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Abstract

Effective elastic properties of a defected solid with distributed cohesive micro-cracks are estimated based on homog
of the Dugdale–Bilby–Cottrell–Swinden (Dugdale–BCS) type micro-cracks in a two dimensional elastic representative
element (RVE).

Since the cohesive micro-crack model mimics various realistic bond forces at micro-scale, a statistical average of
defects can effectively represent the overall properties of the material due to bond breaking or crack surface separatio
scale. The newly proposed model is distinctive in the fact that the resulting effective moduli are found to be pressure sensit
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Much progress have been made in the past few decades in the development of macroscopic homogenization of defe
composites. Ideally, a successful homogenization scheme should stem from a realistic simulation of failure mechani
micro level, so that it can predict material failure in a statistical manner. For example, at micro-level, the failure mechan
to void growth is well supported by many experimental observations of ductile materials, e.g.McClintock (1968), Budiansky
et al. (1982), Duva and Hutchinson (1984), Pardoen and Hutchinson (2000), among others. A statistical homogenizati
of void growth is the well-known Gurson model (Gurson, 1977), or its contemporary and computational version, G
Tvergaard–Needleman (GTN) model (Tvergaard, 1981, 1982, 1984), which is the primary phenomenological inelastic
model in engineering applications.

On the other hand, in most brittle, quasi-brittle, and ductile materials at nano-scale, material’s failure mechanism
attributed to nucleation and coalescence of micro-cracks as well. Although many micro-crack based models have been
to describe elastic brittle failure process (e.g., Budiansky and O’Connell, 1976; Hoenig, 1979; Hutchinson, 1987; Lema
1992; Kachanov, 1992, 1994; Pan and Weng, 1995; Krajcinovic, 1996), few cohesive micro-crack damage models are
for both ductile and quasi-brittle materials, if any.
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Cohesive crack models have long been regarded as a sensible approximation to model fracture, fatigue, and other types of
ive crack
64), Keer
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failure phenomena of solids. Since Barenblatt (1959, 1962) and Dugdale’s pioneer contribution (Dugdale, 1960), cohes
models have been studied extensively. Notable contributions have been made by Bilby, Cottrell and Swinden (1963, 19
and Mura (1965), Goodier (1968), Rice (1968b), among others.

In reality, in front of the tip of a cohesive crack, there is a very small cohesive zone that is crucial to material failure.
assess the overall effects attributed from cohesive zone degradation is important for study brittle/ductile fracture at nan
nano-scale. In this paper, an analytical homogenization procedure is developed to homogenize an elastic solid with
distributed cohesive cracks – the Dugdale–BCS cracks. The homogenization leads to a new estimate of effective elas
at macro-level. A new type of pressure sensitive constitutiverelations is obtained, which reflects the accumulated dam
effect due to distribution of cohesive micro-cracks.

In Section 2, an averaging theorem is proposed for elastic solids containing randomly distributed cohesive crack
provides the theoretical foundation for ensuing homogenization process. In Section 3, the solution of Dugdale–BCS
obtained under hydrostatic tension. Effective elastic material properties of a cohesive RVE is presented in Section 4
self-consistent scheme and dilute suspension scheme. Section 5 summarizes the distinctive features of the new findi

2. Averaging theorem

For elastic solids containing cohesive cracks, there is no averaging theorem available in the literature. An exte
averaging theorem for solids containing traction-free defects to solids containing cohesivedefects will provide sound theoretic
footing for our analysis.

Define macro stress tensor as

Σαβ := 〈σαβ 〉 = 1

V

∫
V

σαβ dV, (2.1)

where Greek letters range from 1 to 2.

Theorem 2.1. Suppose

(1) A 2D elastic representative volume element contains N Dugdale–BCS cracks;
(2) The traction on the remote boundary of the RVE are generated by a constant stress tensor, i.e. t∞α = σ∞

βαnβ , and σ∞
αβ =

const.

Then average stress of the RVE equals to the remote constant stress, i.e.

