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A B S T R A C T

A new computational framework for discontinuous deformation analysis (DDA) of ellipsoidal particles is de-
veloped by taking full advantage of the geometric convexity of the ellipsoid. To identify the contact points and
contact directions between ellipsoidal bodies analytically and efficiently, a semi-analytic geometry iteration
(SAGI) algorithm is proposed based on parametric equation of the ellipsoid, which is also extended to cylindrical
and conical boundaries. The controlling equations of motion of the bodies are established in the context of
discontinuous deformation analysis. To reinforce the constraint of frictional contacts in the discrete system, a
linearized cone complementarity formulation is proposed to solve the contact forces using a fixed point iteration
algorithm, which is the key ingredient to conserve energy, linear and angular momentums in the new numerical
framework. The accuracy, computational efficiency, and application prospects of the proposed methodologies
are demonstrated through some numerical examples.

1. Introduction

To numerically simulate a discrete system containing a large
number of discrete bodies, the geometry description of bodies, gov-
erning equations of motions, and treatment of contact between bodies
play a very important role. As a typical representation of discontinuum-
based methods, the discontinuous deformation analysis [1] (DDA) re-
gards individual body as a geometrically independent element. And, it
is based on the principle of minimum potential energy to set up gov-
erning equations of motion of the bodies, such that the translation,
rotation, contact, and separation of these discrete bodies can be cap-
tured straightforwardly by the DDA. Due to these attractive features,
the DDA have been a widely recognized especially in the fields of
geotechnical engineering and computational geomechanics.

After more than 30 years, the method has been significantly im-
proved in many aspects, including correction of false volume expansion
of blocks in large rotation [2–5], enhancement of the deformation
analysis and stress field within the bodies [6–10], improvement of
vertex-vertex contact [11–14], open-close iteration [15] and contact
force calculation between bodies [16,17]. The method is also im-
plemented for coupling of fluid and solid [18,19]. In addition, particle
shapes, such as disk [20–22], sphere [23], an assembly of spheres, cy-
linders and cones [24], has been modeled by the DDA. Most recently,
the spherical harmonic function is employed to describe complex

shaped particles [25], such that micromorphology of particles can be
considered in the DDA analysis.

To further improve geometry modeling in DDA, rigid ellipsoidal
particles are introduced for the first time in this study, rendering the
commonly used spherical particles as its special case. Specifically, the
principle of minimum potential energy and the Newmark time in-
tegration scheme are employed in this study, as shown in Section 4. A
semi-analytic geometry iteration (SAGI) algorithm is proposed to find
the closest points between a point and an ellipsoid based on the geo-
metric convexity of ellipsoid and its parametric equation. Then, the
SAGI algorithm is applied to detect the contact points and contact di-
rections between ellipsoidal particles. The SAGI algorithm is further
extended for identifying the geometric contact information between
ellipsoid and a cylindrical or conical container without using meshes.
Our numerical tests show that the convergence rate of the proposed
SAGI algorithm is increased by more than an order of magnitude
compared with the traditional optimization algorithm. One can refer to
Section 5 for more detailed comparisons.

On the other hand, the conventional open-close iteration for solving
contact force in the original DDA heavily relies on values of contact
springs that are usually specified by experience. To bypass this limita-
tion, some sophisticated strategies, such as the complementary theory
[26], the variational inequality formation [27,28], and the second-
order cone programming [29], have been proposed along with the
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development of DDA to calculate the contact force as accurately as
possible. However, convergence rate of these solution algorithms, i.e.
the path Newton method in [26] or the compatibility iteration in
[27,28], is still an obstacle to their practical application. Meanwhile,
the second-order cone programming in [29] is difficult to implement.

In this study, the linearized cone complementarity formulation is
deduced in detail for reformulated the frictional contact phenomenon
without using contact springs. The so-called fixed point iteration al-
gorithm [30] is resorted to solve the linearized cone complementarity
problem in order to obtain the correct contact forces. To save the
memory space and improve the computational speed, in the actual
implementation, two types of concise and compact data structures are
employed, which are constructed and organized in the terms of the
contact-pairs and the bodies, respectively. After verifying the con-
servations of energy, linear and angular momentums, the accuracy,
computational efficiency, and application prospects of the presented
methodologies are demonstrated by some interesting and challenging
examples. Consequently, an accurate, efficient, implementable DDA
method is established, which is expected to provide a new numerical
simulation platform for modeling the mechanical response of particu-
late media [31–33].

2. Geometry of ellipsoid

2.1. Function of a standard ellipsoid

By setting the centroid of an ellipsoid to be at the origin of the
spherical coordinate system, we have the following parametric function
of a standard ellipsoid (see Fig. 1(a) and (b))
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where ru, rv, and rw are the three semi-axes of the ellipsoid. Without loss
of generality, we define ru ≥ rv ≥ rw in this study. Moreover, the two
angle parameters a and e are called as the azimuth angle and elevation
angle, respectively, see Fig. 1(a). A pair of angle parameters (a, e) de-
termine uniquely a point on the standard ellipsoid. Further, Eq. (1) can
be rewritten in a matrix format as
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where Diag(ru, rv, rw) denotes a diagonal matrix. Applying a rotation R,
scaling S, and non-zero centroid xc = (xc, yc, zc)T to Eq. (2) for the
standard ellipsoid, the transformed ellipsoid with the centroid located at
C(xc, yc, zc) T (shown in Fig. 1(c)) can be expressed as

= +x e x ,a c (3)

where x = (x, y, z)T and

= S R r r r· ·Diag( , , ).u v w (4)

In this study, the 3 × 3 matrix Φ is called as the shape matrix of the
ellipsoid, while the 3 × 1 vector xc is referred to as the position vector of
the same ellipsoid. The rotation matrix R is given by
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where rx , ry, and rz are the three Euler angles around x-, y-, and z-axis,
respectively. In addition, the scaling matrix S is defined as
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where sx, sy, and sz are the scaling factors along x-, y-, and z-axis, re-
spectively. It is worth mention that scaling operation is needed to en-
large or reduce the particle size during preparation process of a
packing, and we set sx = sy = sz in this paper.

In our dynamic simulation, an ellipsoidal particle is treated as a
rigid body. Therefore, only rotation and translation will be involved.
From the time steps k to k + 1, the new transformed ellipsoid can be
expressed by
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where Φk+1 and +x k
c

1 are the new shape matrix and new centroid,
respectively, and tk = (Δxk, Δyk, Δzk)T represents the translation com-
ponent. As we can see, the shape matrix is only affected by the rotation
transformation. Similar to the standard ellipsoid, a pair of angle para-
meters (a, e) also specify uniquely a point on the transformed ellipsoid.
For a sphere (ru = rv = rw), at any time step, the shape matrix will be
reduced to the 3 × 3 identity matrix. Equation (7) is the mathematical
foundation of the proposed semi-analytic geometry iteration algorithm.

3. Semi-analytic geometry iteration algorithm

In this section, we will detail the semi-analytic geometry iteration
(SAGI) algorithm for finding the closest points between two ellipsoidal
particles. For this purpose, we discuss firstly how to determine the
closest points between a point and an ellipsoidal particle.

