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A B S T R A C T

The effective number of cycles is an important ground motion parameter for the assessment of liquefaction
potential. In this paper, empirical correlations for two measures of the effective number of cycles with seven
amplitude-, cumulative-, and duration-based intensity measures (IMs) are studied and compared, based on the
NGA strong motion database and several ground motion prediction equations. The adopted definitions of the
effective number of cycles include an absolute measure (NA) and a relative measure (NR). It is shown that NA is
highly correlated with high-frequency IMs, such as spectral acceleration (SA) at short periods, Arias intensity,
and negatively correlated with signification durations (Ds). On the other hand, NR shows generally negative
correlations with both amplitude- and cumulative-based IMs. NR also exhibits small-to-moderate positive cor-
relations with Ds, which are commonly regarded as similar parameters to the effect number of cycles. Simple
parametric functions are provided to describe the NA-SA and NR-SA correlations for various cases. The im-
portance of considering multiple IMs rather than SA only in ground-motion selection is also briefly demon-
strated.

1. Introduction

The number of cycles of ground motions has been widely recognized
as one of the critical parameters in geotechnical earthquake en-
gineering. Many studies (e.g., [1,2]) have concluded that the number of
cycles of shakings is strongly correlated with the buildup of pore water
pressure in liquefiable soils. As summarized by Hancock and Bommer
[3], there are dozens of definitions to count the effective number of
cycles, by converting all irregular amplitude cycles to an equivalent
number of uniform cycles. The concept of equivalent number of cycles
is commonly used for evaluating liquefaction potential [4–6].

Due to the complex features of ground motion time histories, single
ground motion intensity measure (IM) cannot adequately characterize
earthquake loadings. Therefore, a set of IMs (vector-IMs) is often re-
quired in some practical applications, such as the estimation of earth-
quake-induced slope displacement [7,8]. Since current ground motion
prediction equations (GMPEs) only provide the means and standard
deviations for specific IMs, empirical correlations among the residuals
of these IMs are then the key requirement to contrast the joint dis-
tribution of vector-IMs. These empirical correlations are indispensable
in vector-based probabilistic seismic hazard analysis [9] and scenario-
based ground motion selection approaches, e.g., [10–12].

Recently a number of researchers have studied empirical correla-
tions between the residuals of multiple IMs, such as spectral accelera-
tions (SA) at multiple periods, Arias intensity (Ia), cumulative absolute
velocity (CAV), and significant durations (Ds), e.g., [13–18]. However,
to the knowledge of the authors, there are no existing correlation
models involving the number of effective cycles. Bommer et al. [19] has
studied the correlations between several duration parameters and ef-
fective numbers of ground motion cycles. Yet, they did not aim at
evaluating the correlations between the residuals of these IMs, making
it difficult to be used in some applications such as ground motion se-
lection.

The objective of this paper is to examine the empirical correlations
between the effective number of cycles and other commonly used IMs.
The definitions of these employed IMs are firstly discussed, associated
with the utilized GMPEs and ground motion database. Secondly, the
estimated correlation coefficients between the residuals of these IMs are
presented; simple parametric models are also proposed to readily pre-
dict the empirical correlations. The influence of rupture distance (Rrup)
on the resulting correlation coefficients is then examined. Finally, based
on the correlation results, some recommendations are provided re-
garding the use of different definitions of the effective number of cycles
for practical applications.
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2. Selected IMs and ground motion database

2.1. Effective number of cycles

As summarized in Hancock and Bommer [3], there are many cycle-
counting definitions in the literature, which can be mainly classified
into several categories: peak counting, level crossing counting, range
counting, and indirect counting methods. These cycle-counting defini-
tions were developed for low-cycle fatigue testing [20]. Among these
definitions, the rainflow range-counting method is the most popular
since it quantifies both the high-frequency and low-frequency cyclic
waves in broadband signals. This method counts a history of peaks and
troughs in sequence which can be regarded as starting and ending
points for defining each cycle. The algorithm can be simplified as: (i),
the signal is turned clockwise as 90°; (ii), an imagined source of water
will flow down the “pagoda roofs” from their upper tops; (iii), the water
will drip down when it reaches the edge. It will stop when it comes to a
point that is already wet (quantified by previous flow), or it reaches
opposite beyond the vertical of the starting point; (iv), the steps (ii)-(iii)
can be repeated to get a series of half-cycles. The detailed algorithm of
this approach can be found in References [3,21]. Fig. 1 shows a simple
example about the application of the rainflow-counting technique.
Total five half-cycles and one full-cycle are identified for this wave.
Besides, prediction equations for the effective number of cycles based
on the rainflow-counting approach have been proposed [22], which can
be directly used to account for the statistical distributions of these IMs.

