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SUMMARY

Earthquake-induced slope displacement is an important parameter for safety evaluation and earthquake
design of slope systems. Traditional probabilistic seismic hazard analysis usually focuses on evaluating
slope displacement at a particular location, and it is not suitable for spatially distributed slopes over a large
region. This study proposes a computationally efficient framework for fully probabilistic seismic displace-
ment analysis of spatially distributed slope systems using spatially correlated vector intensity measures
(IMs). First, a spatial cross-correlation model for three key ground motion IMs, that is, peak ground accel-
eration (PGA), Arias intensity, and peak ground velocity, is developed using 2686 ground motion recordings
from 11 recent earthquakes. To reduce the computational cost, Monte Carlo simulation and data reduction
techniques are utilized to generate spatially correlated random fields for the vector IMs. The slope
displacement hazards over the region are further quantified using empirical predictive equations. Finally,
an illustrative example is presented to highlight the importance of the spatial correlation and the advantage
of using spatially correlated vector IMs in seismic hazard analysis of spatially distributed slopes. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Estimating seismic displacement of natural slopes and earth structures is important for risk assessment
of earthquake-induced landslides and performance-based evaluation of key infrastructures. In practice,
the seismic slope displacement at a single site can be evaluated using a pseudoprobabilistic or a fully
probabilistic approach based on hazard information derived from probabilistic seismic hazard analysis
(PSHA) [1, 2]. However, quantifying the seismic performance of a slope system over a spatially
distributed region rather than at just a single site is critical for a variety of applications, including
regional risk assessment of landslide and landslide-related damage to lifelines, road systems, and
portfolios of infrastructures in this region. Rigorous seismic analysis over a spatially distributed
region is less straightforward than that for an individual site. It is not feasible to extend the
conventional PSHA-based method directly to the spatially distributed systems because the
conventional PSHA does not incorporate the spatial correlation of ground motion intensity measures
(IMs) over a region. While it is tempting to obtain the regional seismic loss estimation using the
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equal hazard maps obtained from the conventional PSHA, this approach implicitly assumes the IMs at
different sites are perfectly correlated. Some recent studies show that this approach would result in
significantly biased results when used for loss estimation of spatially distributed structures (e.g., [3, 4]).

Two major issues need to be addressed in developing a rational analytical scheme for predicting
earthquake-induced slope displacements in a regional scale. First, the spatial cross-correlations
between important ground motion IMs related to the estimation of seismic slope displacement have
to be systematically studied. One of the major challenges in developing spatial correlation models
for IMs is the availability of well-populated strong motion data. A couple of independent
earthquakes with densely populated recording stations are often used in previous studies, such as the
Northridge (1994) and Chi-Chi (1999) earthquakes. Recently, the spatial correlations of some
important IMs, such as the peak ground acceleration (PGA) and Arias intensity (Ia) [5], have been
developed by several researchers [6–10]. In addition, the cross-correlation between spectral
accelerations at multiple periods is investigated [11]. Currently, there is no spatial cross-correlation
study between PGA and other important parameters (Ia and peak ground velocity (PGV)) available
in the literature.

The second major issue is related with computational efficiency. For a fully probabilistic analysis of
spatially distributed slopes, Monte Carlo-based simulation (MCS) is the only feasible approach to
rigorously treat all sources of uncertainties. Because spatial correlations have to be considered
between each pair of IMs at each pair of sites, it is not possible to incorporate all these correlations
analytically in a vector PSHA-based approach. MCS becomes an inevitable solution, which has
attracted considerable attention recently in performing seismic hazard assessment (e.g., [3, 12, 13]).
In this study, we propose the following MCS-based framework: First, multiple magnitude-location
earthquake scenarios are simulated with frequencies assigned according to recurrence relationships
on the basis of the seismicity of the source; second, for each earthquake magnitude-location
scenario, vector IMs at all sites (called IM maps) will be randomly generated using ground motion
prediction equations (GMPEs) by incorporating inter-event variability and intra-event spatial
variability (using the derived spatial cross-correlation matrix) in the process; third, for each vector
IM map, multiple sliding displacement maps will be randomly generated using empirical
displacement prediction equations and considering their corresponding uncertainties. In the end, the
displacement hazard curve for the whole region can be further computed. The MCS approach would
result in increasing computational demand downstream in this process. For example, simulating a
30 × 30 km area (divided into 900 sites separated by 1 km) using 20 earthquake scenarios, 200 sets
of vector IM maps for each scenario, and 20 displacement maps for each IM map would generate a
total of 80,000 displacement maps. The efforts will be computationally prohibitive when all possible
magnitude-distance distributions of the earthquake scenarios need to be considered for practical
applications. The inefficiency of the conventional brute-force MCS method calls for a new
computationally efficient approach for the proposed stochastic simulation. Several recent studies have
been devoted to providing some suitable techniques to reduce the computational cost (e.g., [14, 15]).

This paper aims at developing a framework for a fully probabilistic analysis of spatially distributed
slopes. The spatial correlation between several key IMs most relevant to the prediction of seismic slope
displacement, that is, PGA, Ia, and PGV, is studied using 11 recent well-recorded earthquakes. A
MCS-based computational framework is also developed to rigorously account for all sources of
uncertainties. Three data reduction techniques are explored to reduce the computational cost.
Following this framework, an illustrative example is also provided in the end.

