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NUMERICAL ANALYSIS OF PILES IN ELASTO-PLASTIC SOILS 

UNDER AXIAL LOADING 

Gang Wang1 and Nicholas Sitar2 (Member, ASCE) 

ABSTRACT 

A finite element model has been developed to simulate nonlinear response of piles/drilled piers under 
axial loading. The nonlinear stress-strain behaviors of soils are modeled via Drucker-Prager and von Mises 
type plasticity. A parametric study is carried out to address the influence of various factors, such as soil 
friction approximation, dilatancy, effect of interface element and shear strength profile etc. on the 
prediction of pile behavior in elasto-plastic soils and key issues in the simulation are critically reviewed. 
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INTRODUCTION 
Soil-structure interaction is an important topic in the development of a performance based 

design procedure. With the rapid advances of computing technology, finite element analysis is 
assuming more important role in engineering practice. The advantage of finite element analysis 
lies in its ability to accommodate complex soil stratigraphy and its potential for solving 
three-dimensional soil-structure interaction problems. However, to be successfully used in 
practical design, the soil model should be simple and can be easily calibrated by conventional 
field or lab testing. On the other hand, the model should be able to realistically capture the most 
important aspects of soil-structure nonlinearities.  
 

Since it was first introduced, Drucker-Prager type model (Drucker and Prager, 1952) has been 
successfully adopted in analysis of geomaterials due to its relative simplicity. For example, a  
comprehensive nonlinear finite element analysis of vertically loaded pile was carried out using 
ABAQUS TM (Trochanis et al. 1991). In this study, the surrounding soil was modeled using                                                                                                                                  
extended Drucker-Prager plasticity while the piles were modeled as linearly elastic material. Yang 
and Jeremi� (2002) used non-associative Drucker-Prager for cohesionless soil and von Mises 
criterion for cohesive soil, and developed p-y curves for laterally loaded piles in multi-layered 
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soil profiles. Although these previous analyses dealt with pile-soil interaction with various 
degrees of success, detailed information on model assumptions and uncertainties associated with 
model selection are not available. In the following sections, we describe a parametric study of the 
various factors associated with simple model simulation.  

 

MODEL FORMULATION 
Pressure-sensitive failure mechanism of soil is represented by a cone-shape yield surface:     

    1 2 0F I J Yα= + − =            (1) 

where 1 i iI σ=  is the first invariant of stress tensor and 1
2 2 i j i jJ s s=  is the second invariant of 

deviatoric stress tensor 1
13i j i j i js Iσ δ= − . α and Y are material parameters related to the soil 

friction angle and the cohesion.  

For small strain formulation, strain rate is usually additively decomposed into elastic and 
plastic components, 

e p
ij ij ijε ε ε= +� � �               (2) 

such that rate form of stress-strain relation can be written as  

( )p
ij ijkl kl klCσ ε ε= −� ��           (3) 

To better describe volumetric behavior of soil, non-associative flow rule is usually adopted. 
The plastic flow is defined through potential surface Q with parameter β controlling soil 
dilatancy,  

1 2 0Q I J Yβ= + − =�           (4) 

Plastic strain rate is defined normal to the potential surface via,  
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where λ is plastic multiplier and can be determined by consistency condition.  
 

Linear isotropic hardening rule was incorporated to describe hardening of yield surface 
through internal variable ξ ,  

                  0Y Y Hξ= +                                              (6) 

where 0Y and hardening modulus H are material parameters, and ξ λ=�  
 

In our implementation, the return mapping algorithm (Simo & Taylor 1985, Simo & Hughes 
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1997) was employed to derive the algorithmic consistent tangent based on implicit backward 
Euler scheme to guarantee quadratic rate of global convergence. Note that for non-associative 
flow rule α β≠ , major symmetry of the consistent tangent operator is lost. Further, cone apex is 
singular, and the normal to the potential surface is not defined. Special algorithmic treatment is 
needed around this region (Hofstetter and Taylor, 1991).  

 
We implemented the Drucker-Prager model in OPENSEES --- Open System for Earthquake 

Engineering Simulation (http://opensees.berkeley.edu) hosted by Pacific Earthquake Engineering 
Research Center (PEER http://peer.berkeley.edu/), and the source code is available from the 
authors.  

 

PILE RESPONSE IN COHESIONLESS SOIL 
To demonstrate the capacity of Drucker-Prager model prediction, consider a 2.5 feet diameter 

circular concrete pier installed to 19 feet of depth in sand. The pile is vertically loaded on its top 
under drained condition. A finite element model was developed to simulate the pile behavior. Due 
to axisymmetry of this problem, only one half of the cross section is meshed using axisymmetric 
bilinear element. The mesh, shown in Fig. 1, extends to 40 feet in depth. The base of the mesh is 
fixed and only vertical movement is allowed along right hand side of the mesh and the axis of 
symmetry (the left hand side of the mesh). The pile is modeled with linearly elastic elements with 
a Young’s modulus Ep=

620 10× kPa and Poisson’s ratio vp=0.1. 
 