Similar to the cyclic damage parameter for low-cycle fatigue failure
used by Malhotra [23], the absolute definition of the effective number
of cycles can be expressed as:
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where ui is the amplitude of the i-th half cycle obtained by the rainflow
range-counting method; Tn is the total number of cycles; and NA is the
absolute measure of the effective number of cycles. It is noted that the
exponent coefficient is set as 2 herein, which reflects the relative im-
portance of different amplitude cycles. A higher value of the exponent
coefficient represents a larger contribution caused by large-amplitude
cycles.

Relative definitions of the effective number of cycles are commonly
used in earthquake engineering. A typical relative definition of the
number of cycles, in which each amplitude ui is normalized by the
maximum amplitude of all half-cycles, umax, is expressed as:
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where NR is the relative measure of the effective cycles. A value of 2 is
also adopted for the exponent coefficient.

It is worth noting that only the effective number of cycles obtained
by the rainflow-counting method is considered in this paper, due to its
popularity and robustness. The selected measures of cyclic numbers can
be applied in most practical cases. The aforementioned empirical
equations proposed by Stafford and Bommer [22], which are termed as
SB09 model hereafter, will be used to predict NA and NR in the fol-
lowing section. The SB09 model utilized a subset of the Pacific Earth-
quake Engineering Research (PEER) NGA-West1 database [24], em-
ploying moment magnitude Mw, rupture distance Rrup, site parameters
and the depth to the top of rupture (Ztor) as indicators. A set of equa-
tions has been proposed by Stafford and Bommer [22], while only the
basic equations without the consideration of Ztor or directivity effect are
used in this study. The median predictions of the SB09 model for NA and
NR with respect to Mw and Rrup are shown in Fig. 2. It should be noted
that the other few prediction equations using different counting
methods, e.g., [25], are not considered due to the scope of this paper.

2.2. Other IMs considered

The other IMs considered herein are listed as: (a) peak values of
ground motion time histories, including peak ground acceleration
(PGA) and peak ground velocity (PGV); (b) SA at multiple periods; (c)
cumulative-based intensity measures, including Ia and CAV; and (d)
ground motion duration parameters, including significant durations
defined as time intervals over which 5–75% and 5–95% of Ia are built

Fig. 1. A demonstrated example of the use of rainflow-counting approach. This segment
consists of several sine waves, which can be counted as five half cycles (1–2; 2–3; 3–4-
′4 −5; 5–6 and 6–7) and one full cycle (4–8- ′4 ). The amplitudes of the five half cycles are
0.1, 0.2, 0.15, 0.1, and 0.05 g, respectively; the amplitude of the full cycle is 0.05 g. The
segment yields values of NA and NR as 0.09 and 1.125, respectively.

Fig. 2. Median predictions of the SB09 model for the effective number of cycles NA and NR, respectively. The Vs30 value is set as 400 m/s for predicting NR.
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up (termed as Ds5–75 and Ds5–95, respectively). The selected IMs cover a
range of amplitude-, intensity-, and duration-based parameters, re-
presenting various characteristics of earthquake loadings. The IMs
considered as well as their definitions are summarized in Table 1.

Several GMPEs are needed to predict the statistical distributions
(medians and standard deviations) of these IMs. For PGA, PGV, and SA,
since the SB09 model for NA and NR was developed using the NGA-
West1 database, it seems not necessary to select the recently proposed
NGA-West2 GMPEs. Instead, the GMPEs of the NGA-West1 project for
shallow crustal earthquakes in active tectonic regions are adopted:
Abrahamson and Silva [26], Boore and Atkinson [27], Campbell and
Bozorgnia [28], and Chiou and Youngs [29]. They are referred to as
AS08, BA08, CB08, and CY08, respectively. The GMPEs proposed by
Travasarou and Bray [30], Foulser-Piggott and Stafford [31], and
Campbell and Bozorgnia [32] are chosen to estimate the statistical
distribution of Ia. For CAV, only two GMPEs [33,34] were developed
using the global ground motion database, so they are adopted.