3.1. The closest points between a point and an ellipsoidal particle

The closest point between an ellipsoidal surface and a given point P
is the orthogonal projection IClosest(aI, eI) of point P onto the ellipsoidal
surface, see Fig. 2. This means that the angle θ between vector I PClosest

and the unit outward normal vector n at point IClosest will approach
zero. Here, the unit outward normal vector n is calculated analytically

Fig. 1. Spherical coordinate system and ellipsoid.
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For the convenience of calculating the unit outward normal vector
n, the parametric equation of transformed ellipsoid can be further ex-
plicitly expanded as
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where ϕij (i, j = 1, 2, 3) is the element of the shape matrix Φ at the i-th
row and j-th column, and (xc, yc, zc) is the centroid of the ellipsoid.

From Fig. 2 we can conclude that there are two basic kinds of el-
lipses on an ellipsoid: The first type is determined by “a fixed azimuth
angle a and the elevation angle e ∈ [−π/2, π/2]”, which means that the
azimuth angle is a constant, while the elevation angle traverses all of its
possible values. This type ellipse is called as “ellipse-a” in this study.
The second type is described by “a fixed elevation angle e and the
azimuth angle a ∈ [0, 2π]”, which implies that the elevation angle is a
constant, while the azimuth angle can be any of its possible values. This
kind of ellipse is referred to as “ellipse-e” in this paper. Inspired by this,
we propose the following semi-analytic geometry iteration algorithm
for determining the closest point between a point and an ellipsoidal
surface.

The semi-analytic geometry iteration algorithm for finding the
closest point between a point and an ellipsoid surface is stated as fol-
lows:

(1) Set the elevation angle e = e1.
(2) Generate the second type of ellipse, e.g. ellipse-e1, by setting a ∈ [0,

2π] and e = e1.
(3) Taking the azimuth angle a as a unknown parameter to determine

the closest point I1 between point P and ellipse-e1, which can be
solved analytically and will be discussed in more details later.
Assume the closest point I1 has the angle parameters (a1, e1).

(4) Construct the first kind of ellipse, e.g. ellipse-a2, by using a = a1,
a1 + π and e ∈ [-π/2, π/2].

(5) Taking the elevation angle e as an undetermined parameter to es-
timate the closest point I2 between point P and ellipse-a2, assume
the closest point I2 is corresponding to the angle parameters (a1, e2).

(6) Let e1 = e2, repeat steps (2) to (5) until the angle θ (refer to Fig. 2)
between vector I Pk and the unit outward normal vector n at point Ik
is less than a tolerance (e.g. 1 × 10−4, which is enough for an
angular value), point Ik is the desired closest point. Usually, after
3–5 iterations, the closest points can be found. One can see Fig. 3 to
understand intuitively this iteration procedure. In Fig. 3, note that
the elevation angles e2 and e3 are almost equal to each other.

It should be pointed out that the closest point between a point and
an ellipse-a or ellipse-e, which is involved in steps (3) and (5) in the
above iteration process, can be determined analytically. Just because of
this, we term iteration algorithm as “semi-analytic”. Next, we will focus
on the analytical algorithm in more details.

One can use the following parametric function of t to define the two
types of ellipse afore-mentioned

= +×x C xt
t tcos

sin , [0, 2 ],t3 2 (11)

For the first type of ellipse, ellipse-a with a given azimuth angle, the
3 × 2 matrix C is given by
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where ϕij(i, j = 1, 2, 3) has the same meanings as in Eq. (10), and the
vector xt = xc = (xc, yc, zc)T. While for the second type of ellipse,
namely ellipse-e with a fixed elevation angle, the 3 × 2 matrix C is
expressed as
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and the vector xt becomes

Fig. 2. Closest point between point P and an ellipsoidal particle.
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Based on Eq. (11), on an ellipse, the closest point Ik to a specific
point P(xP, yP, zP) should satisfy the following stationary condition
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Note that in the above equation, =
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2 tan( / 2)
1 tan ( / 2)2 , so it can be transformed to a quadratic equation of tan

(t/2). There is already existing efficient method to solve this type of
equation analytically. Generally speaking, we can obtain 4 complex
number solutions for tan(t/2). Further, by picking out these real solu-
tions to calculate the corresponding parameters t and candidate points.

Finally, by comparing the relevant distances we can find out the closest
point. Following a similar procedure, the closet points between a point
and cylindrical/conical surface can be established (cf. Appendix A1-
A3).

3.2. The closest points between two ellipsoids

Now, we will extend the above semi-analytic geometry iteration
algorithm to determine the closest points between two ellipsoidal sur-
faces/particles.

Fig. 4 shows three transformed ellipsoid surfaces ellipsoid-1, ellip-
soid-2, and ellipsoid-3. Their centroids are C1, C2, and C3, respectively.
For any ellipsoid we can take its ru (ru ≥ rv ≥ rw in this study) as radius

Fig. 3. Iteration process of finding the closest point between a point and an ellipsoid.

Fig. 4. External sphere estimated for two ellipsoids.
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to construct an external sphere surrounding it. In Fig. 4, the corre-
sponding external spheres are sphere-1(with ru1), sphere-2(with ru2),
and sphere-3(with ru3), respectively. These spheres are employed to
check preliminarily whether the relevant ellipsoids are possibly in
contact with each other or not. At the initial stage of the contact de-
tection, for the sake of narration, we define two possible cases: external-
sphere-intersection and external-sphere-nonintersection. The so-called ex-
ternal-sphere-intersection means that the distance between the two
centroids of any two ellipsoids is less than or equal to the sum of their
ru. For example in Fig. 4, ellipsoid-1 and ellipsoid-2 (dC1C2 < ru1 + ru2)
can be classified as this case. Whereas, the alleged external-sphere-
nonintersection implies that, for instance in Fig. 4, dC1C3 > ru1 + ru3

between ellipsoid-1 and ellipsoid-3, or dC2C3 > ru2 + ru3 between el-
lipsoid-2 and ellipsoid-3. For the case of external-sphere-nonintersec-
tion, the corresponding ellipsoids do not contact each other. In contrast,
the case of external-sphere-intersection should be further disposed at
the narrow phase of the contact detection. This procedure is called as
the external sphere estimating in this study.

Under the premise of external-sphere-intersection, if two corre-
sponding ellipsoids might be in contact, there are two possible cases,
namely two non-overlap ellipsoids and two overlap ellipsoids (see Fig. 5)
that should be distinguished firstly.

Two ellipsoids, ellipsoid-a and ellipsoid-b with centroids Ca and Cb

respectively, are sketched in Fig. 6 (only 2D view is given for clarity).
To determine whether the two ellipsoids overlap each other or not, we
propose the following semi-analytic geometry iteration, which is called
as the overlap checking procedure:

(1) Determine the closest point A between point Ca and ellipsoid-b
using algorithm in Section 3.1.