〈σαβ 〉 = Σαβ = σ∞
αβ . (2.2)

Proof. We first consider the average stress in a 2D representative volume element with a single Dugdale–BCS crac
elastic crack surface,∂Vec, the traction is zero, and inside the cohesive zone,∂Vcz, the cohesive traction is constant. Assu
that body force is absent. Using the divergence theorem, one can show that

〈σαβ 〉 = 1

V

∫
V

σαβ dV = 1

V

∫
V

(σγβxα),γ dV =
{∫
V

σ∞
γβδαγ dV −

∫
∂Vec

0 · xαnγ dS −
∫

∂Vcz

σγβxαnγ dS

}

= σ∞
αβ − 1

V

∫
∂Vcz

tβxα dS, (2.3)

wheretβ := σβαnα is the constant cohesive traction. Note that∂Vcz = ∂Vcz+ ∪ ∂Vcz− and |∂Vcz+| = |∂Vcz−| = 1/2|∂Vcz|.
Thus, the last term in (2.3) vanishes, i.e.

1

V

∫
∂Vcz

tβxα dS = 1

V

( ∫
∂Vcz+

t+β xα dS +
∫

∂Vcz−

t−β xα dS

)
= 1

2V
(t+β + t−β )xα |∂Vcz| = 0 (2.4)

becauset+β = −t−β . Therefore〈σαβ 〉 = σ∞
αβ . For an RVE with N cohesive macrocracks, it can be shown that

〈σαβ 〉 = σ∞
αβ − 1

V

N∑
k=1

∫
∂Vczk

t
(k)
β xα dS. (2.5)
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Fig. 1. A two-dimensional RVE with randomly distributed cracks.

Following the similar argument, one can show that the last term vanishes. We then conclude that

〈σαβ 〉 = Σαβ = σ∞
αβ . � (2.6)

3. Solution of Dugdale–BCS crack under hydrostatic tension

Before proceeding to homogenization, wefirst briefly outline the mode I Dugdale–BCS crack solution in a representative
volume element (RVE). The stress path is designed to be monotonic hydrostatic tension to maintain purely mode I condition a
all crack tips with different orientations. Presence of mode II and mode III conditions is avoided by this specification
and Morgan, 2003 for related discussions on the case of model III cohesive cracks).

Consider a two-dimensional RVE with a Dugdale–BCS crack in the center. Hydrostatic tension is applied on the
boundary of the RVE,Γ∞.

Σ11 = Σ22 = σ∞, ∀x ∈ Γ∞. (3.1)

On macro-level, the remote stressσ∞ may be related with the spherical stressΣm of the RVE

Σm = φσ∞ =




2

3
σ∞, plane stress;

2

3
(1+ ν∗)σ∞, plane strain.

(3.2)

The complete Dugdale–BCS mode I crack solution can be obtained via superposition of the trivial solution and the crac
solution:

(i) Trivial solution. Consider an RVE without cracks. A trivial solution of hydrostatic stress state is:∀x ∈ V ,

σ
(0)
11 = σ∞, σ

(0)
22 = σ∞, σ

(0)
12 = 0 (3.3)

and 


ε
(0)
11

ε
(0)
22

2ε
(0)
12


 = 1

µ∗




κ∗+1
8

κ∗−3
8 0

κ∗−3
8

κ∗+1
8 0

0 0 1





σ∞

σ∞
0


 , (3.4)

where superscript(0) indicating trivial solution, and material constantsµ∗, κ∗, or ν∗, depend on ensuing homogenizati
procedures, andκ∗ is Kolosov’s constant

κ∗ :=



3− ν∗
1+ ν∗ , plane stress;

3− 4ν∗, plane strain.
(3.5)
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he super-
Fig. 2. Illustration of superposition of cohesive crack problem.