The GMPEs proposed by Kempton and Stewart [35] (KS06),
Bommer et al. [36] (BSA09), and Du and Wang [37] (DW17) are used
for predicting the significant durations Ds5–75 and Ds5–95. The KS06
model was developed based on the analysis of magnitude effects on
source duration, while the BSA09 and DW17 models were empirically
derived using subsets of the NGA database. Only the base function
(without the consideration of fault type or directivity effect) of the KS06
model is used herein. All the selected GMPEs as well as their ab-
breviations are also summarized in Table 1.

2.3. Ground motion database

A subset of the NGA database is selected to calculate the empirical
values of the IMs considered. The ground motion database selected is
almost identical to that used in deriving the CB08 model [28], including
1560 recordings from 64 earthquakes with moment magnitudes from
4.3 to 7.9 and rupture distances from 0.1 to 199 km. The complete
recording list regarding the database can be found in Campbell and
Bozorgnia [38]. Fig. 3(a) shows the distribution of moment magnitude
and rupture distance contained in the database.

It should be noted that each recorded time history has a usable
period range, in order to eliminate low-frequency or high-frequency
noises. Therefore, SA at periods larger than the maximum usable period
should not be used for subsequent correlation analyses. The number of
usable ground motions is expected to decrease as vibration period in-
creases, as is shown in Fig. 3(b).

3. Empirical correlation analyses

3.1. Computational procedures for correlation coefficients

Current GMPEs usually assume that IMs are logarithmically nor-
mally distributed, which can be shown as:

= + +IM IM η εln( ) ln( )i i i i (3)

where IMln( )i and IMln( )i denote the measured (geometric mean of two
horizontal components of each record) and the predicted logarithmic i-
th IM (e.g., SA, Ia, NA), respectively. ηi and εi represent the inter-event
and intra-event residuals of the i-th IM (normally distributed with zeros
means and standard deviations τ and σ), respectively. The total standard
deviation σT is given as = +σ τ σT

2 2 2 . The values of τ, σ, and σT for
various IMs are generally provided by GMPEs.

The Pearson product-moment correlation coefficient is a widely
used measure of linear correlation between two variables [39]. The
correlation coefficients between the inter-event or intra-event residuals
of different IMs can be estimated as:
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where x1 and x2 are random variables (e.g., η1 and η2 for the inter-
event residuals of IM1 and IM2); n is the total number of the random
variables considered (i.e., number of earthquakes for the inter-event
correlation, or number of ground motion records for the intra-event
correlation); and x1 and x2 denote the sample mean of variables x1
and x2, respectively. In this paper, IM1 refers to NA or NR, and IM2

refers to the other aforementioned measures such as PGA, SA, and Ia.
For each pair of IMs, ρη η1, 2

and ρε ε1, 2 can be computed via Eq. (4).
Under the assumption that ηi and εi are independent [40], the

correlation between the total residuals can be expressed as:
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where τk, σk, and σTk (k = 1, 2) are the standard deviations of the inter-
event, intra-event, and total residuals for the k-th IM, respectively.
Thus, the correlation between the total residuals for each pair of IMs
can be calculated via Eqs. (4) and (5) accordingly.

The above statistical analysis only provides the point-estimate of the
correlation coefficient, while the uncertainty of ρ should also be ac-
counted for carefully. Such uncertainty is due to the finite number of
sample size, as well as different ground motion models used in its de-
termination. A bootstrap method is often used to construct the con-
fidence intervals of correlation coefficients [39]. The basic idea of this
method is to re-sample the observed dataset by random sampling with
replacement from the original dataset, and then the correlation coeffi-
cients of these bootstrap replicates can be calculated. This process needs
to be repeated a certain number of times to accurately estimate the
variance of ρ.

In addition to the bootstrap method, another widely used method is
the Fisher z transformation [41]. This method converts the correlation
coefficient ρ into a transformed variable z via:
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where ρ is the Pearson correlation coefficient; −tanh 1 is the inverse

Table 1
Summary of the IMs considered in this study.