2. SCALAR AND VECTOR INTENSITY MEASURES FOR PREDICTING SEISMIC
SLOPE DISPLACEMENTS

A suitable prediction model is necessary to predict seismic slope displacement on the basis of ground
motion IMs. Since Newmark’s pioneering work on the rigid sliding block method [16], the Newmark
sliding displacement has important applications in evaluating natural slopes or earthquake-induced
landslides [17]. The Newmark displacement analysis assumes that the slope behaves as a rigid-
plastic material, and the slope displacement is calculated by double integrating the part of the input
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acceleration that exceeds a critical value (ac, which can be determined by the properties of slopes). It
provides a simple index of seismic slope performance. In the past, a large number of empirical
prediction equations have been proposed to predict the Newmark displacement based on a single
(scalar) or multiple IMs (a vector IM). The PGA, Ia, and PGV were often used as predictors for the
Newmark displacement, for example, [17–20]. As earthquake records are complex, transient time
series, multiple ground motion IMs are necessary to represent different aspects of ground motion
characteristics. The predictive models using a vector IM usually result in reduced aleatory variability
(i.e., improved efficiency) and unbiased results for a wide range of earthquake scenarios.

In this study, four recently developed Newmark displacement prediction equations are chosen on the
basis of a scalar IM (termed as PGA model), two-IMs (termed as (PGA, Ia) model and (PGA, PGV)
model), as well as three-IMs (termed as (PGA, Ia, PGV) model) as follows [19]:

(1) PGA model:

lnD ¼ 5:52� 4:43
ac

PGA

� �
� 20:39

ac
PGA

� �2
þ 42:61

ac
PGA

� �3
� 28:74

ac
PGA

� �4

þ0:72 ln PGAð Þ
(1a)

σ ln D ¼ 1:13 (1b)

(2) (PGA, Ia) model:

lnD ¼ 2:39� 5:24
ac

PGA

� �
� 18:78

ac
PGA

� �2
þ 42:01

ac
PGA

� �3
� 29:15

ac
PGA

� �4

�1:56 ln PGAð Þ þ 1:38 ln Iað Þ
(2a)

σ ln D ¼ 0:46þ 0:56 ac=PGAð Þ (2b)

(3) (PGA, PGV) model:

lnD ¼ �1:56� 4:58
ac

PGA

� �
� 20:84

ac
PGA

� �2
þ 44:75

ac
PGA

� �3
� 30:5

ac
PGA

� �4

�0:64 ln PGAð Þ þ 1:55 ln PGVð Þ
(3a)

σ ln D ¼ 0:41þ 0:52 ac=PGAð Þ (3b)

(4) (PGA, Ia, PGV) model:

lnD ¼ �0:74� 4:93
ac

PGA

� �
� 19:91

ac
PGA

� �2
þ 43:75

ac
PGA

� �3
� 30:12

ac
PGA

� �4

�1:3 ln PGAð Þ þ 1:04 ln PGVð Þ þ 0:67 ln Iað Þ
(4a)

σ ln D ¼ 0:2þ 0:79 ac=PGAð Þ (4b)

where D is the predicted sliding displacement in cm, ac and PGA are in the unit of g, PGV is the peak
ground velocity in cm/s, and Ia is the Arias intensity in the unit of m/s.

In general, the prediction models using vector IMs can significantly reduce the aleatory variability,
and the models show less bias with respect to rupture distance and moment magnitude compared with
the scalar (PGA) model [19]. One of the challenges associated with using the vector IM models is to
develop spatial cross-correlations between these IMs, which will be studied in the following sections.
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3. SPATIAL CROSS-CORRELATION FOR VECTOR IM [PGA, IA, PGV]

3.1. Ground motion database for the spatial correlation

A total of 2686 ground motion recordings from 11 earthquakes are compiled to develop the spatial
cross-correlation models for PGA, Ia, and PGV in this study. These earthquakes occurred in
California (1994 Northridge, 2004 Parkfield, 2005 Anza, 2007 Alum Rock, and 2008 Chino Hills
earthquakes), in Mexico (2010 EI Mayor Cucapah earthquake), in Japan (2000 Tottori, 2004
Niigata, 2007 Chuetsu, and 2008 Iwate earthquakes), and in Taiwan region (1999 Chi-Chi
earthquake). The recorded time histories for these events are obtained from CESMD, CESMOS for
US earthquakes and K-NET, Kik-Net for Japan earthquakes. The seismic information and site
conditions are obtained from the Pacific Earthquake Engineering Research Center’s Next Generation
Attenuation strong motion database (http://peer.berkeley.edu/products/strong_ground_motion_db.
html) and the Table S1 database provided by [21]. This detailed information of the earthquakes is
summarized in Table I. The moment magnitude and rupture distance distribution of the data in the
database are illustrated in Figure 1.

3.2. Geostatistical analysis of intra-event residuals

Based on ground motion prediction equations, the observed logarithmic IM, denoted as lnYij, at site j
for an earthquake event i, can be written as follows:

lnYij ¼ lnYij M;R; θð Þ þ ηi þ εij (5)

where lnYij M;R; θð Þ is the predicted mean IM based on magnitude (M), rupture distance (R), and other
variables (θ); ηi is the inter-event residuals with zero means and standard deviations of τi; and εij
denotes the intra-event residuals with zero means and standard deviations of σij. Both ηi and εij are
assumed to be normally distributed independent random variables [22, 23]. The standard deviation
of the total residuals is given by σT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σij
2 þ τi2

p
.