By inspection, one may find the displacement fields of the trivial solution

u
(0)
1 = κ∗ + 1

8µ∗ σ∞x1 + κ∗ − 3

8µ∗ σ∞x1 = κ∗ − 1

4µ∗ σ∞x1, (3.6)

u
(0)
2 = κ∗ − 3

8µ∗ σ∞x2 + κ∗ + 1

8µ∗ σ∞x2 = κ∗ − 1

4µ∗ σ∞x2. (3.7)

(ii) Crack solution. The crack solution has to satisfy the remote boundary conditions

σ
(c)
11 = σ

(c)
22 = σ

(c)
12 = 0, r =

√
x2

1 + x2
2 → ∞ (3.8)

and crack surface traction boundary conditions and symmetric condition

σ
(c)
22 = −σ∞, ∀x2 = 0, |x1| < a, (3.9)

σ
(c)
22 = σ0 − σ∞, ∀x2 = 0, a � |x1| < b, (3.10)

u
(c)
2 = 0, ∀ x2 = 0, |x1| > b, (3.11)

whereσ0 is the material’s cohesive strength, i.e., the onset normal stress value prior to surface separation. Here t
script(c) indicates the crack solution.

The stress field solution onx1 axis (x2 = 0) is well known (e.g., Mura, 1987, pages 280–285)

σ
(c)
11 (x1,0) = σ

(c)
22 (x1,0) = − d

dx1

{ b∫
0

q(t)H(x1 − t)√
x2

1 − t2
dt

}
, (3.12)

whereH(·) is the Heaviside function, and

q(t) =



σ∞t, t < a,

σ∞t − 2

π
σ0 cos−1

(
a

t

)
t, a � t < b.

(3.13)

The stress distribution alongx1 axis are:

(1) ∀0 < |x1| < a,

σ
(c)
11 (x1,0) = σ

(c)
22 (x1,0) = −σ∞, σ

(c)
12 = 0;

(2) ∀a � |x1| < b,

σ
(c)
11 (x1,0) = σ

(c)
22 (x1,0) = −σ∞ + σ0, σ

(c)
12 (x1,0) = 0;

(3) ∀b < |x1| < ∞,

σ
(c)
11 (x1,0) = σ

(c)
22 (x1,0)

= −σ∞ + σ0 + σ0a

π

d

dx1

{
x1

a
sin−1

[
x2

1(b2 − 2a2) + a2b2

b2(x2
1 − a2)

]
+ sin−1

[
x2

1 + a2 − 2b2

x2
1 − a2

]}
,

σ
(c)
12 (x1,0) = 0.
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Inside the cohesive zone (a < |x1| < b), the total stress (superscript(t)) components are,

r stresses

90).
σ
(t)
11 = σ

(0)
11 + σ

(c)
11 = σ0, (3.14)

σ
(t)
22 = σ

(0)
22 + σ

(c)
22 = σ0, (3.15)

σ
(t)
12 = 0. (3.16)

It is assumed that the microscopic yielding of the material is governed by the Huber–von Mises criterion. Since the shea
are all zero inside the cohesive zone,√

1

2

(
(σ

(t)
11 − σ

(t)
22 )2 + (σ

(t)
22 − σ

(t)
33 )2 + (σ

(t)
33 − σ

(t)
11 )2

) = σY (3.17)

which links the cohesive strength with the uniaxial yield stress of the virgin material,

σY = χσ0 =
{

σ0, plane stress,

(1− 2ν∗)σ0, plane strain.
(3.18)

In the crack solution, displacement fields along thex1 axis are

u
(c)
1 (x1,±0) = 1− κ∗

4µ∗ σ∞x1 + κ∗ − 1

4µ∗ σ0




x1 + a, ∀−b < x1 � −a,

0, ∀−a < x1 < a,

x1 − a, ∀a � x1 < b

(3.19)

and

u
(c)
2 (x1,±0) = ±1 + κ∗

4πµ∗ σ0 ·
{

x1 ln

∣∣∣∣∣
x1

√
b2 − a2 − a

√
b2 − x2

1

x1

√
b2 − a2 + a

√
b2 − x2

1

∣∣∣∣∣ − a ln

∣∣∣∣∣
√

b2 − a2 −
√

b2 − x2
1√

b2 − a2 +
√

b2 − x2
1

∣∣∣∣∣
}

. (3.20)