IM parameters Definition* GMPEs used

Abbreviations Reference

NA Shown in Eq. (1) SB09 Stafford and
Bommer [22]NR Shown in Eq. (2)

PGA a tmax( ( ) ) AS08 Abrahamson and
Silva [26]

BA08 Boore and Atkinson
[27]

PGV v tmax( ( ) ) CB08 Campbell and
Bozorgnia [28]

SA(T) Peak response of a linear
elastic system

CY08 Chiou and Youngs
[29]

Ia ∫ a t dt( )π
g

t
2 0

max 2 [44] TBA03 Travasarou et al.
[30]

FS12 Foulser-Piggott and
Stafford [31]

CB12 Campbell and
Bozorgnia [32]

CAV ∫ a t dt( )t
0

max [45] CB10 Campbell and
Bozorgnia [33]

DW13 Du and Wang [34]
Ds5-75 Time interval between

5% to 75% of Ia
KS06 Kempton and

Stewart [35]
BSA09 Bommer et al. [36]Ds5-95 Time interval between

5% to 95% of Ia DW17 Du and Wang [37]

* a(t): Acceleration-time history; v(t):velocity-time history; tmax: total duration of the
ground motion time history and g is gravitational acceleration.
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hyperbolic tangent function; and z is the transformed correlation
coefficient which is approximately normally distributed. The variance
of ρ usually becomes smaller when it approaches 1 or −1, whereas the
variance of the transformed variable z can keep approximately constant
for all ρ values. Therefore, if the mean and standard deviation of the
transformed variable z are denoted as μz and σz, respectively, the cor-
responding median correlation coefficient ρ50 can be computed as:
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tanh( )
μ
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2

2
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Similarly, a certain percentile of ρ can be obtained using μz and σz

(e.g., = +ρ μ σtanh( )z z84 ; = −ρ μ σtanh( )z z16 ).

3.2. Correlations of cyclic numbers with PGA, PGV, and SA

Fig. 4 shows the distributions of the computed correlation coeffi-
cients of NA, NR with PGA and PGV, respectively. For each pair of the
IMs, the correlation coefficient ρ between the total residuals was first
estimated via Eqs. (4) and (5); 1500 bootstrap replicates from the ori-
ginal dataset were then generated for quantifying the uncertainty of ρ.
Boxplots are used to show the uncertainty caused by the finite sample
size (obtained by the bootstrap method); the results obtained by the

(a) (b)

Fig. 3. (a) Distribution of earthquake recordings with respect to moment magnitude and rupture distance used in this study; (b) the number of usable records to compute the correlation
of NA and NR with SA at different periods.

(a) (b)

(c) (d)

Fig. 4. Computed correlation coefficients between (a) NA and PGA, (b) NA and PGV, (c) NR and PGA, (d) NR and PGV. In these and subsequent boxplots, the central red line denotes the
median of the data (50th percentile), and the edges of the box (blue lines) mark the 25th and 75th percentiles. The ends of the whiskers represent the 0.35th and 99.65th percentiles,
respectively; the red plus symbols denote outliers. The results obtained by various GMPEs are shown in each subplot. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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four aforementioned GMPEs are shown in each boxplot. Fig. 4(a) and
(b) illustrate that the correlations of NA with PGA and PGV are positive
with median values of approximately 0.78 and 0.4, respectively. This is
not surprising, since NA represents the summation of the amplitude for
each half cycle, which is expected to be larger if PGA of a ground
motion is higher. Fig. 4(c) and (d) show the computed correlations of
NR with PGA and PGV, respectively. Unlike the case of NA, the corre-
lations of NR-PGA and NR-PGV are generally negative, with median
values of approximately −0.36 and −0.46, respectively. Hence, as a
relative definition, NR has a much weaker correlation with PGA com-
pared with NA because of the normalization process. For PGV, NR ex-
hibits slightly stronger correlation than NA, although the NR-PGV cor-
relation is found to be negative. Besides, it can also be seen that the
uncertainty (i.e., 25th and 75th percentiles represented by the edges of
the box) due to the finite sample size is generally in the range of
0.02–0.03, whereas the variability from the use of different GMPEs is
more notable. There appears to be no specific GMPE which yields sys-
tematically higher or lower correlations. The results (a number of ρ
based on the bootstrap method) obtained by various GMPEs were
combined together in a logic-tree framework with equal weight as-
signed. The combined results were then transformed via Eq. (6) to
evaluate μz and σz. The calculated median correlation coefficients ρ50, as
well as σz are listed in Table 2.

