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Abstract

Effective elastic properties of a defected solid with distributed cohesive micro-cracks are estimated based on homogenization
of the Dugdale—Bilby—Cottrell-Swinden (Dugdale—BCS) type micro-cracks in a two dimensional elastic representative volume
element (RVE).

Since the cohesive micro-crack model mimics various realistic bond forces at micro-scale, a statistical average of cohesive
defects can effectively represent the overall properties of the material due to bond breaking or crack surface separation in small
scale. The newly proposed model is distinctive in the fact thetelkulting effective moduli are found to be pressure sensitive.
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1. Introduction

Much progress have been made in the past few decadeg idetrelopment of macroscopic homogenization of defected
composites. Ideally, a successful homogenization scheme should stem from a realistic simulation of failure mechanism at the
micro level, so that it can predict material failure in a statistical manner. For example, at micro-level, the failure mechanism due
to void growth is well sipported by many experimental obgations of ductile materials, e.§lcClintock (1968), Budiansky
et al. (1982), Duva and Hutchinson (1984), Pardoen and Hutchinson (2000), among others. A statistical homogenization model
of void growth is the well-known Gurson model (Gurson, 1977), or its contemporary and computational version, Gurson—
Tvergaard—Needleman (GTN) model (Tvergaard, 1981, 1982, 1984), which is the primary phenomenological inelastic damage
model in engineering applications.

On the other hand, in most brittle, quasi-brittle, and ductile materials at nano-scale, material’s failure mechanism may be
attributed to nucleation and coalescence of micro-cracks as well. Although many micro-crack based models have been proposed
to describe elastic brittle failure process (e.g., Budigresikd O’Connell, 1976; Hoenig, 1979; Hutchinson, 1987; Lemaitre,
1992; Kachanov, 1992, 1994; Pan and Weng, 1995; Krajcinovic, 1996), few cohesive micro-crack damage models are available
for both ductile and quasi-brittle materials, if any.
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Cohesive crack models have long been regarded as a sensible approximation to model fracture, fatigue, and other types of
failure phenomena of solids. Since Barenblatt (1959, 1962) and Dugdale’s pioneer contribution (Dugdale, 1960), cohesive crack
models have been studied extensively. Notable contributions have been made by Bilby, Cottrell and Swinden (1963, 1964), Keer
and Mura (1965), Goodier (1968), Rice (1968b), among others.

In reality, in front of the tip of a cohesive crack, there is a very small cohesive zone that is crucial to material failure. How to
assess the overall effects attributed from cohesive zone degradation is important for study brittle/ductile fracture at nano- or sub-
nano-scale. In this paper, an analytical homogenization procedure is developed to homogenize an elastic solid with randomly
distributed cohesive cracks — the Dugdale—BCS cracks. The homogenization leads to a new estimate of effective elastic moduli
at macro-level. A new type of pressure sensitive constitulations is obtained, which reflects the accumulated damaged
effect due to distribution of cohesive micro-cracks.

In Section 2, an averaging theorem is proposed for elastic solids containing randomly distributed cohesive cracks, which
provides the theoretical foundation for ensuing homogenization process. In Section 3, the solution of Dugdale—BCS crack is
obtained under hydrostatic tension. Effective elastic material properties of a cohesive RVE is presented in Section 4 for both
self-consistent scheme and dilute suspension scheme. Section 5 summarizes the distinctive features of the new findings.

2. Averaging theorem

For elastic solids containing cohesive cracks, there is no averaging theorem available in the literature. An extension of
averaging theorem for solids containingdtion-free defects to solidertaining cohesiveefects will provide sound theoretical
footing for our analysis.

Define macro stress tensor as

1
Zap = ((701;3) /Gaﬁ av, (2.1)
v
where Greek letters range from 1 to 2.

Theorem 2.1. Suppose
(1) A 2D €eladtic representative volume element contains N Dugdale-BCS cracks;

(2) The traction on the remote boundary of the RVE are generated by a constant stress tensor, i.e. 15° = crggn g, and agg =
const.

Then average stress of the RVE equals to the remote constant stress, i.e.
(oap) = Zap = U(;)E. (2.2)
Proof. We first consider the average stress in a 2D representative volume element with a single Dugdale—BCS crack. On the

elastic crack surface),V,., the traction is zero, and inside the cohesive z@ng,, the cohesive traction is constant. Assume
that body force is absent. Using the divergence theorem, one can show that

1 1
(0ap) = v /aaﬂ dv = v /(ayﬂxa),y dv = {/J%SQV dv — / 0-xqny dS — / oypXaly dS}

14 14 v Ve Ve,
1
=055 — v / tpxq S, (2.3)
Vs

wheretg := ogyng is the constant cohesive traction. Note th&t; = dVez4 U dVe;— and|[d8Vez4| = [8Vez—| = 1/2[3 Ve, |.
Thus, the last term in (2.3) vanishes, i.e.

