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ABSTRACT 
 
Estimating the earthquake-induced sliding displacement is important to assess the stability of 
slopes during earthquakes. Current Newmark displacement models generally use ground motion 
intensity measures (IMs) as predicators, hence the uncertainties of the IM values should be 
accounted for in the displacement hazard analysis. This paper proposes a simple one-step 
predictive model for the Newmark displacement based on four seismological parameters 
(magnitude, rupture distance, fault categories and shear wave velocity) instead of IMs. Through 
benchmark examples, it is found that both the predicted median and the aleatory variability of the 
proposed model are comparable with other IM-based Newmark models. The one-step model 
demonstrates great advantage in saving the computational cost when applied in a fully 
probabilistic seismic displacement analysis of spatially distributed slope systems. Therefore, the 
new model can be used as an alternative for a more efficient probabilistic analysis of the 
earthquake-induced slope displacements especially in a regional scale. 
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ABSTRACT 
 
 Estimating the earthquake-induced sliding displacement is important to assess the stability of 

slopes during earthquakes. Current Newmark displacement models generally use ground motion 
intensity measures (IMs) as predicators, hence the uncertainties of the IM values should be 
accounted for in the displacement hazard analysis. This paper proposes a simple one-step 
predictive model for the Newmark displacement based on four seismological parameters 
(magnitude, rupture distance, fault categories and shear wave velocity) instead of IMs. Through 
benchmark examples, it found that both the predicted median and the aleatory variability of the 
proposed model are comparable with other IM-based Newmark models. The one-step model 
demonstrates great advantage in saving the computational cost when applied in a fully 
probabilistic seismic displacement analysis of spatially distributed slope systems. Therefore, the 
new model can be used as an alternative for a more efficient probabilistic analysis of the 
earthquake-induced slope displacements especially in a regional scale. 

 
 

Introduction 
 
Estimating the seismic displacement of natural slopes is particularly important for risk 
assessment of earthquake-induced landslides. Newmark firstly proposed a rigid sliding block 
model, which assumed that sliding is initialized when the shaking acceleration exceeds a critical 
acceleration, and the block deforms plastically along a shear surface. The critical acceleration (

ca ) is determined by the properties of slopes (e.g., the strength of material and the geometric 
angle). The permanent displacement D  is calculated by double integrating the over exceeded 
parts with respect to time as shown in Fig. 1. Although this Newmark model ignores the internal 
deformation of sliding mass during shaking process, it is still applicable to natural slopes or 
landslides in stiff materials [1]. After Newmark’s pioneering work, many researchers (e.g., [1], 
[2], [3]) have proposed their empirical equations using various ground motion database and 
function forms. 
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Figure 1. Illustration of Newmark displacement with critical acceleration ac=0.2g. (A) 

Earthquake acceleration-time history. (B) Velocity of sliding block versus time. (C) 
Displacement of sliding block versus time. 

  
Currently all the Newmark displacement models are functions of critical acceleration ac 

and various ground motion intensity measures (IMs), such as the peak ground acceleration 
(PGA) and Arias intensity (Ia). Therefore, the typical procedure to estimate displacement is a 
two-step approach: firstly, ground motion prediction equations (GMPEs) are used to estimate the 
median and sigma values of IMs; secondly, sliding displacement values can be calculated using 
the predicted IMs as predicators. To estimate the variability of computed displacement, two 
levels of uncertainties, at the IM level as well as at the displacement level, should be well 
considered. More importantly, the uncertainty of GMPEs should be taken into account in the 
displacement hazard analysis. In other words, engineers should make a decision regarding which 
GMPE model should be used to predict IMs, and how to quantify the variability of IMs. Specific 
selection of GMPEs would have a significant impact on the computed displacement. Besides, 
this two-step approach would inevitably complicate the computational process: two levels of 
integration process should be conducted to derive the displacement hazard curves (see more 
details in [4]). These computational expenses will be much more remarkable if a large-scale 
landslide region is studied ([5]).  