Fig. 5 shows the computed empirical correlations [Eq. (5)] between
NA, NR and SA versus vibration period. Similar to the results shown in
Fig. 4, the correlations of NA-SA are generally positive, while the NR-SA
correlations are negative. As seen in Fig. 5(a), the correlation of NA-SA
is generally constant for T<0.2 s, and it shows a decreasing trend as
period T increases for T>0.2 s. This implies that NA is mainly depen-
dent on the high-frequency content of ground motions. On the other
hand, the correlation of NR-SA is in the range of −0.4 to −0.1. It
generally increases with increasing vibration period for T< 0.1 s and
T>1 s, whereas a noticeable decreasing trend of ρ can be observed for
periods from 0.1 s to 1 s. The variation of the NR-SA correlation versus
period is presently not feasible to explain. Yet, the overall small cor-
relation indicates that NR can represent additional ground motion
characteristics compared to SA.

Based on the aforementioned bootstrap and z transformation ap-
proaches, the computed median, 16th and 84th percentiles (blue da-
shed lines) of the correlation coefficients for NA-SA and NR-SA are il-
lustrated in Fig. 6(a) and (b), respectively. A smooth parametric
function is usually desirable for practical use. The following piecewise
linear function is then proposed to fit the median NA-SA and NR-SA
correlations:

= + − ≤ ≤
+

+ +ρ a T T
T T

a a T T Tln( / )
ln( / )

( )n
n

n n
n n n nNx,SA

1
1 1

(8)

where Nx denotes NA or NR in this paper; an and Tn are regressed
parameters in order to capture the overall shape of the correlation
coefficients over the whole period range. The values of these para-
meters are listed in Table 3. For any give T, ρ can be predicted by linear
interpolation in logarithmic period scale. The solid lines in Fig. 6 are
obtained by the proposed parametric function [Eq. (8)], and they
compare reasonably well with the empirical data. Besides, it can also be
observed that the variations of ρ for the NA-SA and NR-SA correlations

versus period T are relatively small. The computed values of σz are in
the ranges of 0.03–0.07 and 0.03–0.05 for NA-SA and NR-SA correla-
tions, respectively. Therefore, it seems not necessary to accurately
capture the small variations of σz with periods, and the σz values of 0.05
and 0.04 can be directly used for NA-SA and NR-SA over the whole
period range. The predicted 16th and 84th percentiles using the con-
stant σz values are also shown (black dotted line) in Fig. 6.

3.3. Correlation of cyclic numbers with Ia and CAV

Fig. 7(a) and (b) display the computed correlations (e.g., the
median, 25th, and 75th percentiles) of NA with Ia and CAV, respec-
tively. It is not surprising that the NA-Ia and NA-CAV correlations are
moderately positive, given that both Ia and CAV, as measures of the
cumulative intensity of shakings, are highly dependent on the absolute
amplitudes of ground motion cycles. The correlation between NA and Ia
is slightly larger than that of NA-CAV. This is possibly due to the fact
that both NA and Ia employ 2 as the exponent coefficient in their de-
finitions. Besides, noticeable differences among the correlations by
various GMPEs can be observed for both figures. Such uncertainty could
be quantified using the aforementioned bootstrap and z transformation
methods.

Fig. 7(c) and (d) display the computed correlations of NR with Ia and
CAV, respectively. As observed previously, there are slight variations in
the correlations obtained by using different GMPEs. The median cor-
relation coefficients of NR with Ia and CAV are approximately −0.19
and −0.04, respectively. The rather poor correlations imply that, the
cumulative-based IMs (Ia, CAV) are relatively independent of the re-
lative definition of the effective cyclic number (NR). It should be noted
that the median correlation coefficients ρ50, and the standard deviations
σz between NA, NR, PGA, PGV, Ia, CAV, and subsequent Ds5–75 and
Ds5–95, are summarized in Table 2.

3.4. Correlation of cyclic numbers with Ds5-75 and Ds5-95

Fig. 8(a) and (b) show the calculated correlation coefficients of NA

with Ds5–75 and Ds5–95, respectively. It can be seen that the NA-Ds5–75
and NA-Ds5–95 correlations are generally similar, with median values in
the range of −0.35 to −0.2, respectively. The negative correlations
imply that a ground motion with a longer than expected Ds would
possibly have a smaller than expected NA value. Fig. 8(c) and (d) il-
lustrate the calculated correlation coefficients of NR with Ds5–75 and
Ds5–95, respectively. Both the NR-Ds5–75 and NR-Ds5–95 correlations are
some degree of positive, while the correlation between NR and Ds5–75 is
slightly larger.