In this study, GMPEs developed by Campbell and Bozorgnia [24, 25] are used for PGA, PGV, and
Ia, respectively. These GMPEs are developed from the PEER-NGA database using the same functional
form. The intra-event residuals of recorded ground motions from each event are computed and
corrected to remove their bias against the rupture distance and shear wave velocity in the top 30m
(Vs30) values for each event as follows:

εcorrij ¼ εij � φ1 þ φ2 ln Rð Þ þ φ3 ln Vs30ð Þð Þ (6)

where φ1, φ2, and φ3 are the coefficients obtained by linear regression. The correction is necessary to
avoid artificial spatial correlations because of systematical predictive biases [9, 10].

Table I. Earthquake events used in this study.

Earthquake
name

Date
(mm/dd/yyyy)

Moment
magnitude

Hypocenter
latitude (o)

Hypocenter
longitude (o)

Fault
mechanism

Number of
recordings

Northridge 01/17/1994 6.69 34.206 �118.554 Reverse 152
Chi-Chi 09/20/1999 7.62 23.860 120.800 Reverse-oblique 401
Tottori 10/06/2000 6.61 35.275 133.350 Strike-slip 235
Parkfield 09/28/2004 6 35.817 �120.365 Strike-slip 90
Niigata 10/23/2004 6.63 37.307 138.839 Reverse 365
Anza 06/12/2005 5.2 35.533 �116.578 Reverse-oblique 111
Chuetsu 07/16/2007 6.8 37.538 138.617 Reverse 401
Alum Rock 10/30/2007 5.4 37.432 �121.776 Strike-slip 161
Iwate 06/13/2008 6.9 39.027 140.878 Reverse 279
Chino Hills 07/29/2008 5.4 33.955 �117.765 Reverse-oblique 337
EI Mayor Cucapah 04/04/2010 7.2 32.128 �115.303 Strike-slip 154

Note: only recorded data within the rupture distance of 200 km is included.
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For a vector IM= [PGA, Ia, PGV], the intra-event residuals can be assumed to follow a multivariate

normal distribution, for example, [26]. Under this assumption, the intra-event residuals εij ¼ ε1ij;…; εnij
� �

for n IMs for earthquake event i at site j can be fully obtained by their mean (zero vector in this case) and
covariance matrix. For event i, the covariance matrix can be shown as

Σ event ið Þ ¼
Σ1;1 … Σ1;J

⋮ ⋱ ⋮
ΣJ;1 ⋯ ΣJ;J

264
375 (7)

where J is the total number of sites. The submatrix Σk,l (k,l = 1,…J, representing different site)
can be written as

Σk;l ¼
cov ε1ik; ε

1
il

� �
… cov ε1ik; ε

n
il

� �
⋮ ⋱ ⋮

cov εnik; ε
1
il

� �
⋯ cov εnik; ε

n
il

� �
264

375 (8)

where n is the number of IMs considered and cov εpik; ε
q
il

� �
denotes the covariance between εpik

(the residual of the p-th IM at site k) and εqil (the residual of the q-th IM at site l) for event i.
The dimension of the total covariance matrix Σ(event i) is [J × n, J × n].

Cross-semivariogram is a widely used statistical tool to estimate the spatial correlation of
random variables. The cross-semivariogram can be defined as measuring the average dissimilarity
between two second-order stationary random variables Zi and Zj separated by a distance vector h as
follows [27]:

γij hð Þ ¼ 1
2
E Zi uþ hð Þ � Zi uð Þð Þ Zj uþ hð Þ � Zj uð Þ� �� �

(9)

where Zi(u) and Zi(u + h) are variable Zi evaluated at position u and at a position separated by a
distance vector h, respectively. In this study, Zi and Zj refer to the intra-event residuals of the i-th
and the j-th component of the vector IM. Under the assumptions that the spatial field is isotropic
and second-order stationary, a scalar variable h = ‖h‖ can be used in the formulation. As an estimate
of the theoretical Equation (9), an empirical cross-semivariogram can be calculated from a sample
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Figure 1. Magnitude and rupture distance distribution of records in the database.
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dataset. For an earthquake event, all empirical data pairs are gathered if the separation distance of the
data pair falls into a distance bin h. A classical estimator can be defined as

eγij hð Þ ¼ 1
2 N hð Þj j∑

N hð Þ
α¼1 zi uα þ hð Þ � zi uαð Þð Þ zj uα þ hð Þ � zj uαð Þ� �� �

(10)

where eγij hð Þ represents empirical cross-semivariograms, N(h) is the number of data pairs within this
distance bin h, and zi(uα+ h) and zi(uα) represent the α-th data pair in this bin for i-th component of
the vector IM. An exponential functional form can be used to fit the earlier empirical cross-
semivariogram data:

eγij hð Þ ¼ aij 1� exp �3h=rij
� �� �

(11)

where aij is the sill of the cross-semivariogram and rij is the range of the cross-semivariogram, defined
as the separation distance h at which eγij hð Þ equals 95% of the sill. On the other hand, the covariance
function Cij(h) is defined as

Cij hð Þ ¼ cov Zi uð Þ; Zj uþ hð Þ� � ¼ E Zi uð Þ � mið Þ Zj uþ hð Þ � mj

� �� �
(12)

where mi =E[Zi(u)] = 0 and i,j = 1,…n, represent different IM residuals. At an individual site (h→ 0),
Cij(0) = cov(Zi(u), Zj(u)) is the covariance between the i-th and the j-th component of the vector IM. It
is straightforward to show that the following relationship holds between the covariance function and
the cross-semivariogram function (c.f., pp. 72–74 in [27]):

Cij hð Þ ¼ lim
h→∞

γij hð Þ � γij hð Þ ¼ Cij 0ð Þ � γij hð Þ (13)

