in which the variation of ϕ' plays the predominant effect. This
study thoroughly quantified the influence of slope property variabilities on the computed displacements, which
could help engineers in addressing the uncertainty issue in seismic slope displacement analysis.

1. Introduction

Permanent sliding displacement analysis is commonly used in as-
sessing the seismic stability of natural slopes and earth structures. The
predicted displacement, regarded as a quantitative index of seismic
slope performance, has been widely used in various applications, such
as the calibration of inventories of landslides triggered during previous
earthquakes (e.g., Jibson et al., 2000), the identification of potential
landslide zones (e.g., Jibson and Michael, 2009; Chousianitis et al.,
2016; Sharifi-Mood et al., 2017), and probabilistic seismic displacement
hazard analysis (e.g., Rathje and Saygili, 2008; Du and Wang, 2014;
Rathje et al., 2014).

Newmark (1965) first developed a simplified method for slope
displacement analysis. A rigid block is placed on an infinite plane; the
block initiates to slide once the shaking acceleration exceeds a yield
acceleration ky, and it continues to move until the relative velocity
becomes zero. The permanent displacement (termed as D hereafter) is
calculated by integrating the episodes of an acceleration time history
that exceed ky to obtain a velocity time history, and then integrating the
resultant velocity time history to obtain the cumulative displacement.

The yield acceleration ky is usually determined by solving the static
limit-equilibrium equation. Many empirical models have been devel-
oped after Newmark's pioneering work (e.g., Jibson, 2007; Saygili and
Rathje, 2008; Du and Wang, 2016). Since the Newmark's rigid-block
model ignores the internal deformation of a sliding mass, it is most
suitable for natural landslides in stiff materials (Jibson, 2011).

Flexible sliding masses generally deform internally when subjected
to seismic shakings, and therefore the rigid-block assumption is not
applicable. The illustration of the rigid and flexible sliding mass cases is
shown in Fig. 1. For flexible/deformable sliding masses, the dynamic
response of the system during seismic shaking must be accounted for
appropriately. Some improved analyses including so-called decoupled
and fully coupled approaches have been conducted to date (e.g.,
Makdisi and Seed, 1978; Rathje and Bray, 2000; Rathje and Antonakos,
2011). Specifically, the nonlinear fully coupled stick-slip deformable
sliding mass model proposed by Rathje and Bray (2000) has received
increasing attention recently, since it considers the deformability of the
sliding mass and its periodic sliding episodes simultaneously. Bray and
Travasarou (2007) reported that the fully coupled analysis could, in
general, result in a reasonable estimate for the seismic performance of
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case histories. Some predictive models have also been developed based
on the fully coupled analysis (e.g., Bray and Travasarou, 2007; Du et al.,
2018b).

There are several major sources of uncertainty in conducting the
earthquake-induced sliding displacement analysis: (1), characterization
of ky representing the slope strength; (2) specification of ground motion
intensities; and (3) characterization of a slope's initial fundamental
period (Ts) and nonlinear soil properties (for flexible sliding masses
only). Among these sources of uncertainty, the specification of ground
motions can be well quantified by selecting a suite of input motions that
properly fit a specified target response spectrum, or by conducting the
fully probabilistic displacement hazard analysis (Rathje and Saygili,
2008). Yet, the influence of the other sources of uncertainty on slope
displacement remains an unclear issue. Rathje and Saygili (2009) pre-
sented a probabilistic framework to quantify the uncertainty in the
evaluation of sliding displacement of natural slopes. Wasowski et al.
(2011) concluded that the accurate assessment of slope strength para-
meters plays a key role in yielding more reliable regional landslide
hazard maps. Strenk and Wartman (2011) qualitatively classified the
uncertainty of slope displacement predictions by considering the var-
iation of input ground motions and slope parameters. Dreyfus et al.
(2013) stated that the accurate prediction of landslide occurrence de-
pends mostly on the shear strength assigned, and Wang and Rathje
(2015) proposed a probabilistic logic-tree framework to quantify the
uncertainty of slope parameters in regional landslide hazard analysis.
The model uncertainty and variability in Newmark displacement ana-
lysis have also been studied recently (Du et al., 2018a). Most of the
existing studies focused on the predictive uncertainty in the Newmark's
rigid-block analysis, whereas such uncertainty in the fully coupled
analysis for flexible sliding masses has not been well studied.

This paper aims at quantitatively studying the influence of slope
property variabilities on the calculated slope displacement in the
Newmark's rigid-block and fully coupled analyses. The major sources of
uncertainty in the Newmark and fully coupled analyses are first iden-
tified. A suite of ground-motion recordings are then selected from the
NGA-West2 database as input motions. The variations of the slope
property parameters (e.g., soil strength, water table level, nonlinear soil
properties) are addressed by Monte Carlo simulations, and the effect of
such variations on the displacement predictions for rigid and flexible
slopes is comprehensively investigated. This study quantitatively ex-
plores how the slope property variabilities influence the means and

standard deviations of the computed displacements, and how to ap-
propriately model such variabilities in practical applications.