The observed correlations between NA, NR and Ds5–75, Ds5–95 are
consistent with physical intuitions. As discussed previously, NA is highly
correlated with PGA, and it has been studied that Ds5–75 and Ds5–95 are
negatively correlated with peak amplitudes (PGA, PGV) of ground
motions [14]. Therefore, it is not surprising that the NA-Ds5–75 and NA-
Ds5–95 correlations are negative. On the other hand, the normalized
measure NR shows some degree of positive correlations with significant
durations. Since Ds5–75 and Ds5–95 represent the time interval across
which a great amount of seismic energy is dissipated, a ground motion
with longer Ds5–75 or Ds5–95 is likely to be more numbers of cyclic
waves (and hence larger NR). Besides, Bommer et al. [19] also studied
the correlations between ground motion durations and the effective
cyclic numbers. They computed the correlations directly based on the
measured values of the IMs, without the consideration of GMPEs and
residuals of these IMs. Therefore, the results presented in this study are
different with those provided in Reference [19].

Fig. 9(a) and (b) show the distribution of the inter-event and intra-
event residuals between NA and NR, respectively. The data points of
these two figures are almost randomly distributed, with the computed
correlation coefficients as +0.15 and −0.04, respectively. The corre-
lation coefficient between the total residuals using Eq. (5) is calculated

Table 2
Computed median correlation coefficients ρ50 and standard deviations σz of the trans-
formed variable z for NA and NR with PGA, PGV, Ia, CAV, Ds5–75, and Ds5–95, respectively.
σz is given in parentheses.

PGA PGV Ia CAV Ds5-75 Ds5-95 NR

NA 0.78
(0.057)

0.40
(0.043)

0.79
(0.13)

0.64
(0.061)

−0.27
(0.045)

−0.29
(0.035)

0.03
(0.025)

NR −0.35
(0.046)

−0.46
(0.057)

−0.19
(0.032)

−0.04
(0.029)

0.51
(0.056)

0.37
(0.064)

–
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as 0.03. Such poor correlation indicates that, although both NA and NR

represent the effective numbers of cycles of a ground motion, the
physical interpretations of these two measures are significantly dif-
ferent. Therefore, NA and NR are better suited for different applications.

4. Influence of rupture distance on NA-SA and NR-SA correlations

It is tempting to examine the influence of causal parameters (i.e.,
Mw, Rrup) on the NA-SA and NR-SA correlations. The influence of mag-
nitude Mw on the correlations is found to be less significant than Rrup.
Therefore, only the influence of rupture distance on the correlations is
investigated in this section.

The empirical residuals are divided into three distance bins, namely
Rrup = 0–30 km, 30–80 km, and 80–200 km, respectively. The number
of usable records in each distance bin versus spectral period is shown in
Fig. 10, from which it can be seen that each distance bin includes an
adequate number of data points in order to yield statistically stable
results. The procedures introduced in Section 3.1 were used for the
correlation calculations based on the binned empirical data. Fig. 11
demonstrates the resulting NA-SA and NR-SA correlations for the three
distance bins. For the NA-SA correlations, it can be seen that the far-
distance (Rrup = 80–200 km) records exhibit the strongest correlations
over a wide period range; the correlations for moderate-distance (Rrup

= 30–80 km) records are noticeably larger than those of short-distance
records (Rrup = 0–30 km) at periods larger than 2 s. For the NR-SA
correlations, the moderate-distance ground motions exhibit the stron-
gest correlations for T< 1 s, while the far-distance ground motions
yield the strongest correlations for T> 1 s. Such differences can be
attributed to the different ground motion characteristics caused by
travelling distances. It has been widely studied that long travelling

distance tends to filter out high-frequency components of seismic
waves, resulting in (far-distance) ground motions consisting of mainly
moderate-to-long period seismic waves.