Therefore, inside the cohesive zone (a < |x1| < b),

u
(t)
1 (x1,0) = κ∗ − 1

4µ∗ σ0




x1 + a, ∀ − b < x1 � −a,

0, ∀ − a < x1 � a,

x1 − a, ∀a � x1 < b

(3.21)

andu
(t)
2 (x1,0) = u

(c)
2 (x1,0). The elastic crack opening volume can be expressed as

V (a) =
a∫

−a

[u(t)
2 ]dx1 = 1+ κ∗

2µ∗ a2σ0

{(
1− σ∞

σ0

)
tan

(
πσ∞
2σ0

) − 4

π
ln

[
cos

(
πσ∞
2σ0

)]}
, (3.22)

and the total crack opening volume as

V (b) =
b∫

−b

[u(t)
2 ]dx1 = 1+ κ∗

2µ∗ σ0a2 tan

(
πσ∞
2σ0

)
. (3.23)

The crack tip opening displacement is given by Rice (1968a),

δt = u
(t)
2 (a,+0) − u

(t)
2 (a,−0) = (1+ κ∗)σ0a

πµ∗ ln

[
sec

(
πσ∞
2σ0

)]
. (3.24)

As shown by Rice (1968a, 1968b), the value of J-integral of mode I Dugdale–BCS crack is

J = σ0δt = 1+ κ∗
πµ∗ σ2

0a ln

[
sec

(
πσ∞
2σ0

)]
. (3.25)

SinceJ is related to energy release, assume∂
∂�
R1 = J , where� = 2a is the total length of the crack. It may be found that

R1 = 1+ κ∗
πµ∗ σ2

0 a2 ln

[
sec

(
πσ∞
2σ0

)]
. (3.26)

Note that in nonlinear fracture mechanics,J may not be the exact surface separation energy release rate (see Wnuk, 19
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The total energy release can be calculated as

balance
effective

sider
lated by

nization.
cally and

sor

the
R2 = σ∞V (b) − σ0
(
V (b) − V (a)

) = 2(1+ κ∗)

πµ∗ σ2
0a2 ln

[
sec

(
πσ∞
2σ0

)]
. (3.27)

Considering the fact thatR2 = 2R1, one can then combine the two into a single form

Rω = ω(1+ κ∗)

πµ∗ σ2
0a2 ln

[
sec

(
πσ∞
2σ0

)]
, ω = 1,2. (3.28)

4. Effective elastic material properties of a cohesive RVE

An efficient procedure of finding effective elastic material properties of a damaged solid is energy method. By
of strain energy density of a damage process, one may be able to find effective potential energy density and hence
complementary energy density, which are assumed to be potential functions of average strain and average stress. Con
an RVE with N randomly distributed cohesive cracks, the effective potential energy density in an RVE can be calcu
evaluating average energy release rate.

	W = 〈σαβεαβ 〉 − Wc − Rω

V
, ω = 1,2. (4.1)

Define the crack density

f :=
N∑

k=1

πa2
k

V
. (4.2)

By the Legender transform, the effective complementary energy density can be written as

	Wc = Wc + Rω

V
= 1

2
DαβζηΣαβΣζη +

(
N∑

k=1

πa2
k

V

)
ωσ2

0 (1+ κ∗)

π2µ∗ ln

[
sec

(
πσ∞
2σ0

)]
. (4.3)

Since 	Wc is a potential function ofΣαβ and by the averaging Theorem 2.2 (Σαβ = σ∞
αβ ), one may find

Eαβ = ∂ 	Wc

∂Σαβ
= ε

(0)
αβ + ε

(add)
αβ = DαβζηΣζη + ∂

∂σ∞
(

ωσ2
0 (1+ κ∗)f

π2µ∗ ln

[
sec

(
πσ∞
2σ0

)])
∂σ∞
∂Σαβ

, (4.4)

whereε0
αβ := DαβζηΣζη, Eαβ = 	DαβζηΣζη. SinceΣαβ = σ∞δαβ , we have

ε
(add)
αβ = ω(1+ κ∗)

4πµ∗ f

[
σ0

σ∞ tan

(
πσ∞
2σ0

)]
σ∞δαβ , ω = 1,2. (4.5)

For an in-plane homogenization, the effective material properties may become transversely isotropic after homoge
As an approximation, we assume that after homogenization the damaged medium is still isotropic both macroscopi
microscopically (inside the RVE).