2. Sources of uncertainty in sliding displacement analyses

2.1. Newmark's rigid-block model

As mentioned above, the Newmark's rigid-block model is most sui-
table for regional landslide hazard assessment. Since the dynamic de-
formation of a sliding mass is ignored in this model, the only source of
slope property uncertainty exists in the characterization of ky. The
parameter ky (in unit of g) can be expressed as a function of the static
factor of safety (FS) and the slope's geometrical angle α:

= −k α(FS 1) siny (1)

For the infinite slope case with a planar failure surface (Fig. 2), FS
can be estimated as (Jibson et al., 2000):
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where α denotes the slope angle of the sliding surface; c' and ϕ' are the
effective cohesion and internal friction angle, respectively; γ and γw
denote the unit weights of soil and water, respectively; t denotes the
thickness normal to the failure surface; and m is the ratio of t that is
below the groundwater level.

Therefore, as listed in Eqs. (1) and (2), ky can be fully characterized
based on the specification of slope parameters c', ϕ', t, m, α, and γ. For
regional landslide hazard analysis, the slope angle information is
usually derived from a high-resolution Digital Elevation Model (DEM)
(e.g., Jibson and Michael, 2009; Wasowski and Bovenga, 2014), so the
variability of α can be well constrained. The unit weight γ and shear
strength parameters (c' and ϕ') are generally assigned based on the
geologic unit classified, while the other parameters (t, m) are usually
assigned as constant over a study area. Thus, the major sources of un-
certainty in characterizing ky are c', ϕ', t, and m. Note that the unit
weight of soil γ is taken as a deterministic variable in this study, since
its variability is found to be relatively small (Duncan, 2000).

2.2. Fully coupled model

In the fully coupled deformable model, the sliding mass is simplified
as a generalized single-degree-of-freedom system governed by its first
modal shape of vibration, and the nonlinear soil properties are usually
modeled based on an equivalent-linear approach. Permanent displace-
ment occurs when the seismic acceleration exceeds ky. Pseudostatic
slope stability analysis can be iteratively conducted using different
horizontal seismic coefficients, and ky equals the seismic coefficient
that results in a FS=1. In this study, the limit-equilibrium software
SLIDE (Rocscience, 2010) is used for computing ky, and the effect of the
variability of slope parameters (c', ϕ', and water table level zw) on ky is
investigated.

In addition to ky, the characterization of the slope's fundamental
period Ts is another source of uncertainty in the fully coupled analysis.
Ts can be normally estimated as: Ts= 4H/Vs, where H and Vs are the
average height and the average shear wave velocity of a sliding mass,
respectively. The uncertainty of H is relatively small in applications.

Fig. 1. Demonstration of (a) rigid, shallow sliding mass, and
(b) flexible, deep sliding mass.

Fig. 2. Illustration of the infinite slope case with a planar failure surface.
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Yet, many studies have reported the measurement uncertainty of Vs

(Moss, 2008; Wair and DeJong, 2012). The coefficient of variation
(COV) of the measured Vs uncertainty ranges from 1% to 35% de-
pending on the different measurement techniques employed (Moss,
2008). Consequently, Vs is the major source of uncertainty in calcu-
lating Ts. The influence of the Vs profile uncertainty on other applica-
tions such as site response analysis has been studied recently (Rathje
et al., 2010).

Nonlinear soil properties are commonly modeled as strain-depen-
dent shear modulus reduction (G/Gmax where Gmax is the maximum
shear modulus) and material damping ratio (Dr) curves. Darendeli
(2001) proposed comprehensive empirical models for G/Gmax and Dr, in
which both variables are modeled as a normal distribution. The mean
G/Gmax and Dr curves are calculated based on input parameters such as
plasticity index PI, overconsolidation ratio OCR, loading frequency, and
mean confining pressure. The standard deviation of the normalized
modulus reduction (σNG) for clays can be estimated as (Darendeli,
2001):

= + − −σ G G0.015 0.164 0.25 ( / 0.5)NG max
2 (3)

The standard deviation of the damping ratio (σDr
) for clays is given

as (Darendeli, 2001):

= +σ D0.0067 0.779D rr (4)

where σDr
and Dr are in percentile form (i.e., σDr

=3.5% for Dr as 20%).
The statistical distributions of the modulus reduction and damping ratio
curves for clays with PI= 30 are illustrated in Fig. 3.

In addition to Eqs. (3) and (4), the correlation between G/Gmax and
Dr (termed as ρDr

, NG hereafter) is another key requirement to construct
the joint distribution of the simulated G/Gmax and Dr curves. Such
correlation is negative in nature.

Therefore, there are three main sources of uncertainty in the fully
coupled analysis: (i), variation of slope parameters in characterizing ky;
(ii), variability of Vs in determining Ts; and (iii), variability of the G/
Gmax and Dr curves in modeling the nonlinear soil property.

3. Selection of input ground motions

A suite of well-processed ground-motion recordings are needed for
sliding displacement analysis. In this study, a set of acceleration time-
series are selected from the Pacific Earthquake Engineering Research
Center's NGA-West2 database (Ancheta et al., 2014). Subsets of the
database have been recently used for developing ground motion pre-
diction equations for various intensity measures (e.g., Campbell and
Bozorgnia, 2014; Du and Wang, 2017).

Numerous methods have been developed in selecting ground mo-
tions for dynamic time-history analysis. Some advanced methods are
conducted to select ground motions that have response spectra
matching a specified target distribution of response spectrum (e.g.,
Baker, 2011; Wang, 2011). In this effort, an earthquake scenario with

moment magnitude (Mw) 7.5 on a strike-slip fault is considered. The
rupture distance of a slope site considered is 5 km, and the time-aver-
aged shear wave velocity in the upper 30m for this site is assumed as
300m/s. The ground motion prediction equation proposed by Campbell
and Bozorgnia (2014) is adopted for predicting the target distribution
of spectral accelerations.