Important for ensuing capacity analysis, initial stress state of the soil should be properly 

simulated. Staged loading process was designed to enforce in-situ K0 state of soil elements, where 
K0 is the coefficient of earth pressure. The soil was initially assumed to be linearly elastic, with 
Poisson’s ratio specified as v=K0/(1+K0). After vertically “consolidated” under its self weight to 
generate desired K0 profile, the element materials were switched to behave elasto-plastically. In 

this simulation, soil parameters were chosen to be: submerged 
density ρs =1400 kg/m3, Young’s modulus E= 510 kPa, Poisson’s 
ratio v=0.3, K0 =1-sinφ  where φ  is the effective soil friction 
angle. 

 
Sensible determination of model parameters with respect to 

physical properties of soil is one of the most important issues 
for a successful numerical simulation. To smoothly approximate 
the Mohr-Coulomb hexagon on the deviatoric stress plane 
(π plane), several strategies are available for determining 
Drucker-Prager cone parameters. As shown in Fig. 2(a), 
compression cone and extension cone are defined to match 
Mohr-Coulomb in either triaxial compression and triaxial 
extension. Internal cone is inscribed inside Mohr-Coulomb. A 
compromise cone can also be defined as kind of average 
between extension and compression approximations. For 
various Drucker-Prager approximations, Table 1 summarizes 
determination of model parameters with respect to soil friction 
angle φ , cohesion c and dilatancy angle Ψ .  

 

    

     FIG. 1. FEM mesh 
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TABLE 1. Model Parameter Determination 

Drucker-Prager  
Approximation  

Parameter α  Parameter β  Parameter Y  

Compression Cone ( )
2sin

3 3 sin
φα

φ
=

−
 

( )
2sin

3 3 sin
ψβ

ψ
=

−
 

( )
6 cos

3 3 sin
c

Y
φ

φ
=

−
 

Compromise Cone 
2sin
3 3

φα =  2sin
3 3

ψβ =  6 cos
3 3
c

Y
φ=  

Extension Cone ( )
2sin

3 3 sin
φα

φ
=

+
 

( )
2sin

3 3 sin
ψβ

ψ
=

+
 

( )
6 cos

3 3 sin
c

Y
φ

φ
=

+
 

Internal Cone ( )1/ 22

sin

3 3 sin

φα
φ

=
+

 
( )1/ 22

sin

3 3 sin

ψβ
ψ

=
+

 
( )1/ 22

3 cos

3 3 sin

c
Y

φ
φ

=
+

 

 
Pile head displacements vs. applied axial loads for various approximation schemes are shown 

in Fig 2(b), where soil parameters are φ =36°, c=0° and Ψ=0°. Surprisingly significant differences 
are found for various approximation schemes. The discrepancy lies in the fact that, the actual 
stress state of soil in loading (thus the actual mobilized friction angle) is considerably different 
than the cone approximation matching point. Similar observations were reported in Zienkiewicz 
et al. (1999) for footing loading and Schwiger (1994) for earth pressure simulation. 
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       (a) Drucker-Prager approximations             (b) Predicted pile response 

FIG. 2. Effect of Drucker-Prager approximations 

Effect of soil dilatancy was assessed by examining the load deflection response for varying 
dilatancy angle Ψ , as shown in Fig 3, where the soil friction angle φ =36°, cohesion c=0° and 
compression cone approximation were used in all cases. System response is shown very sensitive 
to the choice of Ψ . Pile capacity reached its yielding apparently in the non-dilatant soil (Ψ=0°), 
while the associative flow rule (Ψ=36°) predicted a nearly elastic response and was overly 
unconservative. The effect could be better appreciated from Eq. (5), which shows for any nonzero 
Ψ (and thus β), the Drucker-Prager model will predict continued plastic dilatancy in the persistent 
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plastic loading without reaching a critical state. Similar findings and detailed discussions can be 
found in Potts (1999, 2001) for Mohr-Coulomb model.  