The essence of self-consistent method is to consider the effect of micro-crack interaction (Hill, 1965a, 1965b, 1967;
Budiansky and O’Connell, 1976). Letκ∗ = κ̄,µ∗ = µ̄ in Eqs. (4.4) and (4.5). We want to find a global isotropic ten
H = h1

2 1(2) ⊗ 1(2) + h21(4s), such that

ε(add) = H : Σ, (4.6)

where1(2) = δij ei ⊗ ej is the second identity tensor, and1(4s) = 1
2(δikδj� + δi�δjk)ei ⊗ ej ⊗ ek ⊗ e� is the fourth order

symmetric identity tensor.
By utilizing additional strain formula (4.6), one can determine the effective compliance tensor,

	D = D + H. (4.7)

Apparently, the information carried in (4.5) is not sufficient to determine theH tensor, because it does not contain
information on degradation of shear modulus. To evaluateH, an additional provision on averaging is needed.
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D = 1

3K
E(1) + 1

2µ
E(2), (4.8)

	D = 1

3K̄
E(1) + 1

2µ̄
E(2), (4.9)

H = (h1 + h2)E
(1) + h2E(2), (4.10)

whereµ = E
2(1+ν)

and

1

3K
=




1− ν

E
, plane stress;

1− ν − 2ν2

E
, plane strain,

(4.11)

and similar expressions hold forµ̄ and 	K . Note that

E(1) := 1

2
δαβδζηeα ⊗ eβ ⊗ eζ ⊗ eη, (4.12)

E(2) := 1

2
(δαζ δβη + δαηδβζ − δαβδζη)eα ⊗ eβ ⊗ eζ ⊗ eη. (4.13)

Under hydrostatic remote loading, Eq. (4.6) is only valid whenΣ = σ∞δαβeα ⊗ eβ . It only admits one scalar equation,

	D : (σ∞δαβeα ⊗ eβ) = (D + H) : (σ∞δαβeα ⊗ eβ). (4.14)

Combining Eqs. (4.5) and (4.14), one may find that

1

3	K = 1

3K
+ (h1 + h2) = 1

3K
+

(
1

3	K + 1

2µ̄

)
ωf

[
σ0

πσ∞ tan

(
πσ∞
2σ0

)]
(4.15)

by virtue of identitiesE(1) : 1(2) = 1(2) andE(2) : 1(2) = 0.
In Eq. (4.15), there are two unknowns,	K andµ̄, or equivalentlyh1 andh2. An additional condition is needed to unique

determine	D or H. Impose the restriction

	K
K

= µ̄

µ
. (4.16)

This implies that the relative reduction of the bulk modulus is the same as that of the shear modulus. This restric
guarantee the positive definiteness of the effective strain energy, and it is reasonable for hydrostatic loading condition.

Remark 4.1. There may be some other possibilities for additional restriction. For example,h1 = 0. However, in this particula
problem, the restriction,h1 = 0, may not guarantee the positive definiteness of the effective strain energy.

A direct consequence of (4.16) is

ν̄ = ν. (4.17)

Then for plane problems, one may find

	K
K

= µ̄

µ
=




1− 2ωf

1− ν

[(
σ0

πσ∞
)

tan

(
πσ∞
2σ0

)]
, plane stress; (a)

1− 2(1 − ν2)ωf

1 − ν − 2ν2

[(
σ0

πσ∞
)

tan

(
πσ∞
2σ0

)]
, plane strain. (b)

(4.18)

For plane stress problems, the effective shear modulus via self consistent scheme,µ̄/µ, is plotted for various loading in
tensities by choosingω = 2, ν = 0.1. From Fig. 3, effective modulus decreases linearly with respect tof . With increasing
loading intensityσ∞/σ0, the slope of degradation line is increasing until material breaks down even with infinitesimal a
of defects at the limit ofσ∞ → σ0 . Another limit case,σ∞/σ0 = 0 corresponds to elastic crack limit, where cohesive stre
approaches infinity.