The ground motion selection approach proposed by Wang (2011)
was used herein; 20 acceleration time-series were scaled and selected to
properly match the mean and variance of the target spectrum. The re-
sponse spectra of the selected ground motions are shown in Fig. 4, from
which it can be seen that the selected ground motions properly re-
present the distribution of the target spectrum. The detailed informa-
tion of these ground motions, as well as scaling factors, is summarized
in Table 1. They will be used as input motions for subsequent slope
displacement analysis.

4. Results of Newmark's rigid-block model

4.1. Influence of the variability of slope property parameters

The slope property parameters have a certain degree of variability
that results from the inherent randomness in nature, measurement er-
rors, sample disturbance, or course data resolution. Many studies have
been conducted to characterize the variability of soil parameters (e.g.,
Phoon and Kulhawy, 1999a; Phoon and Kulhawy, 1999b). The typical
COVs for the design soil variability of undrained shear strength and ϕ'

are about 10–55% and 5–20%, respectively (Phoon and Kulhawy,
1999b). In this study, the COVs of the slope parameters (i.e., c', ϕ', t,
and m) are taken as 10%, 20%, and 30%, respectively. These para-
meters are considered to be lognormally distributed, and the corre-
sponding arithmetic means and COVs are listed in Table 2. Note that the

Fig. 3. Statistical distributions of the shear modulus reduction and damping ratio curves for the Darendeli (2001) model. Input parameters assigned: PI= 30,
OCR=1, loading frequency f=1 Hz, number of cycles N=10, and the mean confining pressure as 1 atm.

Fig. 4. Spectral distributions of selected 20 ground motions to match the target
distribution under the Mw 7.5 earthquake scenario.
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lognormal distribution is considered herein because it guarantees that
the random variables simulated are always positive.

In probability theory and statistics, for a given random variable C,
COVC is expressed as:

=COV σ
μC

C

C (5)

where μC and σC represent the arithmetic mean and standard deviation,
respectively. If C follows a lognormal distribution, the mean and stan-
dard deviation of the natural logarithm of C are given as (Griffiths and
Fenton, 2004):

= − +μ μ COVln 0.5 ln(1 )C C Cln
2 (6)

= +σ COVln(1 )C Cln
2 (7)

Therefore, the arithmetic means and COVs listed in Table 2 can be
used as input in Eqs. (6) and (7); Monte Carlo simulations can be further
used to generate log-normally distributed slope parameters. The theo-
retical probability density functions of c' subjected to the COVs assigned
are illustrated in Fig. 5.

For the deterministic case (the COVs of all slope parameters are 0),
the calculated ky is 0.21 g based on Eqs. (1) and (2). For probabilistic
cases, several groups of ky are calculated; for each group, the variability
of one slope parameter is considered, while the best-estimate (mean)
values are used for the other parameters. Boxplot, as a widely used tool
in descriptive statistics, is used herein to display the distributions of ky
for the probabilistic cases. Fig. 6 shows the ky distributions with respect
to the COVs of c', ϕ', t, and m, respectively. Two observations can be
made. First, the median value of ky is generally insensitive to the
change of the parameter variability, while the dispersion of ky generally

becomes larger as COV increases. Second, it can be seen that the ky
distribution is greatly influenced by the variation of ϕ', whereas it is less
influenced by the variability of the other parameters. This observation
indicates that ϕ' is the major determinant for the magnitude of ky. Note
that the large COV of ϕ' considered would inevitably result in some
unrealistic negative ky values. To avoid such statically unstable cases,
the few negative ky values are assigned as 0.01 g, barely larger than
zero to represent the most susceptible slopes.

The Newmark displacements were then calculated based on the
ground motion suite selected and ky groups considering the variability
of slope parameters. For each group, the geometric mean D and the
standard deviation of the natural logarithm of nonzero displacements
(σlnD) are calculated. Fig. 7 (a) compares the resultant D with respect
to COVs for various cases. The “COV=0” corresponds to the de-
terministic case (i.e., ky= 0.21 g). The mean displacements generally
keep constant as the variability of t, m, and c' increases. Yet, increasing
the COV of ϕ' yields a noticeable increase in the D estimates; the means
increase by about 40% and 2.8-times when the COVs of 2 and 3 are
considered, respectively. This is mainly due to the large variation of ky
in such cases. As is shown in Fig. 6, the large COV of ϕ' brings in a large
dispersion of ky, including a certain portion of small ky values
(ky < 0.1 g), which tend to result in much larger displacements. There
are also a small portion of large ky values (ky > 0.4 g) simulated that
might produce smaller displacements, but the number of these smaller
values is not great enough to counteract the increase in displacements
caused by the low ky data. Therefore, D is generally larger when a
larger COV of ϕ' is used.

Fig. 7 (b) displays the resultant σlnD with respect to COVs for various
ky groups. The calculated σlnD for the deterministic case is 2.6. In-
creasing the variability of the slope parameters generally causes an
increase of σlnD (within the range of 0 to 25%); specifically, the var-
iation of ϕ' has the most significant effect on the increase of σlnD. The
variation of m, in general, has a little impact on D and σlnD of the
calculated displacements.