 
This paper proposes a one-step empirical model to predict the Newmark displacement, 

directly based on seismic information and geological conditions (e.g. moment magnitude Mw, 
rupture distance Rrup, shear wave velocity of the upper 30 m Vs30, etc) rather than intensity 
measures. The advantage of this proposed model is that it can greatly simplify this computational 
process in a fully probabilistic displacement hazard analysis, meanwhile, the results are generally 
in agreement with other existing two-step models.  It is also to be noted that it is a pseudo-

0 5 10 15 20
−0.5

0

0.5

A
cc

el
er

at
io

n(
g)

a
c
=0.2g

0 5 10 15 20
0

50

100

150

V
el

oc
ity

(c
m

/s
)

(A)

(B)

(C)
0 5 10 15 20

0

50

100

Time(s)

D
is

pl
ac

em
en

t(
cm

)



 

 
 

probabilistic approach just to compute the sliding displacement directly using IMs at a specific 
ground hazard level. Although it is simple, the probability of occurrence of the resulted sliding 
displacements is unknown. Compared with the fully probabilistic method, the pseudo-
probabilistic analysis usually results in unconservative estimation in most cases ([6]).  Therefore, 
the proposed one-step method is intended as a simplified approach for a fully probabilistic 
displacement analysis.  
 

One-step Newmark displacement prediction model 
 
The functional form 
In this study, the subset of the PEER-NGA strong motion database is used to compute the sliding 
displacement. Only horizontal recordings from free-field conditions are used in the analysis, 
resulting in a total of 1560 pairs of ground motions of two horizontal directions ([7]). Regression 
analysis was performed to predict the sliding displacement as a function of seismological 
variables using mixed random effect algorithm proposed by Joyner and Boore ([8]). The 
displacement prediction model takes a form as follows:  

       ( ) ( )ln ln i ijij ij
D D η ε= + +                                                                    (1) 

where ( )ln
ij

D and ( )ln
ij

D represent the observed and the predicted logarithmic displacement 

value for the j-th recording and i-th event, respectively. iη  refers to inter-event residual and ijε  
denotes intra-event residual (within earthquake), respectively. This model assumes that 
displacement values (D) follow logarithmic normal distribution. The mixed random effect model 
is widely applied to predict ground motion IMs, such as the development of the NGA models 
(e.g. [7]).  
 

Since currently there is no any Newmark displacement model available in literature using 
mixed random effect regression, some functional forms that have been used for GMPEs are first 
attempted. More specifically, PGA and Ia have been found to have a strong correlation with 
Newmark displacement. Therefore, the GMPE functional forms for PGA and Ia should be used 
as the preliminary functional forms. After several trials and comparisons, the final functional 
expression is adopted as:  
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magnitude; Rrup means rupture distance (km); R1 and R20 are two distance parameters derived 
from Rrup. R1 is changing if Rrup is smaller than 20 km, controlling the short-distance scaling. R20 
changes if Rrup is greater than 20 km, controlling the long-distance scaling; Fr is an indicator 



 

 
 

variable (1 for reverse and reverse-oblique types of faulting and 0 otherwise. Note an indicator 
variable representing the normal fault is not used since it is statistically insignificant to be 
included in the model); h is a fictitious hypocentral depth in km estimated during the regression, 
and Vs30 represents the averaged shear wave velocity of the upper 30 m (m/s). The influence of 
site effect is incorporated in Eq. 2 by using the Vs30 term.  
 

It is to be noted that the Eq. 2 is regressed based on sliding displacements larger than 0.01 
cm. Using probit regression analysis, the probability of “zero” displacement (displacement 
smaller than 0.01 cm) can be expressed as a function of seismological parameters as follows: 

( )8 9 10 11( 0) 1 ( ln( ) ln 30w rupP D c c M c R c Vs= = −Φ − ⋅ − ⋅ +  (3) 

where Φ is the standard normal cumulative distribution function.  
 