1 1 _ 1 _

v / tgxq dS = V( / z;xa ds + / 1 Xa dS> = ﬁ(zg +15)x%q]dVez| =0 (2.9)

il Vzrz il Vzrz+ a VCZ*

because&/;r = —tg. Therefore(o,g) = aog. For an RVE with N cohesive macrocracks, it can be shown that

(0ap) = =08 Z / (k)xa ds. (2.5)

k 16‘/(%
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Fig. 1. A two-dimensional RVE with randomly distributed cracks.

Following the similar argument, one can show that the last term vanishes. We then conclude that

(oap) = Zap = Usg. O (2.6)

3. Solution of Dugdale-BCS crack under hydrostatic tension

Before proceeding to homogenization, first briefly outline the mde | Dugdale-BCS crack saion in a representative
volume element (RVE). The stress path is designed to be ropicdydrostatic tension to maain purely mode | condition at
all crack tips with different orientations. Presence of mode Il and mode Il conditions is avoided by this specification (see Li
and Morgan, 2003 for related discussions on the case of model Il cohesive cracks).

Consider a two-dimensional RVE with a Dugdale-BCS crack in the center. Hydrostatic tension is applied on the remote

boundary of the RVE[ .

Y11= =0%, VxeTl. 3.1)
On macro-level, the remote stres3®> may be related with the spherical stregg of the RVE
2
éaoo, plane stress;
Zm=¢o® = (3.2)

2 .
§(1+ v¥)o®, plane strain.

The complete Dugdale—BCS mode | crackusion can be obtained via superpositiohtbe trivial solution and the crack
solution:

(i) Trivial solution. Consider an RVE without cracks. A trivial solution of hydrostatic stress statis:V,

0 0 0
‘7{1) =0, Uéz) =0, "1(2)=0 (3:3)
and
6:(&) K*8+l K*53 0 &
1 * *
6&%) — p K 8—3 K grl olle>®|, (3.4)
29 o o 1jLo

where superscript0) indicating trivial solution, and material constanig, «*, or v*, depend on ensuing homogenization
procedures, and* is Kolosov’s constant
3—v*
¥ = 14 v* ’
3—4*, plane strain

plane stress; (3.5)
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Fig. 2. lllustration of superposition of cohesive crack problem.

By inspection, one may find the displacement fields of the trivial solution

u(o)_/c*—i—l o k*—3 k*—1

1 8u* X1+ 8+ o = WUOOXL (3.6)
*—3 *+1 *—1
= K—a + £ o X = £ o X, .
u;o) 00 +1 00 (3.7)

8u* 2 8u* Au*

(ii) Crack solution. The crack solution has to sdiighe remote boundary conditions
O‘](.i) = 0’2(‘2) = UJ(-CZ) — 0, r = x]2. +x% — 00 (38)

and crack surface traction boundagnditions and symmetric condition

02(2) =—0%, Vxo =0, |x1| <a, (3.9)
02(2) =09—0, Vxp=0, a<|x1| <b, (3.10)
us) =0, V=0, |x1|> b, (3.11)

whereaq is the material's cohesive strength, i.e., the onset normal stress value prior to surface separation. Here the super-
script(c) indicates the crack solution.
The stress field solution ary axis (xo = 0) is well known (e.g., Mura, 1987, pages 280-285)

b
. . d (t)H(x1 —1)
017 (11.0) =033 (x1.0) = — /”71 dr i, (3.12)
1 ¥2_¢2
0 1
whereH () is the Heaviside function, and
o®°t, t<a,
= 2 .
a(®) o®r — —UOCOS_1<g>t, a<t<b. (3.13)
7 t
The stress distribution along axis are:
(1) VO < |x1]| < a,
5O (x1,0) = (0) 0) = —g® © _q.
11 (1.0 =05 (x1, 0 =—0=, 075 =0;
(2) Va < |x1] < b,
0f (61,0 =039 (11,0 = —0F +00, 015 (x1,0=0;

(3) Vb < |x1]| < 00,
018 (x1,00 = 045 (x1,0

d ) x2(b2% — 242 + a2b? ) x2 +a? — 2p?
=—a°°+ao+@—{x—lsm_l[ i ) ]+sm_1[17]},

7 dvy|a bz(x% — a2) x% —a?

al(;) (x1,0=0.
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Inside the cohesive zone & |x1| < b), the total stress (superscrip)) components are,

oy} =013 + 015 =00, (3.14)
0

o35 =059 + 08y =00, (3.15)

o =0. (3.16)