By chosingK∗ = K andµ∗ = µ, one may find that the effective shear modulus via dilute distribution approach is

µ̄

µ
=

{
1+ ω(1+ κ)f

4

[(
σ0

πσ∞
)

tan

(
πσ∞
2σ0

)]}−1
, (4.19)
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Fig. 3. Effective modulus for various loading intensities
(self-consistent).

Fig. 4. Effective modulus for various loading intensities (di-
lute distribution).

whereκ is Kolosov’s constant (see (3.5)).
The effective shear modulus is plotted in Fig. 4 for various loading intensities with same set of parameters.

5. Concluding remarks

The most distinguished features of new cohesive crack damage models are:

(1) The effective macro-constitutive relations are different from the micro-constitutive relations: After homogenizati
effective elastic material properties are pressure sensitive, whereas at micro-level, the elastic stiffness and co
tensors are constant;

(2) Self-consistent homogenization scheme yields a linear degradation of effective elastic moduli with respect to cr
sity f , and it predicts a critical value of crack density,fc, at which the material completely loses its strength;

(3) Both self-consistent and dilute suspension homogenization schemes predict pressure sensitive effective materia
When the ratio of hydrostatic stress and the true yield reaches a finite value, i.e.

σ∞
σ0

→ 1 ⇒ Σm

σY
→




2

3
, plane stress,

2(1+ ν)

3(1− 2ν)
, plane strain

(5.1)

a complete failure in material will becaptured with even an infinitesimal amountof initial damage, if the loading stres
reaches to the material’s theoretical strength, whereas under the same condition, the Gurson model will not predict
complete material failure unless the hydrostatic stress approaches infinity.

(4) The key to accurately calculate effective elastic properties is to determine the energy release contribution to the
damage process. The energy release in nonlinear fracture mechanical process is consumed in several different
processes, e.g. surface separation, heat generation, dislocation movement, and may be even phase transforma
fact, Kfouri (1979) and Wnuk (1990) have studied energy release caused by crack extension of two-dimensional D
BCS cracks. To avoid complications, monotonic hydrostatic tension load is prescribed in our analysis to maintai
mode I crack condition. An in-depth study may be needed to refine the analysis proposed here.

A three-dimensional cohesive crack damage model has been derived recently by the present authors (Li and Wang
well.

Acknowledgements

This work is supported by a grant from NSF (Grant No. CMS-0239130), which is greatly appreciated.



S. Li et al. / European Journal of Mechanics A/Solids 23 (2004) 925–933 933

References

9.

s.), Me-

mic

tile

98.

.
lied

ce

9,

42,

l.

2.

.

Barenblatt, G.I., 1959. The formation of equilibrium cracks during brittle fracture. J. Appl. Math. Mech. 23, 622;
English translation: Barenblatt, G.I., The formation of equilibrium cracks during brittle fracture. Prikl. Mat. Mekh. 23 (1959) 434.

Barenblatt, G.I., 1962. Mathematical theoryof equilibrium cracks in brittle fracture. In: Adv. Appl. Mech., vol. 7. Academic Press, pp. 55–12
Bilby, B.A., Cottrell, A.H., Smith, E., 1964. Plastic yielding from sharp notches. Proc. Roy. Soc. London Ser. A 279, 1–9.
Bilby, B.A., Cottrell, A.H., Swinden, K.H., 1963. The spread ofplastic yield from a notch. Proc. Roy. Soc. London Ser. A 272, 304–314.
Budiansky, B., O’Connell, R.J., 1976. Elastic moduli of a cracked solid. Int. J. Solids Structures 12, 81–97.
Budiansky, B., Hutchinson, J.W., Slutsky, S., 1982. Void growth and collapse in viscous solids. In: Hopkins, H.G., Sewell, M.J. (Ed

chanics of Solids. Pergamon Press, pp. 13–45.
Dugdale, D.S., 1960. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104.
Duva, J.M., Hutchinson, J.W., 1984. Constitutive potentials for dilutely voided nonlinear materials. Mech. Mater. 3, 41–54.
Goodier, J.N., 1968. Mathematical theory of equilibrium cracks. In: Liebowitz, H. (Ed.), Fracture: an Advanced Treatise, vol. 2. Acade