The non-zero displacement values are estimated by Eq. 2, and Eq. 3 is used to specify the 
the probability of zero displacement ( 0)P D = . During this regression, the displacement data 
larger than 0.01cm are collected to derive Eq. 3. Consequently, the predicted displacement 
according to a specified percentile p (in decimal form, i.e. p=0.5 for the 50th percentile) can be 
determined as: 

 
1 ( 0)ln ln

1 ( 0)p
p P DD D

P D
σ −

⎛ ⎞− = ⎟⎜= + ⋅Φ ⎟⎜ ⎟⎜ ⎟⎜ − =⎝ ⎠
                (4)  

The proposed model is termed as DW13 model. A total of thirteen coefficients are 
included in the model. The regression process can be implemented in statistical programming 
software like R, especially the ‘nlme’ function ([9]). The regression coefficients for six ac values: 
0.05g, 0.075 g, 0.1 g, 0.15 g, 0.2 g and 0.25 g, are tabulated in Table 1. All coefficients yield 
small p-values, therefore they are statistically significant. For the case of ac=0.15 g, c4 and c7 are 
statistically insignificant, and hence they are removed in the final functional form. The reported 
inter- and intra-event standard deviations (in natural logarithmic scale) are also listed. It is clear 
that the total standard deviation value increases as ac increases. This implies that the uncertainty 
of the predicted sliding displacements is smaller if ac is smaller.  
 
Inter-event and intra-event residuals 

 
The distributions of inter- and intra-event residuals against indicators (e.g., earthquake 
magnitudes and rupture distances) for ac=0.1g are shown in Fig. 2. The trend lines obtained by 
simple linear regression are also plotted in these figures. From these plots, no obvious biases 
between residuals and variables used in the regression equation can be found. The slightly biased 
trend in the intra-residuals versus moment magnitude plot is possibly caused by a paucity of data 
at small magnitudes (Mw<5).  The distributions of residuals imply that the proposed model can 
yield unbiased predicted displacement over a large magnitude and distance range.  
 
 



 

 
 

Table 1. Coefficients for the proposed DW13 displacement model 

Parameter ac=0.05 g ac=0.075 g ac=0.1 g ac=0.15 g ac=0.2 g ac=0.25 g 

1c 8.23 7.11 7.29 7.13 6.12 15.21 

2c -0.18 -0.08 -0.14 -0.21 -0.25 -0.27 

3c -4.57 -5.17 -4.10 -2.77 -2.42 -5.33 

4c 0.31 0.40 0.22 -- -- -- 

5c 0.64 0.75 0.72 0.80 0.74 1.04 

6c -4.84 -3.21 -4.67 -1.35 -1.65 -0.72 

7c 0.31 0.09 0.38 -- -- -- 
h 5.72 4.19 4.23 4.55 5.53 14.3 
ν1 -1.26 -0.92 -0.86 -0.55 -0.57 -0.43 
τ 0.39 0.50 0.54 0.45 0.42 0.29 
σ 1.55 1.56 1.60 1.78 1.78 1.76 
σt 1.59 1.63 1.70 1.84 1.82 1.78 

8c  4.25 2.44 3.05 2.70 1.23 -0.95 

9c  0.99 0.79 0.63 0.39 0.33 0.27 

10c  -1.92 -1.58 -1.55 -1.32 -1.07 -0.87 

11c  -0.81 -0.46 -0.46 -0.37 -0.25 0.04 
 
Note: τ: standard deviation of inter-event residuals; σ: standard deviation of intra-event 
residuals; σt: standard deviation of total residuals ( 2 2

tσ σ τ= + ).  
 