The unit-free correlation coefficient between two variables Zi and Zj is

ρij hð Þ ¼ Cij hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cii 0ð Þ�Cjj 0ð Þp (14)

Accordingly, the covariance matrix C(h) for the n-component vector IM is defined as follows:

C hð Þ ¼ Cij hð Þ� � ¼ C11 hð Þ … C1n hð Þ
⋮ ⋱ ⋮

Cn1 hð Þ ⋯ Cnn hð Þ

264
375 (15)

Therefore, the total covariance matrix Σ(event i) in Equation (7) can be implemented by submatrix C
(h) in Equation (15) as follows:

Σ event ið Þ ¼
C 0ð Þ … C h1Jð Þ
⋮ ⋱ ⋮

C hJ1ð Þ ⋯ C 0ð Þ

264
375 (16)

where hij represents the specific separation distance between site i and site j among a total of J sites (the
separation distance is always zero for diagonal elements).

In summary, the total covariance matrix for the n-component vector IM at J sites can be
obtained once the correlation range in Equation (11) is obtained by regression. The procedure
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(called ‘direct fit method’) is straightforward and efficient. However, the total covariance matrix
obtained by the direct fit method cannot guarantee the positive definiteness, making it difficult
to generate spatially correlated random field in application. Hence, a statistical approach termed
as the linear model of coregionalization (LMC, [28]) will be subsequently adopted in this study
to overcome the earlier limitation, such that the resulted total covariance matrix will guarantee
to be positive definite.

3.3. Coregionalization matrix for vector IM [PGA, Ia, PGV]

The LMC can be used to decompose the cross-semivariograms γij(h) as a linear combination of
independent random functions as follows [28]:

γij hð Þ ¼ ∑
L

l¼1
blijgl hð Þ ∀i; j (17)

where gl(h) is a given permissible basic function, blij represents the sill, and L is the number of basic
functions. Accordingly, the cross-semivariogram matrix Г(h) can be decomposed as ([28], pp. 171–173):

Γ hð Þ ¼ ∑
L

l¼1
Blgl hð Þ (18)

where Bl ¼ blij

h i
is called the coregionalization matrix. It is to be noted that as long as the positive

definiteness of matrix Bl is satisfied, the total covariance matrix Σ(event i) in Equation (16) is
guaranteed to be positive definite regardless of the number of sites located in this region. This condition
can be easily satisfied because Bl is just a n× n matrix (n is the number of IMs considered).

In this study, a short range (10 km) and a long range (60 km) exponential functions are used as the
basic functions of Г(h), h is in the unit of km:

Γ hð Þ ¼ B1 1� exp
�3h
10

	 
	 

þ B2 1� exp

�3h
60

	 
	 

(19)

Accordingly, the spatial correlation coefficient matrix can be obtained as

R hð Þ ¼ P1 exp
�3h
10

	 
	 

þ P2 exp

�3h
60

	 
	 

(20)

where R(h) is the correlation matrix and P1 and P2 are standardized versions of B1 and B2, defined as

plij ¼
blijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1ii þ b2ii

q	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1jj þ b2jj

q� � l ¼ 1; 2 (21)

An iterative algorithm can be used to obtain a positive definite matrix Bl efficiently for the LMC
model. This method minimizes the weighted sum of squares of differences between the empirical
cross-semivariograms and the one estimated by the LMC model:

WSS ¼ ∑
K

k¼1
∑
n

i¼1
∑
n

j¼1
w hkð Þ

eγij hkð Þ �⌢γij hkð Þ
h i2

σ̂i�σ̂j
(22)

where ⌢γij hkð Þ is the estimated cross-semivariogram by LMC,eγij hkð Þ is the empirical cross-semivariogram
data, σ̂i is the standard deviation of Zi (i=1,.., n), and w(hk) is the weight for separation distances hk
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(k=1,..,K). The algorithm checks and ensures the positive definiteness of Blmatrix during iterations. One
can refer to [29] for the details.

Following the earlier procedure, the cross-semivariograms with respect to separation distances for
PGA, Ia, and PGV, along with the fitted curves by the LMC method are illustrated in Figure 2 for
the Chi-Chi and Northridge earthquakes, respectively. All fitting LMC curves approximate the
empirical data reasonably well for each case. Similar results can be observed for other earthquakes
considered in this study. It is worth pointing out significant difference in the cross-semivariograms
that can be observed for the Chi-Chi and the Northridge data. In a most recent study [30], the spatial
correlations of [PGA, Ia, PGV] are found to be closely related to the regional site conditions. In
general, an IM recorded from a relatively homogenous region (e.g., the Chi-Chi event) tends to have
a stronger spatial correlation than that from a heterogeneous region (e.g., the Northridge event). One
can refer to [30] for predictive equations to estimate the coregionalization matrices P1 and P2 for the
vector IM [PGA, Ia, PGV] if the regional specific application is desired. For most practical
purposes, the following averaged coregionalization matrices P1 and P2 can be used, which are obtained
by averaging the coregionalization matrices from all 11 earthquake events considered in this study:

P1 ¼
0:61 0:57 0:39

0:57 0:67 0:46

0:39 0:46 0:50

264
375; P2 ¼

0:39 0:34 0:22

0:34 0:33 0:22

0:22 0:22 0:50

264
375 (23)

Both P1 and P2 are positive definite, which as we introduced earlier, is vitally important for
stochastic simulation of spatially correlated fields. Besides, any submatrices of P1 and P2 remain
positive definite. Considering the spatial correlation between PGA and Ia (i.e., p112 ¼ 0:57 and