(2) Determine the closest point B between point Cb and ellipsoid-a.
(3) Choose initial iteration point I0 according to the following con-

sideration: Because point A is just the orthogonal projection of point
Ca onto ellipsoid-b, vector ACa is collinear with the unit outward
vector nA of ellipsoid-b at point A. Due to same reason, vector BCb is
collinear with the unit outward vector nB of ellipsoid-a at point B.
Therefore, ∠ABCb denotes the angle between vectors BA and nB.
Similarly, ∠BACa is the angle between vectors AB and nA. Based on
the fact that if points A and B are the closest points between the
ellipsoids, both ∠ABCb and ∠BACa approach to zero. Thus, if
∠ABCb<∠BACa, point B is closer to the target point in some de-
gree. In this case, point B can be chosen as the initial iteration point.
Otherwise, point A is used as the initial iteration point. In Fig. 6,
point B is picked as the initial iteration point I0 for illustration.

(4) Find the closest point I1 between point I0 and the other ellipsoid.
One can refer to Fig. 6 to understand this step intuitively.

(5) Compute the closest point I2 between point I1 and the other

ellipsoid (see Fig. 7).
(6) Repeat steps (4) and (5) until ∠ABCb and ∠BACa are both close to

the preset tolerance (e.g. 1 × 10−5). For example, points I3 and I4
in Fig. 6 are the desired closest points.

(7) Calculate the distance dmin between the closest points. If dmin is
greater than a tolerance (e. g. 1 × 10−6), we get two non-over-
lapped ellipsoids. Otherwise, we have two overlapped ellipsoids.

For two non-overlapped ellipsoids, assume that points A and B are
the closest points belonging to ellipsoid-a and ellipsoid-b (a < b), re-
spectively, as shown in Fig. 7. We can define the contact points and
contact directions by resorting to the following contact determining
procedure:

(1) Take the mid-point of line segment AB as the contact point C.
(2) Choose one of closest points from the ellipsoid with a relative

bigger index, for example point B of ellipsoid-b in Fig. 7, and cal-
culate the unit outward normal n vector of this ellipsoid at point B,
which is defined as the contact normal vector, see Fig. 7. Note that
the contact normal vector points to the interior of the ellipsoid with
a relative smaller index, namely ellipsoid-a here.

(3) Construct the tangent plane by using the unit normal n and passing
through the contact point C. Generate another point D on the tan-
gent plane to form vector CD. Establish the first contact tangent
unit vector s by s = CD/|CD| and the second contact tangent unit
vector t by t = n × s, respectively.

Aiming at two non-overlapped ellipsoids, after executing the contact
determining procedure we can obtain the contact points and contact
directions, which is the base of solving interaction involved in a discrete

Fig. 5. Two non-overlapped and overlapped ellipsoids.

Fig. 6. Closest points between two non-overlapped ellipsoids (only 2D view for
clarity).

Fig. 7. Contact points and contact direcitons between two ellipsoids.
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medium system.
A so-callled “overlap-based” scheme is used for disposing two over-

lapped ellipsoids or bodies. The method is summarized as follows: (1)
Let two ellipsoids overlap each other; (2) based on the overlapped re-
gion to find the contact points and the contact directions. This tactic has
been used widely in some approaches, such as the contact function
method [34], the common plane method [35], the geometric potential
method [36], and the common normal algorithm [37]. In general, the
contact points and the contact directions obtained from these above-
mentioned approaches are different even though they are all based on
the overlap-based schemes (see Fig. 8). Specifically speaking, in the
contact function method, it chooses the intersection line of two ellip-
soids as the tangent contact line, whose mid-point plays the part of the
contact point. As for the common plane method, the normal vector of
the common plane is taken as the contact normal vector. Correspond-
ingly, the tangent contact line is on the common plane. Whereas, in the
geometric potential method, we determine firstly the minimum geo-
metric potential line that serves as the contact normal line, whose mid-
point is the contact point. Regarding to the common normal method,
two specific points on each of two ellipsoid surfaces are found in a
condition such that the normal directions at these points are parallel to
the line that passes through the two points. The mid-point of the
common line is defined as the contact point, as exhibited in Fig. 8.
Consider the two facts that the overlap between two rigid bodies is not
allowed from a realistic point of view and that the displacement of any
individual ellipsoid is a small value within a time increment from a
computational point of view, we utilize another strategy, named as the
“separation-based” scheme, as demonstrated in Fig. 9, to determine the
contact between two overlapped ellipsoids.

For two overlapped ellipsoids, we perform the following “separa-
tion-based” procedure to “drag” the two ellipsoids to their respective
temporary locations, i.e. ellipsoid-a* and ellipsoid-b*.

(1) Change the positions of the two ellipsoids by −k d a
last and

−k d b
last, where d a

last and d b
last are the increments of the basic

known vector of the two ellipsoids within the last time step. The
coefficient k (recommended value k ∈ [0.3, 0.7]) is a positive real
number. In current study, we set k = 0.4. The negative sign (−)
indicates that the “separation-based” scheme is a reverse “opera-
tion”.

(2) Invoke the overlap checking procedure (described previously) to
determine whether there is at least one intersection point between
the two ellipsoids.

(3) Repeat the steps (1) and (2) until the two ellipsoids become sepa-
rated. Usually, we can successfully separate the two bodies within
two or three cycles.

(4) Once the two ellipsoids are separated, the overlap checking pro-
cedure gives the temporary closest points A*(aA, eA) and B*(aB, eB)
between ellipsoid-a* and ellipsoid-b*, see Fig. 9.

(5) Determine the line AB on ellipsoid-a and ellipsoid-b by using two
sets of angle parameters (aA, eA) and (aB, eB), respectively. Then, the
contact point C and the contact directions n, s, and t can be ob-
tained by the contact determining procedure.

The separation-based scheme can avoid some difficulties that might
exist in the overlap-based scheme, such as the increased computation
cost, degraded stability, decreased accuracy, and even calculation
failure especially for handling two highly complex particles. In addi-
tion, the separation-based scheme is more in line with the physical
reality.

Fig. 8. “Overlap-based” schemes for two overlapped ellipsoid (only 2D view for clarity).

Fig. 9. “Separation-based” scheme for two overlap ellipsoids.
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4. Dynamics of ellipsoidal particles

Assume that an ellipsoidal particle is a rigid body; next, we will
describe the movement of ellipsoidal particles in the framework of
DDA.

4.1. Equation of motion of an ellipsoidal particle

In Fig. 10 point C(xc, yc, zc) is the centroid of the ellipsoid-a, and F,
G, and q̄ are the point loading, the gravity, and the distributed loading,
respectively. In addition, ū is the specified displacement constraints.
Assume that there are m contact-pairs on this ellipsoid, the corre-
sponding contact forces are p1, p2, …, and pm. Any contact force p can
be expressed as =p n s tp p p[ , , ]n s t

T. Note that the vectors n, s, and t are
not necessarily parallel to the global Cartesian coordinate system. Fol-
lowing the origianl DDA and the Newmark time integration (algorithm
parameters γ = 1.0 and β = 0.5), we have the equation of motion for
ellipsoid-a considering these contact forces as

=m d h p f
t

¯ ¯2 ,a a a a a2 (16)

where ma and fa are the 6 × 6 equivalent mass matrix and the 6 × 1
equivalent force vector, respectively, and t is the time step. The in-
crement of displacement or the based unknown vector of ellipsoid-a is
defined as

=d u v w r r r[ , , , , , ]a x y zc c c
T (17)

where uc, vc, and wc are three translational increments of the cen-
troid of the ellipsoidal particle, rx , ry, and rz are three Euler rotation
angle increments of the same particle. A non-negative contact force
vector p̄a reads