The distribution of intra-event residuals against rupture distance shows a strong trend: the 
scatter of residuals generally increases with increasing rupture distance. Hence, it is tempting to 
get the standard deviation of intra-event residuals within varying rupture distance bins, as shown 
in Fig. 3. The distance bins are partitioned into overlapping intervals in logarithmic scale from 
0.1km to 200 km, where the horizontal bar indicates the range of the interval in each bin. A 
simple trilinear model is used to represent the empirical data: 

 
1

ln 1 100

4.6 200
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a b if R km

σ

⎧⎪ ≤⎪⎪⎪= + ⋅ < <⎨⎪⎪⎪ + ⋅ ≤⎪⎩

               (5)  

 
where a=0.76, b=0.23 for ac=0.05 g; a=0.89, b=0.237 for ac=0.075 g and a=1.05, b=0.22 for 
ac=0.1 g. For the case of ac≥0.15 g, the rupture distance has little influence on the sigma value, 
so the reported constant values in Table 1 (e.g., 1.78σ = can be used for the case of ac=0.15 g) 



 

 
 

are recommended. For the standard deviation of inter-event residuals, no obvious trend is 
observed for various scenarios, and then the constant values reported by regression analysis can 
be used.    
 

         

   
Figure 2. Distributions of inter-event and intra-event residuals for ac=0.1g with respect to 

moment magnitude, rupture distance and shear wave velocity, respectively. 
 

    
 

Figure 3. (a) Distribution of intra-event residuals for ac=0.05g with respect to rupture distance; 
(b) Trilinear relationship of intra-event standard deviations, where the point denotes 
the median value of each bin, and the horizontal bar indicates the range of the 
interval, respectively.  
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Comparison with other two-step displacement models 
 
Fig. 4 shows the predicted displacement with respect to rupture distance for various earthquake 
scenarios. The estimated displacement values from Newmark displacement models are also 
shown in these plots. For simplicity purpose, one predictive model from each group of scholars 
is selected. These predicted equations are listed as follows:  
 
1. [PGA, Mw] BT07 model [10]: 

2 2ln( ) 0.22 2.83ln( ) 0.333(ln( )) 0.566 ln( ) ln( ) 3.04 ln( ) 0.244(ln( )) 0.278( 7)c c c wD a a a PGA PGA PGA M= − − − + + − + −  
ln 0.66Dσ =                                                                                                                                      (6) 

2. [PGA, Ia] J07 model [1]: 

10 10 10log ( ) 0.561log ( ) 3.833log 1.474caD Ia
PGA

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

,       
10log 0.616Dσ =                                                (7) 

3. [PGA, Ia] RS08 model [2]: 
2 3 4

ln( ) 2.39 5.24 18.78 42.01 29.15 1.56 ln( ) 1.38ln( )c c c ca a a a
D PGA Ia

PGA PGA PGA PGA
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( )ln 0.46 0.56 /D ca PGAσ = +                                                                               (8) 
4. [Ia] HL11 model [3]: 

10 10 10log ( ) 0.847 log ( ) 10.62 6.587 log ( ) 1.84c cD Ia a a Ia= − + + ,     
10log 0.295Dσ =              (9) 

All the selected equations have been proposed in recent years. The averaged PGA values 
from four NGA GMPE models ([7], [11], [12], [13]) and the averaged Ia values from three 
predictive models ([14], [15], [16]) are used to reduce epistemic uncertainties of IMs. Four 
earthquake scenarios (generally large magnitude combined with small critical accelerations) are 
shown in Fig. 4. The figure also shows the computed Newmark displacements using strong 
motion time histories from the NGA database within a magnitude bin [Mw-0.25, Mw+0.25] and 
shear wave velocity bin [Vs30-200 m/s, Vs30+200 m/s]. For example, the Fig. 4(a) displays the 
computed Newmark displacement data using strong motions of 5.75< Mw <6.25, 200<Vs30<600, 
strike-slip faulting, and ac =0.05g.  