 
Modeling of the interface behavior between soil and pile is important in the analysis of pile 

under vertical loading. In the above analyses, no specific interface element was used and the pile 
was assumed to be perfectly bounded with adjacent soils. To examine the effect of interface 
element, node-to-node zero-length frictional contact element (for example, see Wriggers 2002) 
was also developed in OPENSEES. The contact elements were placed along the shaft and the 
problem was re-analyzed. The friction angle of contact element φ´ was chosen to be the same as 
soil friction angle φ  for a clear comparison. In Fig. 4, pile responses with and without using 
interface elements are illustrated for φ = φ´ = 36°, c= 0° using compromise cone approximation. 
The significant difference as discussed above for full dilatant (Ψ=36°) and non-dilatant (Ψ=0°) 
soil is greatly suppressed by the presence of the interface contact elements. Instead of yielding 
through the Drucker-Prager type soil elements, the contact elements essentially enforce 
Mohr-Coulomb type failure mode along the shaft. So, with interface elements, lower capacity is 
always predicted. It is also noted that computational costs and numerical instability increase 
considerablely in simulations with interface elements.   
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       FIG. 3. Effect of dilatancy             FIG. 4. Effect of interface element 

PILE RESPONSE IN COHENSIVE SOIL  
To further assess the validity of model, the numerical prediction was compared with a pier 

load test conducted recently near the University of California, Berkeley campus. The circular 
concrete pile was embedded to 19 feet depth, 2.5 feet in diameter and cast in place with downhole 
cleaning to ensure end bearing capacity. The site is mainly composed of hard to very stiff sandy 
clay, medium dense sandy silt and dense clayey sand. The undrained shear strength Su profile 
estimated from unconfined compression test data and the estimated K0 profile are shown in Figs. 
5 (a)(b).  

 
Drucker-Prager model can be reduced to von Mises type criterion by letting α=β=0, which 

was used in total stress analysis of undrained response of cohesive soil. For this simulation, soil 
parameters are: total density ρ t =2000 kg/m3, Young’s modulus E= 510 kPa, Poisson’s ratio v=0.49. 
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Strength parameter Y0 = 4 / 3 Su and K0 were specified for each soil layer according to solid lines 

in Figs.5(a)(b). Slight hardening with modulus H= 310 kPa was also used. Again, the pile was 
modeled linearly elastic with a Young’s modulus Ep=

620 10× kPa and Poisson’s ratio v=0.1. The 
setup and FEM mesh (Fig 5(c)) are identical as used in previous analyses. Note that B-bar method 
was used in element formulation to avoid volumetric locking in the undrained analysis.  
 

As shown in Fig. 5(d), we obtained excellent agreement between field measurements and 
model predictions, in view of both total capacity and end bearing components. Progressive failure 
mode of shear zone was also captured for the nonhomogenous soil strength profile. The load 
transfer curve along the pile length is shown in Fig. 5(e). As is well documented in field 
observation and literature, larger displacement is needed for end bearing capacity to be fully 
mobilized compared with shaft resistance. 
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       (d) Load-Displacement Curve                    (e) Load Transfer Curve 

FIG. 5. Comparison of model prediction with field test    
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We re-analyzed the model for a homogenous soil strength profile to assess the influence of 
soil nonhomogeneity. Here, Su = 84 kPa (averaged undrained shear strength over pile length plus 
one pile diameter) was assigned for all soil elements and K0 = 0.5. As expected, soil strength is 
more likely to be mobilized simultaneously along the shaft in the uniform soil profile. As shown 
in Fig. 6, except for a small range of slightly brittle response, two profiles essentially predict the 
same load capacity. Apparently, for a stiff clay site, assumption of homogenous strength profile is 
sufficient for practical purpose, while care must be exercised for soft clay site. 
 

Adequate account of the over consolidated (OC) soil strength is important especially for 
analysis of a short pier. The surface crust over top 8 feet is over consolidated with higher 
undrained shear strength that would be associated with a normally consolidated (NC) soil. If it is 
assumed the site is composed of all normally consolidated soil, and the shear strength is 
extrapolated in a conventional way, as plotted in dashed line in Fig. 5(a), to be  

                              0.255NC
u vS σ ′=                                 (7)  

where vσ ′  is effective overburden stress. The predicted load capacity will be greatly 
underestimated, only up to 70% of actually capacity as shown in Fig. 7.  
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  FIG. 6. Effect of soil strength profile           FIG. 7. Effect of OC strength 

CONCLUSIONS 
Drucker-Prager type plastic model has been developed to simulate vertically loaded pile 

response in cohesionless soil. Parametric study shows soil friction approximation scheme and 
dilatancy modeling impose great uncertainties in system response. Parameters should be assigned 
according to the actually mobilized friction angle and non-associative flow rule is preferred for 
this type of simple model. Uncertainties of soil behavior can be regulated by the presence of 
frictional contact elements.  

 
Pile response in cohesive soil was also successfully simulated using von Mises type criterion 

and it is in excellent agreement with field test data. It is found that an accurate undrained shear 
strength profile is of the highest importance for the capacity analysis. Proper account of over 
consolidated crust is important especially for short pier capacity simulation, while 
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nonhomogeneity of undrained shear strength distribution is not critical for the stiff clay site.  
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