Compared to the deterministic case that is commonly considered in
engineering applications, incorporating the variability of slope para-
meters in Newmark's analysis generally brings in a larger standard
deviation of displacements. In particular, the statistical distribution
(both D and σlnD) of D is highly sensitive to the variation of ϕ'.
Therefore, a realistic estimate of the variability of slope parameters,
especially ϕ', plays an important role in accurately predicting the
Newmark displacement.

4.2. Influence of correlation of c' andϕ'

Another source of uncertainty in slope parameters is the correlation
between c' and ϕ'. Many studies have reported a negative correlation
between the two parameters (e.g., Cherubini, 2000). The influence of

Table 1
Earthquake ground motion recordings used in this study.

RSNa Earthquake event Year Component Scaling factor Scaled PGA (g)

4875 Chuetsu-oki, Japan 2007 H1 0.9 0.43
2457 Chi-Chi-03, Taiwan 1999 H2 2.3 0.43
192 Imperial Valley-06 1979 H1 2.6 0.19
1194 Chi-Chi, Taiwan 1999 H1 2.3 0.37
882 Landers 1992 H1 2.3 0.31
8606 El Mayor-Cucapah 2010 H2 0.6 0.17
175 Imperial Valley-06 1979 H2 1.5 0.17
1415 Chi-Chi, Taiwan 1999 H2 2.5 0.29
1605 Duzce, Turkey 1999 H1 2.0 0.70
2114 Denali, Alaska 2002 H1 2.2 0.70
5823 El Mayor-Cucapah 2010 H2 2.9 0.57
2458 Chi-Chi-03, Taiwan 1999 H2 3.0 0.30
1534 Chi-Chi, Taiwan 1999 H1 3.0 0.39
2114 Denali, Alaska 2002 H2 2.0 0.64
776 Loma Prieta 1989 H1 1.6 0.59
880 Landers 1992 H2 3.0 0.38
1536 Chi-Chi, Taiwan 1999 H2 2.8 0.50
1176 Kocaeli, Turkey 1999 H2 0.9 0.31
1158 Kocaeli, Turkey 1999 H1 0.7 0.22
1101 Kobe, Japan 1995 H2 1.3 0.47

a RSN: record sequence number in the NGA-West2 database; H1, H2: the
horizontal components of ground motions classified in the NGA-West2 data-
base; PGA: peak ground acceleration

Table 2
Statistical properties of slope parameters for Newmark's rigid-block analysis.

Parameters Distribution Mean COV

c' (kPa) Lognormal 20 0.1, 0.2, 0.3
ϕ' (°) Lognormal 35 0.1, 0.2, 0.3
t (m) Lognormal 4 0.1, 0.2, 0.3
m Lognormal 0.5 0.1, 0.2, 0.3
α (°) Deterministic 30 –
γ (kN/m3) Deterministic 20 –

Fig. 5. Probability density functions (PDFs) of c' with different COVs.
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the c' ‐ ϕ' correlation on Newmark displacement is therefore studied in
this subsection. Three values of ρ equal to −0.5, −0.25, and 0 are
considered, and the COVs of c' and ϕ' are assigned as 20% and 10%,
respectively. Monte Carlo simulations were used for simulating the joint
distribution of the two parameters. Fig. 8 demonstrates the distributions
of the simulated c' and ϕ', respectively. It is worth noting that the mean
values of the other slope parameters (e.g., t and m) listed in Table 2 are
used for the calculation of ky.

Fig. 9 shows the means and σlnD of Newmark displacements con-
sidering the different c' ‐ ϕ' correlations. It is shown clearly that both D
and σlnD increase slightly as ρ approaches 0; they increase by approxi-
mately 30% and 6% respectively when ρ changes from −0.5 to 0. A
strong negative correlation means larger (smaller) c' are generally as-
sociated with smaller (larger) ϕ' (Fig. 8); these pairs of (c',ϕ') para-
meters tend to yield smaller dispersions of ky and the subsequent dis-
placement. Since c' and ϕ' are usually negatively correlated in nature,
ignoring the c' ‐ ϕ' correlation (i.e., ρc‐ϕ=0) will result in greater esti-
mates of the Newmark displacement.

4.3. All parameters varied

The Newmark displacements were also calculated by considering

the variabilities of all slope parameters. The computed geometric means
and σlnD are presented and compared with those obtained by con-
sidering the variability of c', ϕ', and t only in Fig. 10. Clearly, the cal-
culated D and σlnD for the ‘all varied’ case are similar to those of
modeling the variability of ϕ', and they are significantly larger than
those of the other cases. These observations again confirm that the
variability of ϕ' predominately influences the Newmark displacement
predictions. Compared to the deterministic case, modeling low varia-
bility (COV=0.1) of all slope parameters results in a similar D and an
increase of 10% for σlnD, while modeling high variability (COV=0.3)
of slope parameters results in a 200%-increase for D , and a 30%-in-
crease for σlnD, respectively.