For practical usage, piecewise linear functions [Eq. (8)] are also
developed to fit the correlation data for each distance bin. The re-
gressed an and Tn parameters for the distance-binned NA-SA and NR-
SA correlations are summarized in Tables 4, 5, respectively. As illu-
strated in Fig. 11, the proposed piecewise linear curves approximate the
empirical data reasonably well. Besides, as listed in Tables 4, 5, a
constant σz value is also assigned for each distance bin to quantify the
uncertainty of NA-SA and NR-SA correlations. Compared to the σz values
obtained based on the whole ground motion database, the distance-
binned σz values are slightly larger, due to the decrease of the available
number of data points in each distance bin.

(a) (b)

Fig. 5. Computed correlation coefficients [Eq. (5)] for (a) NA and SA; (b) NR and SA, respectively.

(a) (b)

Fig. 6. Comparisons of the empirical correlations and the piece-wise linear fitting curves for (a) NA and SA, (b) NR and SA, respectively.

Table 3
Coefficients for predicting the NA-SA and NR-SA correlations.

n NA-SA (T) NR-SA (T)

an Tn an Tn

1 0.79 0.01 −0.37 0.01
2 0.80 0.15 −0.32 0.03
3 0.25 1.0 −0.12 0.10
4 0.15 2.0 −0.43 0.5
5 0.02 10.0 −0.35 2.0
6 – – −0.15 5.0
7 – – −0.15 10.0
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(a) (b)

(c) (d)

Fig. 7. Correlation coefficients between (a) NA and Ia, (b) NA and CAV, (c) NR and Ia, (d) NR and CAV. The results obtained by various GMPEs are shown in each subplot.

(a) (b)

(c) (d) 

Fig. 8. Correlation coefficients between (a) NA and Ds5–75, (b) NA and Ds5–95, (c) NR and Ds5–75, (d) NR and Ds5–95. The results obtained by various GMPEs are shown in each subplot.
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5. Discussions

The effective number of cycles is an important measure in geo-
technical earthquake engineering, especially in the evaluation of li-
quefaction potential. The number of ground motion cycles may also
influence the degree of seismic damage on structures. Therefore, it
would be desirable if the effective number of cycles could be used for a
variety of applications. Of the two measures of effective number of
cycles considered in this study, NA is the absolute definition (calculated
based on the absolute amplitude of cycles), while NR is the relative
definition in which all cycles are normalized by the maximum

(a) (b)

Fig. 9. Distributions of (a) inter-event and (b) intra-event residuals between NA and NR.

Fig. 10. Number of usable records versus spectral periods in each distance bin.

(a) (b)

Fig. 11. (a) NA-SA correlations and (b) NR-SA correlations for different rupture distance bins (empirical data and fitting functions are represented as symbols and lines, respectively).

Table 4
NA-SA correlations for different rupture distance bins.

Distances (km) 0–30 30–80 80–200

n an Tn an Tn an Tn

1 0.75 0.01 0.79 0.01 0.82 0.01
2 0.79 0.1 0.83 0.12 0.83 0.15
3 0.65 0.25 0.66 0.25 0.48 0.75
4 0.25 1.0 0.24 0.75 0.19 2.0
5 0.04 4.0 0.11 2.0 0.22 4.0
6 −0.06 10 0.11 10.0 0.03 10.0
σz 0.07 0.06 0.07

Table 5
NR-SA correlations for different rupture distance bins.

Distances (km) 0–30 30–80 80–200

n an Tn an Tn an Tn

1 −0.38 0.01 −0.44 0.01 −0.34 0.01
2 −0.13 0.05 −0.36 0.03 −0.30 0.03
3 −0.09 0.13 −0.12 0.1 −0.11 0.1
4 −0.36 0.4 −0.47 0.35 −0.33 0.3
5 −0.37 1.0 −0.42 1.5 −0.44 1.2
6 −0.25 3.0 −0.09 6.0 −0.19 7.0
7 0.0 10.0 −0.15 10.0 −0.28 10.0
σz 0.07 0.06 0.07
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amplitude of cycles. It has been found that NA is highly correlated with
high-frequency IMs such as PGA, Ia, and SA at short periods. Compared
to PGA, NA considers not only the effect of the single cycle with peak
amplitude, but also the effect of a number of secondary cycles. Hence,
NA can be regarded as a surrogate of PGA in some cases, in which the
estimation of cyclic deformation demand is important [42]. In contrast,
NR exhibits small-to-moderate negative correlations with PGA, PGV, Ia,
and SA, indicating that NR can provide some supplementary informa-
tion regarding the ground motion characteristics compared with these
IMs. Therefore, although NR alone may not be very useful, NR in con-
junction with primary IMs (e.g., PGA, SA) would be favorable in some
engineering applications.