Figure 2. Cross-semivariograms and fitted least median square curves for the Chi-Chi earthquake (lower tri-
angle, blue) and for the Northridge earthquake (upper triangle, red).
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p212 ¼ 0:34 in Equation (23)), the following spatial correlation coefficient can be obtained for
two sites separated by 10 km:

ρPGA;Ia 10ð Þ ¼ 0:57 exp
�3� 10

10

	 

þ 0:34 exp

�3� 10
60

	 

¼ 0:24 (24)

At each individual site (h = 0 km), the correlations between PGA, Ia, and PGV can be obtained as
ρPGA,Ia = 0.91, ρPGA,PGV= 0.61, and ρIa,PGV = 0.66 from this study. These values are in good
agreement with previous studies. For example, it was reported the correlations between these IMs
being 0.83, 0.58, and 0.64, respectively [1]. These proposed correlation matrices will be used in the
following example to generate spatially correlated fields of PGA, Ia, and PGV for calculating the
Newmark displacement.

4. STOCHASTIC SIMULATION USING DATA REDUCTION TECHNIQUES

For a fully probabilistic seismic displacement analysis, three levels of variabilities must be rigorously
accounted for in the analysis: (i) generation of all possible earthquake scenarios; (ii) generation of the
vector IM maps considering inter-event variability, and their intra-event spatial correlation between all
sites; and (iii) uncertainties of empirical displacement prediction equations. For this purpose, the
MCS-based stochastic simulation is the only viable solution. However, using conventional MCS
will result in prohibitive computational cost. A computationally efficient framework must be
developed to rigorously account for all sources of uncertainties.

4.1. Importance sampling technique

Importance sampling (IS) is a widely used data reduction technique to sample earthquake scenarios
(e.g., [14, 31]). Generally speaking, earthquake magnitudes follow some recurrence relationships
(e.g., Gutenberg–Richter law). Random sampling of earthquake scenarios is inefficient because large
magnitude events are infrequently sampled although they are more important in hazard analysis.
Instead, the IS technique preferentially samples the rare large events. The effects of IS technique are
accounted for through assigning suitable weights to each sampling so that the occurrence rate of the
earthquake scenarios can still be correctly represented. The procedure is introduced as follows:

(1) Rupture location is assumed to be uniformly distributed within each earthquake source zone,
and a magnitude density function f (m) is used to characterize each earthquake source. The range
of magnitude (between a lower bound Mmin and an upper bound Mmax) is divided into nm inter-
vals. The interval can vary with magnitude (i.e., a smaller interval for larger magnitudes).

(2) A magnitude can be randomly selected within each interval [mk, mk+1], with an actual
probability of ∫mkþ1

mk
f mð Þdm. So, a total of nm earthquake events can be sampled for each rupture

location. The sampling probability is 1/nm for each event.
(3) The IS weight for each sampled scenario k is computed as

ISk ¼
∫mkþ1

mk
f mð Þdm
1=nm

(25)

(4) If a total of NM magnitude-location scenarios are generated from all earthquake sources, the actual
annual occurrence probability for scenario j is assigned as

Pj ¼ ISj
∑NM

i¼1ISi
(26)

4.2. Stratified sampling method

In conventional MCS, a constant number of ground motion maps are generated for each earthquake
scenario. Yet, the number of intensity maps can be reduced for some unimportant events (e.g., a
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small-magnitude far-distance event). Using the stratified sampling (SS) technique [32], an optimal
number of intensity maps can be assigned for each scenario.

Let Nj denote the number of corresponding intensity maps for the j-th event. The total number of

intensity maps is N ¼ ∑
J

j¼1
Nj for all events. Define Xir ¼ X 1ð Þ

ir ;…;X Nð Þ
ir

n o
, where X nð Þ

ir is a binary

variable for the generated n-th IM map at site i for a given return period r years. Its value is defined as

X nð Þ
ir ¼ 0;

1;

if yin < Yir

if yin⩾Yir

(
(27)

where yin is the generated IM value at site i for n-th IM map, n = 1,…, N is the total number of maps,
and Yir is an IM value on the analytical hazard curve corresponding to a return period r at site i

(Figure 3). Yir can be computed from the conventional PSHA procedure. Define Xijr ¼ 1
Nj

∑
Nj

n¼1
X nð Þ
ijr ,

where {X 1ð Þ
ijr ,… X

Njð Þ
ijr } ≡Xijr represents a subset of Xir corresponding to j-th event. Then, we can

define Xir ¼ ∑
J

j¼1
PjXijr , where Pj is the annual occurrence probability for the j-th scenario calculated

by Equation (26). In fact, Xir is the estimated value of Yir. The variance of Xir can be calculated as [32]:

var Xir

� � ¼ ∑
J

j¼1

Pj
2φ2ijr
Nj

� ∑
J

j¼1

Pj
2φ2ijr
N

(28)

where N is the total number of intensity maps and φ2ijr is the population variation of Xijr (for the j-th

scenario at site i and return period r). Because Xijr follows Bernoulli distribution, φ2ijr can be
calculate as

φ2ijr ¼ P yij⩾Yir

� �� 1� P yij⩾Yir

� �� �
(29)

where yij is an IM variable for scenario j at site i, and P(yij≥ Yir) is the theoretical probability of
exceeding Yir at site i for event j.