5. Results of fully coupled analysis

5.1. Influence of the variability of slope property parameters

A deep slope model with fixed geometrical parameters (Fig. 11) was
implemented in SLIDE. The parameters assigned for this idealized slope
are listed in Table 3, in which c', ϕ', and groundwater table zw are
modeled as random variables with COVs of 0.1, 0.2, and 0.3, respec-
tively. The mean zw location assigned is shown in Fig. 11. For the

Fig. 6. Distributions of ky based on Eqs. (1) and (2)
versus the COVs of slope parameters. In these and
subsequent boxplots, the central red line denotes the
median of the data (50th percentile), and the edges
of the box (blue lines) mark the 25th and 75th
percentiles. The ends of the whiskers represent the
0.35th and 99.65th percentiles, and the red plus
symbols denote outliers. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)

(a) (b)

Fig. 7. Influence of the variability of slope parameters on the calculated (a) geometric mean D , and (b) σlnD for the Newmark's rigid-block model.
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deterministic case, the static FS based on the Spencer's method is 1.362,
and the corresponding ky is calculated as 0.16 g. For probabilistic cases,
several groups of static FS and ky considering the variability of slope
parameters are calculated based on the probabilistic and seismic ana-
lyses implemented in SLIDE. The statistical distributions of ky versus the
COVs of slope parameters (i.e., c', ϕ', and zw) are demonstrated in
Fig. 12. Again, the variation of ϕ' has the greatest impact on the dis-
persion of ky, while the influence of the variation of c' and zw is much
less significant.

To address the uncertainty of Ts, Vs is also modeled as a random
variable with arithmetic mean as 300m/s and COVs as 0.1, 0.2, and
0.3, respectively. Monte Carlo simulations were used for simulating sets
of Vs values following the lognormal distribution. Thus, Ts can be es-
timated as Ts= 4H/Vs, and the best-estimate (mean) Ts value is 0.4 s.

The mean G/Gmax and Dr curves shown in Fig. 3 are employed to
model the nonlinear soil properties in this subsection. Fully coupled
analyses were therefore performed based on the sets of ky (considering
the variations of c', ϕ', and zw, respectively) and Ts (considering the
variation of Vs). The earthquake acceleration time-series listed in
Table 1 were used as input motions. Fig. 13a and b display the com-
puted D and σlnD with respect to the COVs, respectively. The
“COV=0” corresponds to the deterministic case (i.e., the deep slope
case with ky= 0.16 g and Ts= 0.4 s). Similar to rigid slope cases,
Fig. 13a demonstrates that increasing the variability of ϕ' brings in a
significant increase in the D estimate, while the variability of c' and zw
has a little impact on D . Increasing the variability of Vs causes a slight
reduction in the mean estimates; such reduction reaches about 15%
when the COV of Vs is 0.3. This observation is Ts-specific, which is due
to the fact that peak displacement in the fully coupled analysis usually
occurs at Ts in the range of 0.2–0.5 s (e.g., Bray and Travasarou, 2007),
and the large dispersion of Vs simulated (associated with a large COV of
Vs) brings in some Ts values out of this range, resulting in much smaller
displacements. Besides, as is shown in Fig. 13b, increasing the varia-
bility of these parameters generally causes an increase on σlnD; in par-
ticular, the change of σlnD is more significant with the variation of ϕ'

and Vs (σlnD increases about 30% and 15% for COV=0.3 of ϕ' and Vs,
respectively).

5.2. Influence of correlation of c' and ϕ'

The impact of the c' ‐ ϕ' correlation on flexible slope displacement is
studied in this subsection. Three values of ρ (i.e., ρ as−0.5, −0.25, and
0, respectively) are considered, and the COVs of c' and ϕ' are assigned
as 20% and 10%, respectively. The mean Vs, zw, and the mean G/Gmax

and Dr curves are used as deterministic values. Fig. 14 displays D and
σlnD of the resultant displacements considering the different c' ‐ ϕ' cor-
relations. Similar to those observed for the Newmark's analysis, de-
creasing the c' ‐ ϕ' correlation causes a slight increase on the magnitude
of D and σlnD; they increase by approximately 5% and 2% respectively
when ρ changes from −0.5 to 0. Thus, the influence of the c' ‐ ϕ' cor-
relation on the slope displacement in fully coupled analysis is little.

5.3. Influence of variability of nonlinear soil properties

The standard deviation equations listed in Eqs. (3) and (4) were
used for quantifying the variability of the G/Gmax and Dr curves, and
Monte Carlo simulations were performed to account for their varia-
bility. Fig. 15 displays the means D and σlnD of the resultant dis-
placements considering the variability of G/Gmax and Dr curves, where
different correlation coefficients (i.e., ρDr

, NG as −0.2, −0.5, −0.8,
respectively) are considered. Compared to the deterministic case, in-
cluding the variability of nonlinear soil properties yields a reduction of
about 25–30% in D and an increase of about 6–15% in σlnD. The re-
duction of D can be explained as follows. The randomization of G/Gmax

and Dr curves includes simulated ones with smaller G/Gmax and higher
Dr curves, which tend to experience larger strain and higher damping
during seismic loading, producing much smaller displacements. Be-
sides, increasing theρDr

, NG correlation would bring in a slight increase
of D and decrease of σlnD, but such influence is minor.

Fig. 8. Scatter plots of the simulated c' and ϕ' using ρ values of −0.5, −0.25, and 0, respectively.
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5.4. All parameters varied

Sliding displacements can be calculated by incorporating all the
sources of uncertainty in the fully coupled analysis. In this effort, the
COVs of the slope property parameters (i.e., c', ϕ', zw, and Vs) are as-
signed as 0.2 (ρc', ϕ' =− 0.5). The correlation of ρDr

, NG as −0.5 is used
for the simulation of modulus reduction and damping ratio curves.
Fig. 16 displays the resultant D and σlnD for (A) the deterministic case;
considering the variability of (B) ky (variations of c', ϕ', and zw); (C) Ts

(variation of Vs); (D) G/Gmax and Dr curves; and (E) all of these para-
meters. Compared to the deterministic case, considering the variability
of ky brings in a 40%-increase in the D estimates, while incorporating
the variability of G/Gmax and Dr curves yields a noticeable reduction in
D . The calculated σlnD for cases B-E are, as expected, larger than that of

case A. The fully varied case (case E) results in a slight decrease of D
(about 15% smaller than case A) and an increase of σlnD (about 10%
greater than case A).