=p p p p p p p p p p¯ [ , , , , , , , , , ] .a n s t n s t m n m s m t1 1 1 2 2 2
T (18)

Moreover, the transform matrix h̄a, whose functions is to transfer
variables from the local contact coordinate system to the global
Cartesian coordinate system, is obtained from

=h h h h¯ [ , , , , ],a j m1 (19)

where m is assumed to be the total number of these contact forces on
the ellipsoid-a. And each hj in h̄a is the 6 × 3 matrix associated with the
j-th contact-pair on the ellipsoid-a, reading

=h T n s tx y z sign x y z( , , ) (·) ( , , )[ , , ] ,j j j j a j j j j
T

(20)

where (xj, yj, zj) are the coordinates of the j-th contact point at the
beginning of the current time step. Note that the contact forces always
come in pairs and they are equal and opposite in direction. Moreover,
the vector p̄a is non-negative. We introduce a sign function sign(·) to

represent that one contact force is positive and the other one is nega-
tive. Complying with the definitions of the unit vectors n (refer to
Fig. 7) of a certain contact-pair between ellipsoid-a and ellipsoid-b, if
a < b, sign(·) associated with ellipsoid-a is the sign (+), while sign(·)
related to ellipsoid-b is the sign (−). Meanwhile, the interpolation
matrix Ta is given by

=T x y z
z z y y

z z x x
y y x x

( , , )
1 0 0 0
0 1 0 0
0 0 1 0

,a

a a

a a

a a

c c

c c

c c (21)

where x y z( , , )a a a
c c c is the centroid of ellipsoid-a. Additionally, the 3 × 3

matrix [n, s, t]j is defined as

=n s t[ , , ]
cos cos cos
cos cos cos
cos cos cos

,j

n s t

n s t

n s t j (22)

where (cosαn, cosβn, cosγn), (cosαs, cosβs, cosγs), and (cosαt, cosβt, cosγt)
are the direction cosines of the vectors n, s, and t, respectively.

In order to generate the equivalent mass matrix and equivalent force
vector in Eq. (16), we have to calculate ten formulas: =F dV ,

=F xdVx , =F ydVy , =F zdVz , =F x dVxx
2 ,

=F y dVyy
2 , =F z dVzz

2 , =F yzdVyz , =F zxdVzx , and
=F xydVxy . From time steps k to k + 1, the new coordinates xk

+1(xk+1, yk+1, zk+1) of any point xk(xk, yk, zk) on an ellipsoid particle
can be obtained by

= + ++x R x I R x u( )k k k1
c c (23)

where I is identity matrix, R is a rotation matrix defined in Eq. (5) and is
calculated by replacing rx , ry, and rz with rx , ry, and rz, respectively,
and Δuc = [Δuc, Δvc, Δwc]T. Note that =F dV is the volume of
ellipsoid particle, which is constant for rigid body. Moreover, the three
integrals Fx, Fy, and Fz can be computed from

= = + +

+ + +

+x R I R x u

F F F

dV x dV dV dV

[ , , ]

( ) .
x
k

y
k

z
k

k k k

1 1 1 T

1
c (24)

By simplifying Eq. (24), one obtains

= + ++ + + R I R x uF F F F F F F[ , , ] [ , , ] [( ) ].x
k

y
k

z
k

x
k

y
k

z
k k1 1 1 T T

c (25)

As for the last six integrals, based on Eq. (23) we construct an in-
terim matrix

Fig. 10. Constraints and loading on an ellipsoidal particle.
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=

=

+

+

+ + +

+ + +

+ + +

+ +x x

Rx Rx

I R x I R x

u u

F F F
F F F
F F F

dV

dV

dV

dV

( )

( )

( ) [( ) ]

( ) .

xx
k

xy
k

xz
k

yx
k

yy
k

yz
k

zx
k

zy
k

zz
k

k k

k k

k k

1 1 1

1 1 1

1 1 1

1 1 T

T

c c
T

T
(26)

After some mathematical derivations, we have

=

+ +

+ + +

+ + +

+ + +

R R

I R x I R x u u

F F F

F F F

F F F

F F F

F F F

F F F

F {( ) [( ) ] ( ) }.

xx
k

xy
k

xz
k

yx
k

yy
k

yz
k

zx
k

zy
k

zz
k

xx
k

xy
k

xz
k

yx
k

yy
k

yz
k

zx
k

zy
k

zz
k

k k

1 1 1

1 1 1

1 1 1

T

c c T T (27)

The elements in the upper triangular matrix of the interim matrix
are the desired last six integrals. Eqs. (25) and (27) imply that the
aforementioned ten integrations need to be calculated only at the initial
time step (i.e. t = 0). During the simulation, the subsequent volume
integrals can be obtained recursively according to Eqs. (25) and (27).

From Eq. (3), we know that for the intial time step (t = 0), an
arbitrary transformed ellipsoid can be regarded as transfromed from its
corresponding standard ellipsoid with the same three semi-axes, e.g. ru,
rv, and rw. As for the standard ellipsoid, the ten integrals can be calu-
lated analytically, reading

= = = =

= = =

F r r r F F F

F r r r F r r r F r r r

, 0,

, , .
u v w x y z

xx u v w yy u v w zz u v w

4
3

4
15

3 4
15

3 4
15

3
(28)

For the transformed ellipsoid corresponding to the initial time step
(t = 0), we have

= = =
= + + +
= + + +
= + + +
= + + +
= + + +
= + + +

F F F x F F y F F z F
F F F F y z F
F F F F z x F
F F F F x y F
F F F F x F
F F F F y F
F F F F z F

, , ,

( )
( )
( )

,

x y z

yz xx yy zz

zx xx yy zz

xy xx yy zz

xx xx yy zz

yy xx yy zz

zz xx yy zz

0 0
c
0 0

c
0 0

c
0

0
21 31 22 32 23 33 c

0
c
0

0
31 11 32 12 33 13 c

0
c
0

0
11 21 12 22 13 23 c

0
c
0

0
11
2

12
2

13
2

c
0 2

0
21
2

22
2

23
2

c
0 2

0
31
2

32
2

33
2

c
0 2 (29)

where ϕij(i, j = 1, 2, 3) is the element of the shape matrix ϕ0 (at t = 0)
in the i-th row and j-th column, and =x x y z( , , )0

c
0

c
0

c
0 T is the centroid of

the transformed ellipsoid at t = 0. Based upon Eqs. (25), (27), and (29),
we can compute these desired integrals expediently.