Under the constraint that ∑
J

j¼1
Nj ¼ N , the optimal Nj that minimizes var Xir

� �
, called Neyman

allocation [33], would be
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Figure 3. Errors between the analytical curve and reduced set hazard curve for PGA.
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Nj ¼ N� Pjφijr
∑J

j¼1Pjφijr

" #
(30)

Then, the value of Nj for each event can be given by combining Equations (29) and (30):

Nj ¼ N�
Pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P yij⩾Yir

� �� 1� P yij⩾Yir

� �� �q
∑J

j¼1Pj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P yij⩾Yir

� �� 1� P yij⩾Yir

� �� �q
264

375 (31)

This method results in an optimal number of ground motion IM maps, Nj, for each scenario j for
each site i that minimizes the generated and the analytical hazard curves at a given return period r.
We used four return periods (r =100, 475, 1000, and 2475 years) in this study. An averaged value of
Nj over all sites, all return periods and all IMs are chosen as the final number of ground motion
maps to be generated for each scenario. Finally, the annual occurrence probability for each ground
motion intensity map is

Pn ¼ Pj

Nj
n ¼ 1;…;Nð Þ (32)

4.3. Optimization-based probabilistic scenario method

The optimization-based probabilistic scenario (OPT) method uses a mixed-integer linear programming
technique to further reduce the candidate set of ground motion maps obtained by the SS method [34,
35]. The key feature of OPT method is to select the subset of candidate maps so as to minimize the
difference between the hazard curves based on the stochastically simulated IM maps and the
analytical curves (or ‘true’ hazard curves) obtained by conventional PSHA at all sites. Considering a
set of R controlling points on the true hazard curve at i-th (i= 1,…,I ) site with r-year return periods,
the objective function is

min ∑I
i¼1∑

R
r wr eþir þ e�ir

� �n o
(33)

where eþir and e�ir are the (absolute) errors for overestimation and underestimation of the hazard curve
and wr is the weight for the return period r, as demonstrated in Figure 3. Given that it is more important
to consider the larger return periods, the weight wr is assigned as the same as the corresponding return
period r in this study (i.e., wr= r). If the reduced hazard curve overestimates the true hazard curve, eþir
and e�ir are a positive value and 0, respectively, and they equal to 0 and a positive value when the
reduced curve underestimates the true hazard curve.

Assume Pn is the annual occurrence probability for each ground motion map (n= 1,…,N); Yir is the
intensity value from analytical hazard curve for return period r-year at site i, and yin is the intensity
value at site i on the n-th ground motion map. Then, the constrained equilibrium function reads:

∑
N

n¼1
Pn�I yin⩾Yirð Þf g � eþir þ e�ir ¼

1
r

(34)

where I(yin⩾ Yir) is a binary function (equals 1 when yin⩾ Yir and 0 otherwise). In fact,

∑
N

n¼1
Pn�I yin⩾Yirð Þf g is the simulated exceedance probability of IM at site i for a return period of

r (i.e., 1/r is the analytical exceedance probability). Two additional constraints are applied to
restrict the total number of reduced IM maps being less than a user-defined number Nset:
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Pn⩽Zn; ∀n and ∑N
n¼1Zn⩽Nset (35)

where Zn is an indicator variable (Zn = 1 if the n-th IM map is retained in the reduced set,
0 otherwise). Each individual variable is constrained as follows:

Zn∈ 0; 1f g ∀n; eþir ; e
�
ir ⩾ 0 ∀i; r; 0⩽ Pn⩽1 ∀n (36)

The optimization process is initiated by a mixed-integer linear program to solve for Zn and Pn

through the objective function Equation (33) under the constraints given by Equations (34–36). If
the calculated Pn = 0, the n-th IM map is removed from the reduced set. It is worth pointing out that
the obtained Pn for each IM map is updated from that computed from SS technique by Equation (32).

These data reduction techniques can greatly reduce the computational cost without compromising
the accuracy. The method is compared in details with the conventional MCS method in the next section.

4.4. Summary of the fully probabilistic analysis procedure

A fully probabilistic analysis procedure is summarized in the following steps:

Step 1: A set of earthquake magnitude-location scenarios can be simulated using stochastic method
following magnitude-recurrence relationships. Important sampling technique is used in this
step to reduce the number of samplings.

Step 2: The median predicted values of IMs and their corresponding standard deviation (τi and σij) of
the inter/intra-event residuals for each site are computed using Equation (5).

Step 3: The inter-event residuals (ηij) are randomly generated following univariate normal distribution
ηij=N(0,τi). The spatially correlated intra-event residuals (εij) are randomly generated for n
IMs at all sites following multivariate normal distribution with a zero mean, standard deviation
(σij), and the total spatial correlation matrix R.

Step 4: Ground motion IM maps are calculated by combining the median, inter-event, and intra-event
residuals for each scenario. The SS and OPT methods are used to determine the number of
ground motion IM maps need to be generated, and Pn is calculated via Equation (34) for each
IM map.

Step 5: The median predicted Newmark displacement and the standard deviation σD are computed for
each IM map using predictive models. The displacement residuals are randomly generated at
all sites following a univariate normal distribution with a zero mean, standard deviation
(σD), and a site-to-site correlation coefficient of ρD(h), which will be reported in a separate
study. In the following example, the range of spatial correlation of displacement residuals is
assumed to be 10 km, that is, ρD(h) = exp(�3h/10). Our preliminary study shows that ρD(h)
does not significantly influence the regional hazard analysis.