6. Discussions

Modeling the variability of slope property parameters is an im-
portant issue in accurately predicting the earthquake-induced slope
displacement. Previous studies have mainly focused on quantifying the
variabilities in ground motion and displacement predictions for prob-
abilistic displacement hazard analysis (e.g., Rathje and Saygili, 2008;
Du and Wang, 2014), while the variabilities in characterizing ky, Ts, and
nonlinear soil properties have not been well addressed. For Newmark's
rigid-block analysis, the results show that modeling the variability of ϕ'

has the greatest influence on D and σlnD of the computed displace-
ments, while the variability of c' and t has the secondary influence.
Specifically, when performing the regional landslide hazard analysis,
ignoring the variability of ϕ' in the Newmark displacement analysis
may significantly underpredict the landslide hazard. Therefore, a reli-
able characterization of the slope parameter variability is required in
the Newmark's approach, and the logic-tree approach for regional
mapping of landslide hazards (Wang and Rathje, 2015) is re-
commended.

For the fully coupled analysis, the results indicate that modeling the
variability of ky greatly increases the D estimates, while modeling the
variability of the nonlinear soil properties decreases D . On the other
hand, considering the variability of these parameters generally results
in an increase of σlnD. Hence, these parameter variabilities need to be
carefully quantified in the fully coupled analysis, to obtain the best
estimate of slope displacement.

The observations above for the fully coupled analysis are specific to
the slope period and the earthquake scenario considered, because both
Ts and shaking intensities can greatly influence the degree of non-
linearity induced. The influence of Vs variability on slope displacement
is therefore Ts-specific, and more research activities are required in
future.

(a)                               (b) 

Fig. 10. Influence of different sources of uncertainty on the calculated (a) mean D , and (b) σlnD based on the Newmark's rigid-block model.

Fig. 11. Geometrically slope model used in SLIDE (Rocscience, 2010).

Table 3
Input parameters assigned for fully coupled analysis.

Parameters Distribution Mean COV

H (m) Deterministic 30 –
α (°) Deterministic 30 –
γ (kN/m3) Deterministic 20 –
c' (kPa) Lognormal 20 0.1, 0.2, 0.3
ϕ' (°) Lognormal 30 0.1, 0.2, 0.3
zw (m) Lognormal – 0.1, 0.2, 0.3
Vs (m/s) Lognormal 300 0.1, 0.2, 0.3

Fig. 12. Distributions of ky for the slope case implemented in SLIDE versus the COVs of slope parameters c', ϕ', and zw.
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It is worth noting that although the variability of the slope angle α is
not considered in this study, such variability is no doubt an important
factor in charactering ky, and further influencing the sliding displace-
ment. The use of a high-resolution DEM to extract accurate information
about slope angles is highly recommended for regional seismic land-
slide analysis.

In this study, the slope parameters (e.g., c', ϕ', t) are assumed to
follow a lognormal distribution. Although lognormal distribution is one
of the commonly used choices to characterize soil parameters in geo-
technical engineering, it might be not applicable to some cases. Further
research effort is therefore required regarding the appropriate dis-
tribution of these slope parameters.

7. Conclusions

This paper quantitatively studied the influence of slope property
variabilities on earthquake-induced sliding displacements based on two
commonly used methods, namely the Newmark's rigid-block and the
fully coupled equivalent-linear analyses. An input motion suite with 20
acceleration time-series was selected and scaled to fit the target re-
sponse spectrum under an Mw 7.5 earthquake scenario. A series of
Monte Carlo simulations were performed to characterize the slope
property variabilities, and the influence of such variabilities on the
calculated displacements for rigid and flexible slopes was evaluated.

The characterization of ky is the only source of slope property un-
certainty in the Newmark displacement analysis. Results of these ana-
lyses demonstrate that incorporating the variability of ϕ' results in
noticeably larger estimates of the geometric mean D and the standard
deviation σlnD; they increase by 40% and 16% respectively when the
COV of ϕ' is considered as 0.2. Considering the variability of the other

slope parameters (i.e., c', t, and m) yields similar estimates of D , and a
slight increase (< 10%) of σlnD. In addition, it was found that in-
creasing the negative c' ‐ ϕ' correlation slightly decreases the estimates
of D and σlnD. Therefore, the variability of ϕ' has the largest influence
on the calculated displacement. When performing the regional land-
slide hazard analysis, the variability of slope parameters, especially ϕ',
needs to be appropriately incorporated in conducting the Newmark
analysis.