4.2. Treatment of contact based on cone complementary formulation

Consider any pair of contact, as shown in Fig. 11, point C is the
contact point, vectors n, s, and t are the three directions of the contact.
The friction force p is given by p= pN + pT = pnn+ pss+ ptt, where
pn ≥ 0, pT = pss + ptt. The Coulomb friction law states that

=p g p g0, 0, 0,n n n n (30)

+ + + + =gµp c p p µp c p p, || ||( ) 0,n s t n s t
2 2

T
2 2

(31)

< > =p g p g, || || || ||,TT T T (32)

where gn is the normal contact gap, gT is the total relative movement
along the contact tangent direction, i.e. gT = gss + gtt. Moreover, μ
(typically μ ∈ [0,1]) and c are the friction factor and the inner cohesion,
respectively. Eq. (30) denotes the complementary relationship in the
normal direction. Eq. (31) refers to the constrain condition in the tan-
gent direction. And Eq. (32) requires that the tangential contact force
be opposite to the tangential relative movement, namely, the tangential
reaction force is dissipative. The maximum dissipation principle can be

used to express Eqs. (30), (31), and (32) equivalently, reading

= + +
+ +

s t s tp p p p g g( , ) arg min ( ) ( ),s t
µp c p p

s t s t
T

n s t
2 2 (33)

where the superscript “T” means “transpose”. As for the optimization
problem representing by Eq. (33), the Lagrangian multiplier method
declares that there exists a non-negative constant λ that makes the
following relationships hold

=p g ,s s (34)

=p g ,t t (35)

+ +µp c p p(0 ) ( 0).n s t
2 2

(36)

Eqs. (34) and (35) means that

+ = +p p g g .s t s t
2 2 2 2

(37)

Note that +p p 0s t
2 2 , from Eq. (36) one can obtain

+ + + =p p µp c p p( ) 0.s t n s t
2 2 2 2

(38)

Considering Eq. (37) and Eq. (38) yields

+ + + =µp c g g p p( ) ( ) 0.n s t s t
2 2 2 2

(39)

To consider cohesion effect, a non-negative number µ̄ = c/pn can be
introduced. Eqs. (34) and (35), Eq. (39) can be reformulated as

+ + = + + + =p µ g g p p p µ g g p g p g( ) 0,n s t s t n s t s s t t
2 2 2 2 2 2

(40)

where μ* = μ + µ̄ and is called as the equivalent friction factor in this
study. Note corresponding to the j-th contact-pair, consider two vectors

=

= + +

p

g

p p p

g µ g g g g~
( , , )

( , , )
j n s t

j n s t s t

T

2 2 T (41)

where gn is the normal contact gap, we immediately have

< > = = + + + + =p g p g

p g

p g p µ g g p g p g~ ~

~
, · 0

.
j j j j n n n s t s s t t

j j

2 2

(42)

For the friction cone C = +p µ p p p{ | }j j n s t
2 2 , its dual cone is

given byC C= < >g p g p~ ~~ { | , 0, }j j j j j j , and its polar cone is defined
as C C=~ ~

j j [38]. Thus, for any contact-pair, the Coulomb friction
law, i.e. Eq. (33), can be written as a cone complementarity problem

C C C Cp g p g~ ~~ or ~ .j j j j j j j j (43)

It should be pointed out that the similar result in terms of the re-
lative velocity had been obtained in [39] using the De Saxcé-Feng

Fig. 11. A pair of contact.
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bipotential [40].
On the other hand, assume that the j-th contact-pair occurs between

ellipsoid-a and ellipsoid-b (a < b), one has

= =

=

g n s t T T d
d

h h d
d

g
g
g

x y z x y z[ , , ] [ ( , , ), ( , , )]

[ , ] ,

j

n

s

t
j a j j j b j j j

a

b

a b j
a

b

T

T T

(44)

where the 3 × 3 matrix [n, s, t]j is given by Eq. (22), which should be a
constant matrix once the contact point has been determined. So do the
interpolation matrices Ta and Tb. Namely, Eq. (44) indicates that gn, gs,
and gt are all the linear function of the basic unknown vectors Δda and
Δdb, however, the first term + +g µ g gn s t

2 2of the vector g~j (see Eq.
(41)) is a non-linear function of the same basic unknown vectors, which
implies that Eq. (43) is in fact a non-linear cone complementarity problem
associated with the basic unknown vectors. To avoid the associated
numerical difficulties, in this study, a linearized vector gj = (gn, gs, gt)T

is actually adopted, thus we have the following linearized cone com-
plementarity problem

C C C Cp g p gorj j j j j j j j (45)

whereC C= < >g p g p{ | , 0, }j j j j j j andC C=j j . In Section 5, we
will demonstrate the validity of the solution for the linearized cone
complementarity problem.

For the whole discrete system, if there are n ellipsoid particles and m
contact-pairs in current time step, by collecting all basic unknown
vectors of these ellipsoid particles and all contact-pairs among these
ellipsoids, we obtain the global governing equation of motion with
Coulomb friction law (or the global linearized cone complementarity
problem) as follows

=× × × × ×M D H P F
t
2 ,n n n n m m n2 6 6 6 1 6 3 3 1 6 1 (46)

where the global equivalent mass matrix M is written as M = Diag
(m1, m2,…, mn), which is a block diagonal matrix. The global incre-
mental displacement vector ΔD is given by =D d d d[ , , , ]n1 2

T,
the global contact force vector P reads =P p p p[ , , , ]m1 2

T (refer to Eq.
(41) for each p in P), and the F is the global equivalent force vector
considering the effect of initial velocity. Note that the global contact
gap vector, defined as =G g g g[ , , , ]m1 2

T, can be cast into a general
form =G H DT by assembling Eq. (44). The global transform matrix H
is constructed as

=

×

H

h h h

h h h

h h h

.

j m

i
j
i

m
i

n
j
n

m
n

n m

1
1 1 1

1

1 6 3 (47)

For any element hj
i(i = 1, …, n; j = 1, …, m) in H, the superscript

“i” corresponds to the global index of one ellipsoid, while the subscript
“j” indicates the global index of one contact-pair. If the j-th contact-pair
is on the i-th ellipsoid, hj

i will be determined by Eq. (20), otherwise, hj
i

is equal to 0. Therefore, the global contact gap vector G can be de-
termined using D solution from Eq. (46), leading to

= = +G H D P bNT (48)

where = =N H M H b H M F,t t
2

T 1
2

T 12 2
. Finally, we have [38]

C C C CP G P G¯ ¯ or ¯ ¯j (49)

C C

C C

C C

=

=

=

=

=

=

¯ ,
¯ ,
¯ .

j m j

j m j

j m j

1..

1..

1.. (50)

Moreover, from the time steps k to k + 1, the global acceleration,
velocity, and displacement vectors are updated by Newmark integra-
tion

=
=
= +

+

+

+

A D V
V D V
D D D

t t
t ,

.

2 / 2 / ,
2 /

k k

k k

k k

1 2

1

1 (51)

4.3. Fixed-point iteration algorithm

In order to solve the global linearized cone complementarity pro-
blem (see Eqs. (46), (49), and (50)), inspired by [30], we have the
following fixed-point iteration algorithm

= + + ++ +P P A NP b B P P PProj{ [ ( )]} (1 ) ,r
k

r
k

r
k

r
k

r
k

r
k

r
k

r
k

r
k

1 1

(52)

where the subscript “r” or “r + 1” denotes the iteration step, the su-
perscript “k” is the current time step. τ and ω are two algorithm para-
meters. Proj{} is a project operator, which will be detailed in Eqs. (56)
and (57). Moreover, the matrix A r

k is a diagonal matrix, in which each
3 × 3 subblock A( )r

k
j corresponds to the j-th contact-pair and defined

as

= =A I
H M H

I( ) 3
Trace( )

,r
k

j j
j j
T 1 (53)

where I is a 3 × 3 identify matrix, and Hj is a 6n × 3 sub-matrix
extracted from the matrix H (see Eq. (47)) corresponding to the j-th
contact-pair. In addition, B r

k is taken as the lower block structure of the
matrix N (see Eq. (48)).