Itis assumed that the microscopic yielding of the material is governed by the Huber—von Mises criterion. Since the shear stresses
are all zero inside the cohesive zone,

1
JH R o+ 0B o+ o k) =or o7
which links the cohesive strength with the uniaxial yield stress of the virgin material,

00, plane stress

. (3.18)
(1—2v*)og, plane strain

oy = xo0 = |

In the crack solution, displacement fields along thexis are
x1+a, V-b<x3<—

100 0, V—a<x1<a, (3.19)
x1—a, Ya<xi<b

* * _

(©) C1-k" 5 K
uy (x1, £0) = m o%x1+ e

*

and

l *
uS) (x, £0) = :I:Ll;:—l;a@ {xlln

} (3.20)

Therefore, inside the cohesive zowe< |x1| < b),
1 x1+a, VY—b<x1<—
2+ 00 0, V—a<xi<a, (3.21)
x1—a, Ya<xi<b

ul (1.0 =

andug)(xl, 0) = ugc) (x1,0). The elastic crack opening volume can be expressed as

a
_ ) _l—l—/c* 2 _ﬁ) To>® _ﬂ 7t0°°>
V(a)_/[uz Jdxy = 5 (70{<1 - tan| 200) —Infco 200 . (3.22)
—a

and the total crack opening volume as

*

o0
+K aoaztan<”“—>. (3.23)
200

V) = /[u(’)]dxl_

The crack tip opening displacement is given by Rice (1968a),

1 * (0.¢]
5= u @, +0) — 1) (@, —0) = LTI o T ) | (3.24)
T u* 200
As shown by Rice (1968a, 1968b), the value of J-integral of mode | Dugdale—BCS crack is
1 o
J =00 = laoa In[set(ﬂ)]. (3.25)
T u* 200

SinceJ is related to energy release, assuﬁ@ézl = J, wheref = 24 is the total length of the crack. It may be found that

o0
Ry= 1 aoazln[se(<ﬂ; )] (3.26)

T 00

Note that in nonlinear fracture mechanidsmay not be the exact surface separation energy release rate (see Wnuk, 1990).
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The total energy release can be calculated as

2 l *k o
Ra =0V (b) — o0(V(b) — V(a)) = Maozazln sed 22 ) |. (3.27)
Tu* 200
Considering the fact tha, = 2R 1, one can then combine the two into a single form
1 * o0
Ro= 201D 2,210 sed 2| w=12 (3.28)
Tu* 209

4. Effective elastic material properties of a cohesive RVE

An efficient procedure of finding effective elastic material properties of a damaged solid is energy method. By balance
of strain energy density of a damage process, one may be able to find effective potential energy density and hence effective
complementary energy density, which are assumed to be tdtéumctions of average strain and average stress. Consider
an RVE with N randomly distributed cohesive cracks, the effective potential energy density in an RVE can be calculated by
evaluating average energy release rate.

W:(aaﬁeaﬁ)—WC—&, w=12 4.1)

Define the crack density

N 2
Ta
f=> Tk (4.2)
k=1
By the Legender transform, the effective complementary energy density can be written as
N 2 2 *
—n . Ra) 1 7Tak 0)0'0(1+K ) 7'[0'00
We=W°"+ —==D YuB X —~ | ——=——1In|se . 4.3

SinceW¢ is a potential function ofg and by the averaging Theorem 22 = 05,?}’% one may find

W 2 *
_ owe ) (add bl woy(1+«%) f To® 00>
Cap = xgp ~ Cop Fop = DupenZon 5o T % )] o “9

whereegﬁ := DoprnZens Eap = Dapen Zey- SinceZyp = 08,5, we have

(@9 o@d+«*) [ og 7o
W = ampr ) g0 BN\ g )] depr @=L 2 “-9)

For an in-plane homogenization, the effective material properties may become transversely isotropic after homogenization.
As an approximation, we assume that after homogenization the damaged medium is still isotropic both macroscopically and
microscopically (inside the RVE).

The essence of self-consistent method is to considereffect of micro-crack intaction (Hll, 1965a, 1965b, 1967;
Budiansky and O’Connell, 1976). Let* =i, u* = 1 in Egs. (4.4) and (4.5). We want to find a global isotropic tensor
H="12 1@ 1 1,14, such that

€@dd _y. X, (4.6)

where1® =5;;6 ® e; is the second identity tensor, até®) = 3(8;8;¢ + 8;¢81)8 ® €; ® & ® € is the fourth order
symmetric identity tensor.
By utilizing additional strain formula (4.6), one can determine the effective compliance tensor,