It is not surprising that NA, as an amplitude-based indicator, exhibits
negative correlations with Ds5–75 and Ds5–95. The correlations of NR

with Ds5–75 and Ds5–95 are just moderately positive (with maximum ρ50
as 0.51), which may contradict the assumption that duration measures
can effectively represent the number of cycles of ground motions. These
results are some degree of consistent with a previous study which stated
that the correlations between ground motion durations and the number
of effective cycles are weak [19].

For demonstration purpose, Fig. 12 shows the comparisons of re-
sponse spectra and time histories for a pair of ground motions. A
spectrally equivalent method, which minimizes the sum of the squared
errors between two response spectra, is used to select the two ground
motions. It can be seen that although the two response spectra are
generally comparable, the numbers of the effective cycles of time his-
tories are significantly different. The computed NR and Ds5–75 values for
GM1 are 18.8 and 26 s, while the corresponding NR and Ds5–75 for GM2
are 8.5 and 19.8 s, respectively. In such a case, NR is apparently a better
indicator than Ds5–75 to differentiate the two ground motions, and
therefore, NR should be incorporated in the ground motion selection
process for some engineering applications.

It is worth noting that, both the two measures (NA and NR) studied
in this paper are defined using an exponent coefficient of 2. Yet, some
studies (e.g., [43]) have reported that the effective number of cycles
defined with an exponent coefficient of 3 is more appropriate for
evaluating the liquefaction potential of clean sands. Thus, the correla-
tion results presented in this paper should be used with caution for the
liquefaction analysis of such soil materials. Due to the lack of robust
predictive models, the correlation study related to the measures of ef-
fective cyclic number defined as an exponent coefficient of 3 is cur-
rently not feasible. It will be a subject of future study.

6. Conclusions

This manuscript studied the empirical correlations between the

effective number of ground motion cycles and other commonly used
intensity measures (IMs), including PGA, PGV, spectral accelerations
(SA), Ia, CAV, Ds5–75, and Ds5–95. The NGA strong motion database and
several globally applicable GMPEs have been utilized for calculating the
correlation coefficients between these IMs. Two definitions of the ef-
fective number of cycles, namely NA (absolute measure) and NR (re-
lative measure) are considered in this paper. It was found that NA has
strong positive correlations (ρ≈0.8) with high-frequency IMs such as
PGA, Ia, and SA at T<0.2 s; moderate positive correlations with PGV,
CAV, and SA over a period range of 0.2–1 s; and weak negative corre-
lations (ρ≈−0.3) with significant durations. The observed correlation
results can be explained by the fact that NA is mainly determined by
larger-amplitude ground motion cycles, and it can be classified as a
high-frequency amplitude-based IM.

The relative measure NR generally exhibits small-to-moderate ne-
gative correlations with amplitude-based (e.g., PGA, PGV) and cumu-
lative intensity-based IMs (Ia, CAV). This means that NR can provide
additional information regarding the ground motion characteristics
compared with these amplitude- and cumulative-based IMs. Besides, it
was observed that NR is moderately correlated (ρ<0.6) with sig-
nificant duration parameters, indicating that the duration parameters
cannot perfectly represent the effective number of ground motion cy-
cles.

The influence of rupture distance on the NA-SA and NR-SA correla-
tions was also examined. It was found that the far-distance ground
motions tend to exhibit stronger NA-SA and NR-SA correlations, espe-
cially at long spectral periods. A set of piecewise linear functions were
proposed to quantify the NA-SA and NR-SA correlations for general and
various distance-binned cases. The derived correlation coefficients and
the parametric equations can be easily used in vector-based seismic
hazard analysis or ground motion selection for scenario earthquakes. A
simple example was provided to demonstrate that ground motions se-
lected based on SA only may result in a biased representation of other
IMs. Specifically, the correlation results described herein could be used
to select a suite of well-representative ground motions, to assess
earthquake-induced risks such as liquefaction potential.
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Fig. 12. Comparisons of (a) response spectra, (b) time histories of a pair of spectrally equivalent ground motions. GM1 is recorded at the CHY023 station during the 1999 Chi-Chi
earthquake; GM2 is also from the Chi-Chi earthquake recorded at the TAP098 station, scaled by a factor of 1.02.
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