Consider the fact that any contact-pair relates only to two ellipsoids,
i.e. ellipsoid-a and ellipsoid-b (a < b), in practice, we can use a proper
data structure to save storage space and improve computational effi-
ciency. For this purpose, we introduce the following data organization:

In Fig. 12, the matrices mi, fi, and △di are given by Eq. (16). In
Fig. 13, the symbols “ da” and “ db” denote two pointer variables
pointing to da and db, respectively. And the matrices hja and
hjb(a < b) are given by

= +
=

h T n s t
h T n s t

x y z
x y z

( , , )[ , , ]
( , , )[ , , ]

,
ja a j j j j

jb b j j j j

T

T
(54)

where (xj, yj, zj) are the coordinates of the j-th contact point at the
beginning of the current time step. And

=

=

=
+

m h

m h

h m h h m h

,

,
3

Trace( ) Trace( )
.

ja a ja

jb b jb

j
ja a ja jb b jb

1

1

T 1 T 1 (55)

Based on the data structures, the following fixed point iteration al-
gorithm can be employed to solve the proposed global linearized cone
complementarity problem for a certain time step.

(1) Set algorithm parameters τ = 1, ω = 0.2 similar to that in [30], the maximum
iteration number Nmax (i.e. 3000), and the tolerance of the maximum of contact
force increment Δpmax (i.e. 1.0 × 10−6).

(2) Generate the ellipsoid-based data structure (see Fig. 12) and the contact-pair-
based data structure (see Fig. 13).

(3) For j = 1 to m // traverse all of contact-pairs
pj

0= [0,0,0]T; //initialize the contact force vector

End j
For r = 1 to Nmax

Δpmax = −99999; //initialize the maximum of contact force increment
For j = 1 to m //traverse all of contact-pairs

= +p p h d h d¯ [ ]j
r

j
r

j ja a
r

jb b
rT T ; //calculate a temporary value p̄j

r

=p p¯̄ ¯Proj{ }j
r

j
r ; //calculate the projection of p̄j

r (see Eqs. (56) and (57))
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= ++p p p¯̄ (1 )j
r

j
r

j
r1 ; //update the contact force vector

= +p p pj
r

j
r

j
r1 ; //compute the contact force increment vector

= +

= +

d d p

d d p
a

r
a

r
ja j

r

b
r

b
r

jb j
r ; //update the basic unknown vectors

If Δpmax < |max( pj
r )|; //update the maximum of contact force increment

Δpmax = |max( pj
r )|;

End j
If Δpmax < the tolerance of Δpmax; //convergence criterion
Stop the fixed point iteration.

End r

Note that we use pointer variables “ da” and “ db” to “read” and
“write” the basic unknown vectors da and db, which therefore can be
updated in real time. Additionally, similar to [41], projection of the
contact forces are obtained from the following rule:

For the normal contact force

< =
=

p p
p p

if 0, Proj{ } 0
else, Proj{ }

.n n

n n (56)

And for the tangent contact forces

+ + = =

= =+

+

+

+

p p µp c p p p p

p p

if ( ) ( ) , Proj{ } , Proj{ } .

else, Proj{ } , Proj{ } .
s t n s s t t

s
p µp c

p p t
p µp c

p p

2 2 2

( ) ( )s n

s t

t n

s t
2 2 2 2 (57)

As a geometrical interpretation of the projection, Eq. (57) stated
that if + > +p p µp c( ) ( )s t n

2 2 2, the shear contact force will be radially
returned onto the friction cone. The flowchat of the proposed DDA
method is summarized in Fig. 14.

5. Numerical examples

5.1. Test of the closest point between point and ellipsoid

For any transformed ellipsoid with three semi-axes ru, rv, and rw

(ru ≥ rv ≥ rw), we can construct its internal and external spheres by
using rw and ru respectively, as shown in Fig. 15. To validate the pro-
posed semi-analytic geometry iteration algorithm, we firstly generate
1000 random checking point PRandom on the internal or external
spheres, then find out the closest point IClosest by using our algorithm. In
Fig. 15, the vector n is the unit outward vector of the ellipsoid at the
closest point IClosest. For the internal random checking point, if the angle
between vectors I PClosest Random and n is close to π or 180°, abbreviated as
“angle(I PClosest Random, n) = π ± 1.0 × 10−4”, the iteration will be
terminated. Whereas, for the case of the external random checking
point, the iteration termination condition is defined as “angle
(I PClosest Random, n) = 1.0 × 10−4”, which means that the two vectors
I PClosest Random and n are almost in the same direction. It should be
pointed out that for an angle value, a tolerance value of 10−4 is

Fig. 12. Body-based data structure for fixed point iteration.

Fig. 13. Contact-pair-based data structure for fixed point iteration.
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sufficiently accurate. Moreover, the maximum number of iterations is
set to be 20 for all cases.

The iteration curve of a random internal and external checking
point is depicted in Fig. 16(a) and (b). As we can see, for the random
internal checking point, the angle(I PClosest Random, n) is about equal to
3.14156 rad at 6-th iteration step, which implies that the iteration
termination condition is achieved. Meanwhile, the corresponding

nearest distance given by the proposed algorithm is about equal to
0.15303 m (see Fig. 16(a)). On the other hand, after 4 iteration steps,
the angle(I PClosest Random, n) and the nearest distance are respectively
about equal to 0.00001 rad and 0.07896 m, satisfying the convergence
criterion (see Fig. 16(b)). For the 2000 random checking points, the
numbers of iteration steps are further summarized in Fig. 17.

For the 1000 random internal checking points, the mean, minimum,

Fig. 14. Flowchart of the proposed DDA method.

Fig. 15. Ellipsoid and its internal and external spheres.
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and maximum of iteration steps are about equal to 6, 2, and 15, re-
spectively. While for the 1000 random external checking points, the
corresponding values are about equal to 5, 2, and 14, respectively. By

doing statistical analysis, we find that there are 93% (or 99%) of
random internal (or external) checking points, whose iteration steps are
less than 10 steps (see Fig. 17, in which the red line marks the mean of
iteration steps). This indicates that for the great majority of random
checking points the proposed algorithm can be achieved convergence
within 10 iteration steps.

5.2. Test of the closest point between two ellipsoids

In order to validate the proposed algorithm for the case of two el-
lipsoids, we generate randomly 1000 ellipsoids around a fixed ellipsoid,
such that we obtain 1000 pairs of random ellipsoids, as sketched in
Fig. 18. As is known, based on the parametric equation (see Eq. (7)) of
ellipsoid, finding the closest points between a point and an ellipsoid or
between two ellipsoids can be converted to an optimization problem by
setting up the squared distance function between two objects. In the
MATLAB environment, the procedure can be implemented easily by
using a build-in subroutine “fminsearch”. For both the 1000 pairs of
ellipsoids and the 2000 random checking points in the Section 5.1, we
find that the closest points between any pair of geometric objects given
by fminsearch and the proposed algorithm are almost identical. How-
ever, the computational efficiency of the proposed algorithm is sig-
nificantly superior than fminsearch. Therefore, we only demonstrate

Fig. 16. Iteration curve for a random checking point. (unit: m, rad).