Step 6: A total number of ND displacement maps are retained using the SS method. For j-th displace-
ment map, the corresponding probability is calculated as PDj ¼ Pn

Nn
, where Nn is the assigned

number of displacement maps for the n-th IM map by SS method. Finally, the annual proba-
bility of exceedance λD * for specific value D* for site i can be computed as

λD* ¼ ∑
ND

j¼1
PDj�I Dij ⩾D*

� �
(37)

where I (Dij≥D *) is again a binary function (equals 1 if the argument is true, and 0 else).

5. AN ILLUSTRATIVE EXAMPLE

5.1. Problem description

In this section, a hypothetical area is investigated by the proposed fully probabilistic approach. The
30 × 30 km area is divided into 900 sites separated by 1 × 1 km in distance. A constant critical
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acceleration ac = 0.1 g is assigned to all sites. It is assumed the epicenters of all rupture scenarios are
located along the 30-km long linear fault trace close to this area, shown in Figure 4(a). The 30-km
long linear source is further discretized into five 6-km long segments, and the epicenter of rupture
scenarios is randomly distributed within each segment. The Wells and Coppersmith empirical
equation [36] is used to estimate the fault rupture length for each scenario:

log10 Lð Þ ¼ �3:22þ 0:69Mw (38)

where Mw is the moment magnitude and L represents fault rupture length.
The following Gutenberg–Richter relationship is assumed to describe the seismicity of the source:

log10λm ¼ 4:4� 1:0Mw (39)

where λm is the mean annual rate of exceedance of the moment magnitude Mw. The minimum and
maximum magnitudes are set as 4.4 and 7.5, respectively. The GMPEs [24, 25] are used to estimate
the predicted median values for PGA, PGV, and Ia, respectively. The four aforementioned models
(Equations (1)–(4)) are adopted to compute the Newmark displacement.

The IS method is applied to stratify the range of magnitudes. The partition interval is 0.3 for
4.4⩽Mw< 5.6, 0.2 for 5.6⩽Mw⩽ 6.6, and 0.1 for Mw> 6.6. In this example, 18 scenarios are
sampled within each fault segment, resulting in a total of 90 scenarios considered. After applying
the SS and OPT method, 400 maps are generated for each IM (PGA, Ia, and PGV) in the ‘reduced
set’ with assigned probability Pn. One realization of randomly generated PGA, Ia, and PGV maps is

Figure 4. (a) A 30 × 30 km area divided into 1 × 1 km grids showing the location of the fault trace. Site A and
Site B are two selected sites for comparison. Subplots (b), (c), and (d) show one realization of spatially
correlated vector IM fields for a moment magnitude 7 earthquake scenario for (b) PGA (in unit of g),
(c) Arias intensity (Ia) (in unit of m/s), and (d) peak ground velocity (PGV) (in unit of cm/s), respectively,

all presented in log10 scale.
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illustrated in Figure 4 for a moment magnitude 7 earthquake scenario. By applying SS method, a total
of 3000 displacement maps are generated in the reduced set each with assigned probability PD.

After the earthquake scenarios are sampled using IS, the conventional MCS method is used to
generate 100 sets of inter and intra-event residuals for each IM and each earthquake scenario for
comparison (i.e., a total of 9000 IM maps, called the ‘large set’). For each group of intensity maps,
the MCS is also carried out to obtain the 60 sets of displacement maps, resulting in a total number
of 540,000 displacement maps. It is also noted that if the conventional MCS is conducted from the
beginning of the procedure (IS is not used), the required computational cost should increase by
more than three orders of magnitude.

5.2. Hazard consistency of the reduced sets

In this section, the hazard consistency is checked by comparing the intensity and displacement hazard
curves obtained from the reduced set and the large set of IM maps and displacement maps. The
simulated intensity hazard curve can be obtained by calculating the probability of exceedance for
each IM and each site as

λy* ¼ ∑
N

n¼1
Pn�I yin ⩾ y*ð Þ (40)

where Pn is the probability for the n-th IM map, yin represents IM value at site i on the n-th IM map,
and I(yin⩾ y *) is a binary function (equals 1 if yin⩾ y *, 0 otherwise). On the other hand, the analytical
(true) intensity hazard curve for IM Y at each site can be computed using PSHA approach:

eλy* ¼ ∬P Y ⩾ y* m; rjð Þf mð Þf rð Þdmdr (41)

where P(Y⩾ y * |m,r) is computed using GMPEs by assuming lognormal distribution of IM.
Equation (37) is used to compute the probability of exceedance of Newmark displacement. For the

scalar model (Equation (1a) and (1b)), the analytical displacement hazard curve can be computed as

eλD xð Þ ¼ ∫P D⩾ x IM ¼ yjð Þf IM yð Þdy (42)

where fIM(y) means the probability of occurrence of IM level y and P(D⩾ x|IM = y) refers to the
probability that the displacement level x is exceeded for the given IM value y. For the models using
two-IMs (Equations (2–3)), the joint probability density function for the vector IM must be
considered [37]. The analytical displacement hazard curve is calculated as

eλD xð Þ ¼ ∫P D⩾ x IM1 ¼ yj ; IM2 ¼ zð Þf IM1;IM2
y; zð Þdzdy (43)

where f IM1;IM2
y; zð Þ is the joint occurrence probability for IM1 equals y and IM2 equals z [1]. The

analytical function for the three-IM case is more complicated and will not be presented in this paper.
Intensity hazard curves obtained from the reduce set and the large set are compared with the analytical

hazard curves for PGA, Ia, and PGV in Figure 5 for two representative sites A and B shown in Figure 4(a).
Quite consistent results can be observed for both sites and all IMs. The displacement hazard curves for the
two sites are also compared in Figure 6 using the scalar (PGA) model and (PGA, Ia) model. It can be seen
that the displacement hazard curves obtained by using data reduction technique are in reasonable
agreement with these obtained using conventional MCS method, although the former only requires
about one-180th number of realizations of the latter. Also, all these hazard curves obtained from
sampling maps are consistent with the analytical hazard curves (Equations (42, 43)). By this example, it
is demonstrated that the proposed computational framework can result in stable, fast, and hazard-
consistent results and can be used to estimate the seismic risk over a large region.
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5.3. Importance of spatial correlation