D=D+H. 4.7

Apparently, the information carried in (4.5) is not sufficient to determineHh&ensor, because it does not contain the
information on degradation of shear modulus. To evalthtan additional provision on averaging is needed.
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Let
1 1
D= ﬁE(l) + EE(Z), (4.8)
— 1 1
D— gE(D + EE(Z)’ (4.9)
H = (hy+hp)ED + hpE@, (4.10)

wherep = ﬁ and

1-v plane stress;
1 7 ;
— = 4.11
3K 1—v—22 . ( )
—, plane strain
E
and similar expressions hold farand K. Note that
1
ED .= S3updina @ €p ® € @ €y, (4.12)
1
E@ .= > Cacdpy + Bandps — bapbin)es ®€p @& ® €. (4.13)
Under hydrostatic remote loading, Eq. (4.6) is only valid wiee- 08,4 ® €g. It only admits one scalar equation,
D: (0™8upeny ®€g) = (D+H): (0F8,p6 ®€p). (4.14)
Combining Egs. (4.5) and (4.14), one may find that
1 1 1 1 1 00 7o
—=—+4((Mh1+hy)) =— — 4+ — tan| —— 4.15
3k 3k Tth) 3K+<3K+2ﬂ>wf[rm°° <2(70 )] (4.15)

by virtue of identitiesE : 1@ = 1 ande®@ : 1@ = 0.
In Eq. (4.15), there are two unknownk, and i, or equivalentlyz; and/;. An additional condition is needed to uniquely
determineD or H. Impose the restriction

(4.16)

x| |
= =

This implies that the relative reduction of the bulk modulus is the same as that of the shear modulus. This restriction will
guarantee the positive definiteness of the effective stra@ngy, and it is reasonable for hydrostatic loading condition.

Remark 4.1. There may be some other possibilities for additional restriction. For exampie 0. However, in this particular
problem, the restrictior;1 = 0, may not guarantee the positive definiteness of the effective strain energy.

A direct consequence of (4.16) is
=. (4.17)

<l

Then for plane problems, one may find

o0
()] e

2(1—v2)wf o9 15 .
Ca el | el L 205 )| plane strain (b)

For plane stress problems, the effective shear modulus via self consistent sgh@més plotted for various loading in-
tensities by choosing = 2, v = 0.1. From Fig. 3, effective modulus decreases linearly with respegt td/ith increasing
loading intensitys *° /oq, the slope of degradation line is increasing until material breaks down even with infinitesimal amount
of defects at the limit 0&°° — oq . Another limit caseg *° /o = 0 corresponds to elastic crack limit, where cohesive strength
approaches infinity.

By chosingK* = K andu* = u, one may find that the effective shear modulus via dilute distribution approach is

7 0 -1
L))
uw 4 To>® 200

(4.18)

X1 =

_ R
"
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Fig. 3. Effective modulus for various loading intensities
(self-consistent).

Fig. 4. Effective modulus for various loading intensities (di-
lute distribution).

wherex is Kolosov's constant (see (3.5)).
The effective shear modulus is plotted in Fig. 4 forivas loading intensities ith same set of parameters.

5. Concluding remarks

The most distinguished features of new cohesive crack damage models are:

@)

)
(©)

4)

The effective macro-constitutive relations are different from the micro-constitutive relations: After homogenization, the
effective elastic material properties are pressure sensitive, whereas at micro-level, the elastic stiffness and compliance
tensors are constant;

Self-consistent homogenization scheme vyields a linear degradation of effective elastic moduli with respect to crack den-
sity f, and it predicts a critical value of crack densify, at which the material completely loses its strength;

Both self-consistent and dilute suspension homogenization schemes predict pressure sensitive effective material response.
When the ratio of hydrostatic stress and the true yield reaches a finite value, i.e.
2 lane stress
o> Zm 3’ P 5
— 1l = — (5.1)
90 Y 2a+v) plane strain
31-2v)’

a complete failure in material will beaptured with even an infinitesimal amouwttinitial damage, if the loading stress

reaches to the material’'s theoreti strength, whereas under the same @@ the Gurson model will not predict a
complete material failure unless the hydrostatic stress approaches infinity.

The key to accurately calculate effective elastic properties is to determine the energy release contribution to the material
damage process. The energy release in nonlinear fracture mechanical process is consumed in several different dissipation
processes, e.g. surface separation, heat generation, dislocation movement, and may be even phase transformation, etc. In
fact, Kfouri (1979) and Wnuk (1990) have studied energy release caused by crack extension of two-dimensional Dugdale—
BCS cracks. To avoid complications, monotonic hydrostatic tension load is prescribed in our analysis to maintain purely
mode | crack condition. An in-depth study may be needed to refine the analysis proposed here.

A three-dimensional cohesive crack damage model has been derived recently by the present authors (Li and Wang, 2004) as

well
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