Fig. 17. Iteration steps for 1000 random checking points.

Fig. 18. 1000 pairs of random ellipsoids.
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comparisons in computational efficiency, as shown in Fig. 19.
From Fig. 19, we can observe, for the 1000 random internal

checking points, the consuming time of the fminsearch optimization (see
Fig. 19(a)) falls into the range of [0.0113, 0.0230] s, the corresponding
mean is about equal to 0.0067 s. By contrast, that of the proposed SAGI
algorithm is within the interval of [0.0011, 0.0096] s, with a mean
close to 0.0011 s. As for the 1000 random external checking points, the
consuming time of the fminsearch (see Fig. 19(b)) is between 0.0110 s
and 0.0225 s, the mean is about 0.0110 s. Whereas, the corresponding
result associated with the proposed algorithm is between 0.0010 s and
0.0030 s, the mean is about 0.0007 s. Moreover, for the 1000 random
pairs of ellipsoids, the consuming time of the fminsearch (see Fig. 19(c))
is limited to interval of [0.1395, 0.2371] s. Accordingly, the mean is
about equal to 0.1092 s. Comparatively speaking, the consuming time
of the proposed algorithm is within range of [0.0027, 0.0081] s. The
mean is about 0.0020 s. By comparing the mean of consuming time of
the two methods, for the three cases we can estimate the corresponding
speedup ratios are about equal to 10.24, and 11.00, and 50.99, respec-
tively. In the Appendix, algorithms for detecting the closest points be-
tween ellipsoid and cylinder/truncated cone are also presented. The
algorithms also have speedup ratios about 50 compared with the Ma-
tlab subroutine. It testified that our algorithm has a much faster rate of
convergence compared with the traditional method.

5.3. Conservation of energy and momentum

In this example, the conservation of energy, linear momentum, and
angular momentum will be demonstrated. Firstly, the free falling of an
ellipsoid with the centroid C1 is simulated. Under the action of the
gravity G the ellipsoid will move downwards. Due to the contact force,
it will rebound after touching the fixed plane underneath. The distance
between the lowest point A and the fixed plane will be observed and its
value is equal to 1 m at the initial time, as shown in Fig. 20(a).
Moreover, let the time step Δ = 0.001 s, the material density of body
= 1 kg/m3, the acceleration of gravity g = −10 m/s2, and the total

time is 10 s. Some results are depicted in Fig. 21.
The calculation time when the ellipsoid contacts the fixed plane is

equal to 0.447 s, which is almost the same as the theoretical solution,
see Fig. 21. Meanwhile, the period of motion obtained from the pro-
posed DDA method is about 0.894 s, which is very close to the analy-
tical one. Within 10 s, we can observe 11 complete cycles. In addition,
the maximum distance between point A and the fixed plane is always
equal to 1 m. This is to say that our DDA method can ensure the con-
servation of energy.

In order to test the conservation of linear momentum, we assign the
initial translational velocity V0(1,0,1) m/s to a sphere C2, which is
moving within a fixed cubic boundary, as shown Fig. 20(b). We set the

Fig. 19. Comparisons of consuming time. (unit: s).
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time step Δ = 0.001 s, the total time 10 s, and the material density of
body = 1 kg/m3. Gravity as well as friction between the sphere and
boundary are not considered. Under these conditions, the sphere will
move periodically due to conservation of linear momentum. The tra-
jectory of the centroid C2 is sketched in Fig. 22 (black solid line), which
coincides with the theoretical trajectory (red double dot line). This
indicates that the linear momentum is conserved in the proposed DDA
method.

Next, we consider the spinning of an ellipsoid in Fig. 20(c). An in-
itial angular velocity ω0 = 10 rad/s is specified to an ellipsoid around
its central axis on a frictionless fixed plane. The material density of
body = 1 kg/m3, the acceleration of gravity g =−10 m/s2, the time
step Δ = 1 s, and the total calculation step is set to be 1000 s. Because
the ellipsoid contacts with the fixed plane at its lowest point, if the

contact force can be predicted correctly by the proposed DDA method,
the ellipsoid will rotate around z-axis with a constant angular velocity
ω0, meanwhile, the angular velocities around x- and y-axes both should
be equal to zero. Based on this reason, the calculated angular velocities
around x, y, and z-axes will be tested, shown in Fig. 23. We can find that
the absolute error of angular velocities around x-, y-, and z-axes is in the
order of 10−12, which are sufficiently small, and that the angular ve-
locity around z-axis is almost equal to the preset constant value of
10 rad/s. Consequently, the conservation of angular momentum has
been verified.

5.4. Frictional rolling of a sphere

A sphere with the radius R = 1 m is on a fixed plane, as shown in
Fig. 24. F, G, and T are the constant point loading, the gravity, and the
friction, respectively. d ∈ [0, 2] m is the distance between the action
line of F and the static plane, and V0 is the initial velocity of the cen-
troid of the sphere. We let the material density of body = 1 kg/m3,
the acceleration of gravity g = −10 m/s2, and the time step
Δ = 0.001 s.

Now, consider the first case: Set the friction factor to be 0.1, the
initial velocity V0 = 0, the point loading F = 1 N, and the distance d
ranges from 0 to 2 m. In this case, the maximum of the friction between
the sphere and the plane Tmax = 4π/3 = 4.18879 N, which is greater
than F. In this case, the sphere will do a pure rolling motion rightwards.
Theoretically, the real friction T is analytically given by T= F(1 − 5d/
7). For comparison, the calculated values of the friction T are sum-
marized in Fig. 25 as well as the corresponding theoretical values.

In Fig. 25, we can observe that the friction decreases gradually
along with the increase in distance d. When d = 1.4 m, the corre-
sponding friction is equal to zero. Then, the friction will change its
direction, i.e. from the leftward changes to the rightward. Meanwhile, it

Fig. 20. Configuration for conservation of energy and momentum.

Fig. 21. Free falling of an ellipsoid (unit: m, s. Refer to Fig. 21(a)).

Fig. 22. Trajectory of the centroid C2 (refer to Fig. 20(b)).
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can be noted that the calculated frictions obtained from the proposed
DDA method are almost coincide with that given by analytical formula.
Namely, as we can see from Fig. 25, the data points (theoretical fric-
tions) marked by the red “+” symbols and the data points (calculated
frictions) denoted by the blue “○” symbols overlap with each other.
This is to say that the computational accuracy of our DDA method is
highly satisfactory.

Next, set the friction factor to be 0.1, the initial velocity V0 increase
gradually from 0 to 2 m/s by 0.2 m/s, and the point loading F= 0 N. In
this case, at the first stage of the motion, because the relative sliding
exists the between the sphere and the fixed plane, the friction must be up
to the maximum value, and the sphere decelerates gradually. Then, at a

Fig. 23. Angular velocities of an ellipsoid (unit: rad/s, s; refer to Fig. 20(c)).

Fig. 24. Configuration for fictional rolling of a sphere.

Fig. 25. Friction corresponding to the different d (unit: N, m).