(a)                                (b) 

Fig. 13. Influence of the variability of slope parameters on the calculated (a) mean D , and (b) σlnD based on the fully coupled model.
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The main sources of uncertainty considered in the fully coupled
analysis are the characterizations of ky (variations of c', ϕ' and zw,), Ts

(variation of Vs), and the specification of nonlinear soil properties. The
results imply that the effective friction angle ϕ' is the controlling
parameter for the variation of ky. Modeling the variability of ϕ' and the
nonlinear soil properties brings in a noticeable increase (40% larger if
the COV of ϕ' is 0.2) and decrease (about 25–30% smaller) of the D
estimates, respectively. For the deformable slope case considered
(Ts= 0.4 s), modeling the variability of Vs causes a slight reduction of
D . Besides, modeling the variability of these parameters consistently
increases σlnD of the calculated displacements, with σlnD increasing as
large as 30% in some cases. Specifically, incorporating the variability of
ϕ', Vs, and the nonlinear soil properties plays the major effect on the
increase of σlnD. In addition, it was found that the c' ‐ ϕ' and G/Gmax-Dr

correlations generally have a minor effect on the resultant displace-
ment.

The findings described above address the uncertainty issue in con-
ducting slope displacement analyses. Based on the results and sugges-
tions, engineers can make their judgment to properly account for the
variability of slope parameters in engineering applications, in order to
achieve a more accurate estimate of the seismic slope displacement.

Acknowledgments

This work was supported by Hong Kong Research Grants Council
through General Research Fund 16213615. The authors greatly thank
the Journal Editor and two anonymous reviewers for their helpful
comments to improve this manuscript.

References

Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., et al.,
Donahue, J.L., 2014. NGA-West2 database. Earthquake Spectra 30 (3), 989–1005.

Baker, J.W., 2011. Conditional mean spectrum: tool for ground-motion selection. J.
Struct. Eng. 137 (3), 322–331.

Bray, J.D., Travasarou, T., 2007. Simplified procedure for estimating earthquake-induced
deviatoric slope displacements. J. Geotech. Geoenviron. 133, 381–392.

Campbell, K.W., Bozorgnia, Y., 2014. NGA-West2 ground motion model for the average
horizontal components of PGA, PGV, and 5% damped linear acceleration response
spectra. Earthquake Spectra 30 (3), 1087–1115.

Cherubini, C., 2000. Reliability evaluation of shallow foundation bearing capacity on c' φ'
soils. Can. Geotech. J. 37 (1), 264–269.

Chousianitis, K., Del Gaudio, V., Sabatakakis, N., Kavoura, K., Drakatos, G., Bathrellos,
G.D., Skilodimou, H.D., 2016. Assessment of earthquake-induced landslide hazard in
Greece: from arias intensity to spatial distribution of slope resistance demand. Bull.
Seismol. Soc. Am. 106 (1), 174–188.

Darendeli, M.B., 2001. Development of a New Family of Normalized Modulus Reduction
and Material Damping Curves. University of Texas at Austin, Austin, Texas (Ph.D.
thesis).

Dreyfus, D., Rathje, E.M., Jibson, R.W., 2013. The influence of different simplified sliding-
block models and input parameters on regional predictions of seismic landslides
triggered by the Northridge earthquake. Eng. Geol. 163, 41–54.

Du, W., Wang, G., 2014. Fully probabilistic seismic displacement analysis of spatially
distributed slopes using spatially correlated vector intensity measures. Earthq. Eng.
Struct. Dyn. 43 (5), 661–679.

Du, W., Wang, G., 2016. A one-step Newmark displacement model for probabilistic
seismic slope displacement hazard analysis. Eng. Geol. 205, 12–23.

Du, W., Wang, G., 2017. Prediction equations for ground-motion significant durations
using the NGA-West2 database. Bull. Seismol. Soc. Am. 107 (1), 319–333.

Du, W., Huang, D., Wang, G., 2018a. Quantification of model uncertainty and variability
in Newmark displacement analysis. Soil Dyn. Earthq. Eng. 109, 286–298.

Du, W., Wang, G., Huang, D., 2018b. Evaluation of seismic slope displacements based on
fully coupled sliding mass analysis and NGA-West2 database. J. Geotech. Geoenviron.
Eng. Published Online. http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001923.

Duncan, J.M., 2000. Factors of safety and reliability in geotechnical engineering. J.
Geotech. Geoenviron. 126 (4), 307–316.

Griffiths, D.V., Fenton, G.A., 2004. Probabilistic slope stability analysis by finite elements.
J. Geotech. Geoenviron. 130 (5), 507–518.

Jibson, R.W., 2007. Regression models for estimating coseismic landslide displacement.
Eng. Geol. 91, 209–218.

Jibson, R.W., 2011. Methods for assessing the stability of slopes during earthquakes-a
retrospective. Eng. Geol. 122 (1), 43–50.

Jibson, R.W., Michael, J.A., 2009. Maps showing seismic landslide hazards in anchorage,
Alaska. In: U.S. Geological Survey Scientific Investigations Map. vol. 3077 (11 pp.).

Jibson, R.W., Harp, E.L., Michael, J.A., 2000. A method for producing digital probabilistic
seismic landslide hazard maps. Eng. Geol. 58 (3), 271–289.

Makdisi, F.I., Seed, H.B., 1978. Simplified procedure for estimating dam and embankment
earthquake-induced deformations. J. Geotech. Eng. Div. 104 (7), 849–867.

Moss, R.E.S., 2008. Quantifying measurement uncertainty of thirty-meter shear-wave
velocity. Bull. Seismol. Soc. Am. 98 (3), 1399–1411.

Newmark, N.M., 1965. Effects of earthquakes on dams and embankments. Géotechnique
15 (2), 139–160.

Phoon, K.K., Kulhawy, F.H., 1999a. Characterization of geotechnical variability. Can.
Geotech. J. 36, 612–624.