 
Two observations can be made. First, empirical data are almost evenly distributed around 

the predicted median curves, implying that the proposed model can get unbiased predictions for 
these earthquake scenarios. Second, the curves obtained from different models are generally 
comparable. Remind that DW13 model is a one-step method. Despite the difference in the 
functional forms and indictors that these equations are based on, quite consistent predictive 
values (especially for short and median rupture distance) can be seen from these plots. Much 
larger scatters can be observed in the far distance range, where the predicted displacements are 
very small and hence have little engineering significance. Besides, although there are some 
discrepancies among these models, the DW13 predictive curves are generally located in the 



 

 
 

middle of these curves. Hence, the new model can reasonably predict the displacement values 
based directly on seismological variables.  

 
 

(a)             (b)                                   

(c)            (d)  
Figure 4. Comparison of the median predictions of the DW13 model with other models. The 

computed empirical displacement data are also shown for each scenario: (a) Mw=6, 
Strike-slip fault, Vs30=400 m/s and critical accelerations ac=0.05g; (b) Mw=7, reverse 
fault, Vs30=400 m/s and ac=0.05g; (c) Mw=7, Strike-slip fault, Vs30=400 m/s and 
ac=0.1g and (d) Mw=7, reverse fault, Vs30=400 m/s and  ac=0.1g.  

 
The total standard deviations of this model are about 1-1.8 in the natural log scale for 

different ac values with different rupture distance. Albeit it is larger than any other reported 
sigma values (range from 0.7 to 1.5 for different models) of the Newmark displacement 
prediction models based on IMs, it is indeed similar if the variabilities of the predictors, i.e., IMs, 
are also considered in the Newmark displacement models.  Monte-Carlo simulation is used to 
compute the total aleatory variability of the one-step and two-step displacement models for given  
earthquake scenarios. For the two-step models, 100 sets of correlated vector IMs are generated 
firstly. For the vector models, the joint occurrence of multiple IMs is specified by using the 
empirical correlations. The correlation coefficient between PGA and Ia is specified as ρ(PGA, 
Ia)=0.88 ([14]). Secondly, for each set of vector IMs, 100 displacement residuals are simulated 
following a lognormal distribution. The standard deviation of the resulted 10000 displacement 
values is then calculated to estimate the total aleatory variability for each two-step Newmark 
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displacement model. For the one-step model, only 100 displacement residuals need to be 
generated for each scenario. Fig. 5 shows the standard deviations versus rupture distances for 
different magnitude scenarios. For the IM-based models, the total sigma values considering both 
the aleatory variabilities of GMPEs and Newmark displacement models are about 1.5-2.5 for 
ac=0.1g. It is noted that small displacement values have to be excluded in the calculation, since 
they are of little engineering importance but appear to be highly scattered in log scale. By 
comparison, the sigma of one-step displacement model reveals a generally consistent trend 
compared with other models. Since aleatory variability represents the inherent uncertainty that 
cannot be significantly reduced, the new DW13 model is not intended to reduce the aleatory 
variability but indeed simplify the computational procedures, as well as eliminates the epistemic 
uncertainties in using different GMPEs to obtain IMs. 
 

(a)   (b)  

Figure 5. Standard deviations considering aleatory variability of GMPEs and Newmark 
displacement models, for ac=0.1g and (a) Mw 7.5 (b) Mw 6.5 strike-slip earthquakes. 
Cut-off displacement value is 0.01 cm.  

 
Finally, a hypothetical area is investigated to compare different displacement models in 

estimating the spatial distribution of Newmark displacements in a regional scale. The 30 km × 30 
km area is divided into 900 sites separated by 1 km × 1 km in distance. The following 
Gutenberg-Richter relationship is assumed to describe the seismicity of the source: 

 
                      10log 4.4 1.0m wMλ = −                                                                                    (10) 

 
where mλ  is the mean annual rate of exceedance of the moment magnitude wM . A 30 km-long 
linear fault is located close to this area, shown in Fig. 6(a).  
 