Press, New York, pp. 1–66.
Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous duc

materials. J. Engrg Mater. Technology 99, 2–15.
Hill, R., 1965a. Theory of mechanical properties of fiber-strengthened materials-III: Self-consistent model. J. Mech. Phys. Solids 13, 189–1
Hill, R., 1965b. A Self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222.
Hill, R., 1967. The essential structure of constitutive laws for metal composite and polycrystals. J. Mech. Phys. Solids 15, 79–95.
Hoenig, A., 1979. Elastic moduli of a non-randomly cracked body. Int. J. Solids Structures 15, 137–154.
Hutchinson, J.W., 1987. Crack tip shielding by micro-cracking in brittle solids. Acta Metall. 35, 1605–1619.
Kachanov, M., 1992. Effective elastic properties of cracked solids: Critical review of some basic concepts. Appl. Mech. Rev. 45, 304–335
Kachanov, M., 1994. Elastic solids with many cracks and related problems. In: Hutchinson, J.W., Wu, T.Y. (Eds.), In: Advances in App

Mechanics, vol. 32. Academic Press, New York, pp. 259–445.
Keer, L.M., Mura, T., 1965. Stationary crack and continuous distributions of dislocations. In: Proceedings of The First International Conferen

on Fracture, vol. 1. The Japanese Society for Strength and Fracture of Materials, pp. 99–115.
Kfouri, A.P., 1979. Crack separation energy-rates for the DBCS model under biaxial modes of loading. J. Mech. Phys. Solids 27, 135–150.
Krajcinovic, D., 1996. Damage Mechanics. Elsevier, Amsterdam.
Lemaitre, J. (Jean), 1992. A Course on Damage Mechanics. Springer-Verlag, Berlin.
Li, S., Morgan, E.F., 2003. Micromechanics modeling of plastic yieldingin a solid containing model III cohesive cracks. Int. J. Fracture 11

L105–L112.
Li, S., Wang, G., 2004. A continuum damage model based on homogenization of distributed cohesive micro-cracks. Int. J. Engrg. Sci.

861–885.
McClintock, F.A., 1968. A criterion for ductile fracture by the growth of holes. ASME J. Appl. Mech. 35, 363–371.
Mura, T., 1987. Micromechanics of Defects in Solids. Martinus Nijhoff, Dordrecht.
Pan, H.H., Weng, G.J., 1995. Elastic moduli of heterogeneous solids with ellipsoidal inclusions and elliptic cracks. Acta Mech. 110, 73–94.
Pardoen, T., Hutchinson, J.W., 2000. An extended model forvoid growth and coalescence. J. Mech. Phys. Solids 48, 2467–2512.
Rice, J.R., 1968a. A path independent integral and the approximate analysis of strain concentration bynotches and cracks. ASME J. App

Mech. 35, 379–386.
Rice, J.R., 1968b. Mathematical analysis in the mechanics of fracture.In: Liebowitz, H. (Ed.), In: Fracture: an Advanced Treatise, vol.

Academic Press, pp. 191–311.
Tvergaard, V., 1981. Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fracture 17, 389–407.
Tvergaard, V., 1982. On localization in ductile materials containing voids. Int. J. Fracture 18, 237–251.
Tvergaard, V., Needleman, A., 1984. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169.
Wnuk, M.P., 1990. Mathematical modeling of nonlinear phenomena in fracture mechanics. In: Enuk, M.P. (Ed.), Nonlinear Fracture Mechanics

Springer-Verlag, Wien, pp. 359–451.