Phoon, K.K., Kulhawy, F.H., 1999b. Evaluation of geotechnical property variability. Can.
Geotech. J. 36 (4), 625–639.

Rathje, E.M., Antonakos, G., 2011. A unified model for predicting earthquake-induced
sliding displacements of rigid and flexible slopes. Eng. Geol. 122 (1), 51–60.

Rathje, E.M., Bray, J.D., 2000. Nonlinear coupled seismic sliding analysis of earth
structures. J. Geotech. Geoenviron. 126 (11), 1002–1014.

Rathje, E.M., Saygili, G., 2008. Probabilistic seismic hazard analysis for the sliding dis-
placement of slopes: scalar and vector approaches. J. Geotech. Geoenviron. 134 (6),
804–814.

Rathje, E.M., Saygili, G., 2009. Probabilistic assessment of earthquake-induced sliding
displacements of natural slopes. Bull. N. Z. Soc. Earthq. Eng. 42 (1), 18–27.

Rathje, E.M., Kottke, A.R., Trent, W.L., 2010. Influence of input motion and site property
variabilities on seismic site response analysis. J. Geotech. Geoenviron. 136 (4),
607–619.

Rathje, E.M., Wang, Y., Stafford, P.J., Antonakos, G., Saygili, G., 2014. Probabilistic as-
sessment of the seismic performance of earth slopes. Bull. Earthq. Eng. 12 (3),
1071–1090.

Rocscience, 2010. SLIDE-2D Limit Equilibrium Slope Stability Analysis, Version 6.0.
Rocscience, Inc, Toronto.

Saygili, G., Rathje, E.M., 2008. Empirical predictive models for earthquake-induced
sliding displacements of slopes. J. Geotech. Geoenviron. 134 (6), 790–803.

Sharifi-Mood, M., Olsen, M.J., Gillins, D.T., Mahalingam, R., 2017. Performance-based,
seismically-induced landslide hazard mapping of Western Oregon. In: Soil Dynamics
and Earthquake Engineering103, pp. 38–54.

Strenk, P.M., Wartman, J., 2011. Uncertainty in seismic slope deformation model pre-
dictions. Eng. Geol. 122 (1), 61–72.

Wair, B.R., DeJong, J.T., 2012. Guidelines for estimation of shear wave velocity profiles.
Pacific earthquake engineering research center. Report 08 (2012).

Wang, G., 2011. A ground motion selection and modification method capturing response
spectrum characteristics and variability of scenario earthquakes. Soil Dyn. Earthq.
Eng. 31 (4), 611–625.

Wang, Y., Rathje, E.M., 2015. Probabilistic seismic landslide hazard maps including
epistemic uncertainty. Eng. Geol. 196, 313–324.

Wasowski, J., Bovenga, F., 2014. Investigating landslides and unstable slopes with sa-
tellite multi temporal interferometry: current issues and future perspectives. Eng.
Geol. 174, 103–138.

Wasowski, J., Keefer, D.K., Lee, C.T., 2011. Toward the next generation of research on
earthquake-induced landslides: current issues and future challenges. Eng. Geol. 122
(1), 1–8.

(a) 

 
(b) 

33.09 

46.14 

30.02 
23.42 

28.53 

0

10

20

30

40

50

Case A Case B Case C Case D Case E

M
ea

n 
D

 (
cm

) 

1.84 

2.07 

1.97 

2.10 
2.03 

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Case A Case B Case C Case D Case E

σl
nD

  

Case Description 

A Deterministic 

B Varied ky 

C Varied Ts 

D Varied G/Gmax and Dr 

E All Varied 

Fig. 16. Influence of different sources of uncertainty on the calculated (a)
geometric mean D , and (b) σlnD based on the fully coupled model.

W. Du et al. Engineering Geology 242 (2018) 121–129

129

http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0005
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0005
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0010
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0010
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0015
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0015
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0020
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0020
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0020
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0025
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0025
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0030
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0030
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0030
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0030
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0035
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0035
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0035
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0040
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0040
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0040
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0045
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0045
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0045
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0050
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0050
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0055
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0055
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0060
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0060
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001923
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0070
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0070
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0075
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0075
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0080
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0080
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0085
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0085
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0090
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0090
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0095
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0095
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0105
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0105
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0110
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0110
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0115
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0115
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0120
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0120
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0125
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0125
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0130
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0130
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0135
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0135
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0140
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0140
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0140
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0145
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0145
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0150
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0150
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0150
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0155
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0155
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0155
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0160
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0160
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0165
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0165
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0170
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0170
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0170
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0175
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0175
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0180
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0180
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0185
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0185
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0185
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0190
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0190
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0195
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0195
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0195
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0200
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0200
http://refhub.elsevier.com/S0013-7952(18)30015-2/rf0200

	Influence of slope property variabilities on seismic sliding displacement analysis
	Introduction
	Sources of uncertainty in sliding displacement analyses
	Newmark's rigid-block model
	Fully coupled model

	Selection of input ground motions
	Results of Newmark's rigid-block model
	Influence of the variability of slope property parameters
	Influence of correlation of c' andϕ'
	All parameters varied

	Results of fully coupled analysis
	Influence of the variability of slope property parameters
	Influence of correlation of c' and ϕ'
	Influence of variability of nonlinear soil properties
	All parameters varied

	Discussions
	Conclusions
	Acknowledgments
	References