To perform a two-step analysis using the IM-based models, a computational efficient 
method proposed by the authors [5] is used to derive the displacement hazard curves over the 
region. The computational algorithm employs a Monte Carlo simulation with data reduction 
techniques. The spatial correlation model [5] for PGA and Ia is also used to account for their 
spatial distribution over the region. A total of 90 earthquake scenarios, 5,400 IM-maps and 
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324,000 displacement maps are generated to obtain statistically reliable results.   
 

 

 
(a) 

(b)      (c)  
 

Figure 6. (a) A 30 km×30 km area divided into 1 km×1km grids and the location of the fault 
trace. Displacement hazard curves using different displacement prediction models 
for (a) exceedance area ratio AR* as 10%, and (b) AR* as 20%. Four models are 
considered here: [PGA, Ia] J07 model (Eq. 7), [PGA, Ia] RS08 model (Eq. 8), [Ia] 
HL11 model (Eq. 9), and the proposed DW13 model. Given a specified value of D 
(denoted as *D ), its exceedance area ratio *AR is defined as the ratio of the areas 
where displacements exceed the specified *D value against the total area of the region. 

 
 
For the one-step displacement model, the spatial correlation of the Newmark 

displacement residuals is also needed.  Our study (reported elsewhere) shows that a correlation 
range of 15 km is a reasonable estimation for displacement residuals in Eq. 4, if an exponential 
model is used to characterize the spatial correlation: 

 
( ) exp( 3 / )h h bρ = −                                                                                                (11)  
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where h refers to separation distance (km), b is the range of spatial correlation, and  ( )hρ  is used 
to quantify the correlation coefficient of displacement residuals at the separation distance of h. 
Clearly this correlation ρ equals 1 at zero separation distance and decreases to zero if h increases 
to infinity.  
 

Fig. 6 shows the comparison of the displacement hazard curves using the one-step model 
and other aforementioned IM-based models. It is to be noted that the averaged values of seven 
GMPEs (four NGA models for PGA prediction and three models for Ia prediction) are adopted in 
these two-stage displacement models. The proposed DW13 model can yield generally consistent 
curves comparing with other models in Fig. 6. Generally, similar trends in Fig. 6 can be observed 
among these hazard curves at the range of return periods 100-2500 years. The performance of the 
DW13 model is consistent with other IM-based models for various hazard levels. It is not our 
intention to judge which model is superior to the others, but to provide an illustrative comparison 
between the one-step versus the two-step approaches. Since the one-step approach eliminates the 
necessity to predict the IMs, the computational process is much more efficient compared with 
these two-step models. Only a total of 5,400 displacement maps are used in the one-step model, 
which is only 1.6% of the number of displacement maps needed in the two-step models.  
 

Conclusions 
 
This paper provides a new Newmark displacement predictive model. Unlike most existing 
Newmark displacement models using IMs as predicators, the proposed model can give an 
estimation of the Newmark displacement directly based on seismological information and site 
conditions (e.g. Mw, Rrup, Vs30, etc). Compared to the IM-based displacement models, the new 
model can result in reasonably consistent estimation of displacement hazard curves for various 
cases.  
 
 The reported total standard deviations are in the range of 1.6-1.84 in natural log scale for 
ac=0.05g-0.25g, respectively. Although it appears to be much larger than any IM-based 
Newmark displacement model, this sigma value of the one-step method is actually comparable to 
these two-step models if the aleatory variability of both the Newmark displacement predictions 
and IMs are incorporated. All these results imply that the proposed displacement model is 
applicable for the probabilistic displacement analysis, and it can be used as an alternative model 
to estimate the Newmark displacement.  

 
 The performance of this model over a large region is also comprehensively studied. It is 
observed that the one-step model can result in comparable results with other two-step models. In 
contrast to other two-step IM-based methods, the great benefit of using this new proposed model 
is that it can significantly reduce the computational cost. Based on the example presented in this 
paper, the computational effort of the one-step method is only one tenth of that of the two-step 
approaches for generating statistically stable results in the regional scale analysis.     
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