In this section, the importance of spatial correlation on the regional-scale hazard analysis is
highlighted by considering several special cases. Given a specified value of D (denoted as D*)
and its exceedance area ratio AR*(defined as the ratio of the areas where displacements exceed
the specified D* value against the total area of the region), the annual rate of exceedance
(termed as ‘aggregated displacement hazard curve’) can be computed as

λ ¼ ∑
ND

j¼1
PDjIj D > D�&AR > AR�ð Þ (44)

where PDj is the occurrence probability for displacement map j and Ij(D>D*&AR>AR*) is a
binary function for displacement map j (equals 1 if the argument is true and 0 otherwise).

On the other hand, the analytical displacement hazard curve for each individual site can be
computed independently using Equations (42– 43), as is discussed before. Figure 7 is such an
example showing contours of the displacements over this region for a return period of 2475 years
obtained by the analytical methods, termed as the equal hazard displacement maps. Figure 8 shows
the aggregated displacement hazard curve using the scalar (PGA) model and the (PGA, Ia) model,
by assuming AR* is 25%. The spatial correlation of IMs is assumed to follow zero correlation,
model correlation via Equation (20), and perfect correlation. Accordingly, the range of spatial
correlation of displacement residuals, ρD(h), is assumed to be zero, 10 km, and infinite for these
cases. The results demonstrate that, ignoring spatial correlation would yield an underestimated
displacement hazard curve, especially for the rare cases. The case of perfect correlation, on the other
hand, would overestimate the displacement hazard. It may also be tempting to convolve the
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Figure 5. Comparison of seismic hazard curves obtained using the reduced intensity measure maps
(400 maps) and the large intensity measure maps (9000 maps) method for PGA, peak ground velocity,
and Arias intensity at site A and site B. The analytical curves obtained by Equations (42, 43) are also shown.
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analytical displacement hazard curve at individual sites directly to obtain the aggregated displacement
hazard curve for a given annual rate of exceedance value and AR*. More specifically, the ‘convolved
curve’ simply chooses the 1–AR* percentile displacement directly from the equal hazard displacement
maps (such as Figure 7) for each return period. However, the process implicitly assumes that the
sliding displacements for a certain return period occur simultaneously at all locations, that is, they
are perfectly correlated. It can be further verified in Figure 8 that the ‘convolved curve’ is very close
to the ‘perfect correlation’ curve, and both of them overestimate hazard estimate for spatially
distributed slopes. Although only the scalar (PGA) model and the vector (PGA, Ia) model are used
in Figure 8, similar conclusions can be drawn if other vector models are used.

5.4. Influence of displacement prediction models

In this section, the displacement hazard curves obtained using four different displacement prediction
models are compared. Figure 9 shows the displacement hazard curves for individual sites (A and B),
as well as for a given area ratio AR* of 5% and 25%, respectively. The spatial correlation of vector
IMs are computed using Equation (20). For all these cases, the displacement hazard curves obtained
from the scalar PGA model are significantly higher than these obtained from vector models. The
large discrepancy is not unexpected since a scalar displacement prediction model usually cannot
satisfy the sufficiency requirement, for example, the model exhibits systematic bias over earthquake
magnitudes [1] On the other hand, rather consistent results are obtained using three vector IM
models, because the sufficiency requirement can be more easily satisfied using a vector model. The
results clearly demonstrated the advantage of using vector IMs in displacement hazard analysis.
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Figure 7. The equal hazard displacement maps (in cm) for a return period of 2475 years obtained by
analytical methods using (a) PGA model and (b) (PGA, Ia) model.
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6. CONCLUSIONS

This paper provided a computationally efficient framework to conduct a fully probabilistic hazard
analysis for spatially distributed slopes. The cross-correlations between the vector IM [PGA, Ia,
PGV] are developed on the basis of geostatistical modeling of strong motion data from 11 recent
earthquakes. The coregionalization matrices provide a positive definite covariance matrix that
enables generation of random fields of the vector IM preserving their spatial correlations.

The developed covariance model for the vector IM [PGA, Ia, PGV] is then used to quantify the
spatial variability in a hypothetical region. The intensity maps and sliding displacement maps are
generated by Monte Carlo method, and aleatory variability is incorporated in each step. To reduce
the computational cost, several state-of-the-art data reduction techniques are also applied. The
difference of hazard curves between ‘reduced set’ and ‘large set’ implies that results obtained from
data reduction techniques can provide accurate results. The importance of spatial correlation is also
emphasized using the example. Neglecting the spatial variability or using the convolved analytical
solution would result in either underestimated or overestimated displacement hazard curves.

Finally, the displacement hazard curves computed by different predictive models (PGA model,
(PGA, Ia) model, (PGA, PGV) model and (PGA, Ia, PGV) model) are compared. Except for the
scaler PGA model, all vector models yield consistent displacement hazard curves for individual sites
as well as for the whole region. The vector models demonstrate significant advantages over the
scalar model, underlining the importance of using spatially correlated vector IM in seismic hazard
analysis of spatially distributed slopes.
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