Fig. 26. Velocity vs. calculation step (unit: m/s).
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crucial moment, the sphere begins to do pure rolling motion without
sliding. This means that the acceleration value |aC| of the centroid should
be R times of the angular acceleration β around the contact point be-
tween the sphere and the fixed plane. Namely, |aC| = Rβ. Therefore, the
critical time can be computed by t = 2|V0|/7. We will predict the critical

time by using the proposed DDA method. When a relatively constant
velocity is achieved, the corresponding calculation step is considered as
the critical time. Some results are illustrated in Fig. 26.

The ten velocity-calculation step (CS) curves are plotted in Fig. 26.
At CS = 0, the velocities are the given initial velocities of the centroid

Fig. 27. Configuration for falling of ellipsoids in a cylinder (unit: m).

Fig. 28. Configuration of 50 ellipsoids in a cylinder (CS = 1000).
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of the sphere. Taking the initial velocity V0 = 1.0 m/s as an example,
i.e. the polyline ABC in Fig. 26, the line segment AB denotes the de-
celerated motion of the sphere, while at the stage represented by the
line segment BC the sphere attains a relative stable velocity. Obviously,
the point B is turning point, where the sphere has just begun doing the
pure roll without sliding. For the case of V0 = 1.0 m/s, the calculation

step corresponding to the point B is about equal to 285CS, i.e.
285 × 0.001 = 0.285 s that is very close to the theoretical time. In the
same fashion, we can scrutinize the other nine curves. As we can find,
the calculated critical times are in good agreement with the theoretical
ones. In other words, the propose DDA method has the ability to cap-
ture complex movement process.

Fig. 29. Configuration of 50 ellipsoids in a cylinder (CS = 1500).

Fig. 30. Configuration for motion of ellipsoids in a truncated cone (unit: m).
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5.5. Movement of ellipsoids in a cylinder

There are 50 ellipsoids in a fixed cylinder with a closed bottom
surface, as shown in Fig. 27. On the bottom of the cylinder there is a
static sphere. The heigh and radius of the cylinder are H = 15 m and
R = 10 m, respectively. The radius of the sphere is r = 2 m. The 50
ellipsoids are generated ramdomly with the constraint that the three
semi-axes ru, rv, and rw (ru ≥ rv ≥ rw) are all within the interval of [0.6,
1.0] m. From the perspective of the outside outline, the 50 ellipsoids
form a cylindrical shape with the diameter D = 10 m and the heigh
h = 4 m, as exhibited in Fig. 27. Under the action of the gravity, these
ellipsoids fall downwards. Additionally, the material density of body
= 1 kg/m3, the acceleration of gravity g = −10 m/s2, the time step

Δ = 0.001 s, the total calculation step (CS) is 1500, and the friction is
ignored. Some results are demonstrated in Figs. 28 and 29.

At CS = 1000, among the 50 ellipsoids, some of ellipsoids are
colliding with the fixed sphere. At the same time, some of them have
been contacted with the closed bottom surface of the cylinder. Because
of the interactions of these rigid bodies, the outline of the 50 ellipsoids
is now highly irregular (see the red solid line in Fig. 28) and no longer
looks like a cylinder.

Due to the gravity, the contact force, and the inertia, the 50 ellip-
soids keep moving. When CS = 1500, these ellipsoids are scattered
around the static sphere, as presented in Fig. 29. Meanwhile, we can

find, as expected, that the closed bottom surface of the cylinder serves
as a barrier that restricts these ellipsoids to be within the cylinder. This
example shows that the interactions between ellipsoids and cylinders
can be simulated by the proposed DDA method.

5.6. Motion of ellipsoids in a truncated cone

Now, the movement of 200 ellipsoids is simulated. Their three semi-
axes ru, rv, and rw (ru ≥ rv ≥ rw) are all distributed randomly within the
interval of [0.6, 1.0] m. The initial configuration is described in Fig. 30.
The radiuses of the smaller and larger surfaces of the fixed truncated
cone are given by r = 4 m and R = 10 m, and its heigh H = 10 m.
Intially, the 200 ellipsoid assmeble like a cylinder with the diameter
D = 10 m and the heigh h = 10 m. At the initial time, the nearest
distance between these ellipsoids and the bottom surface of the trun-
cated cone is equal to 5 m, i.e. d = 5 m (see Fig. 30). Note that the
smaller surface of the truncated cone does not be closed. The gravity
(g = −10 m/s2) is the only external loading. And the material density
of body = 1 kg/m3, the time step Δ = 0.001 s, the total calculation
step (CS) is 2000. Some results are demonstrated in Figs. 31 and 32.

At CS = 1000, the ellipsoids located at the lowest layer reach at the
level of bottom surface of the truncated cone, see Fig. 31(a). During
their descent, because that the diameter of the truncated cone is getting
smaller and smaller along the direction of the gravity, these ellipsoids

Fig. 31. Configuration of 200 ellipsoids in a truncated cone (3D view).
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are forced to pass through a reduced section at the bottom open surface
(refer to the two red solid curves in Fig. 31(a)). As time goes on, these
ellipsoids continue to fall down. At CS = 1200, 1500, and 2000, their
positions are presented in Fig. 31(b), (c), and (d), respectively. In our
simulation, the motion of any interested body can be investigated in
detail. For instance, we can observe the orientation of the ellipsoid-1 in
Fig. 31(a), (b), (c), and (d). Further, the two-dimensional views of these
results are exhibited in Fig. 32.

Fig. 32 can help us to understand the falling process of this group of
ellipsoids. As we can see, these ellipsoids pass step by step through the
bottom open surface of the truncated cone. At CS = 2000, i.e.
Fig. 32(d), it can be found out that these ellipsoids outside of the
truncated cone are scattered to a larger region because of repulsive
contact forces between particles. This example further demonstrates the
ability of the proposed DDA method to modeling complex motion.

Fig. 32. Configuration of 200 ellipsoids in a truncated cone (2D view).

Fig. 33. Initial configuration for sliding of ellipsoids on a slope (unit: m).
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5.7. Collapse of ellipsoids on a slope

Placed on a slope with an angle α = 30° and width W = 30 m are
400 ellipsoids, whose three semi-axes ru, rv, and rw (ru ≥ rv ≥ rw) are
generated randomly from the range of [0.6, 1.0] m. The assembly has
an initial configuration of D = 10 m, H = 10 m, w = 10 m, and
h = 5 m, as outlined in Fig. 33. A curved red outline is also shown to
indicate the boundary of ellipsoids that are immediately close to the

slope. Under the action of the gravity (g = −10 m/s2) and friction
(μ = 0.1), the collapse of the group of ellipsoids is modeled. Moreover,
the material density of body = 1 kg/m3, the time step Δ = 0.001 s,
and the total calculation step (CS) is set to be 1500. Some results are
presented in Figs. 34 and 35.

About at CS = 600, the group of ellipsoids become denser. Now, we
estimate the corresponding dimensions as: D ≈ 10 m, H ≈ 8 m, w ≈
10 m, and h ≈ 3 m. Apparently, along the direction of gravity the two

Fig. 34. Configuration of a group of ellipsoids on a slope (CS = 600, unit: m, m/s).

Fig. 35. Configuration of a group of ellipsoids on a slope (CS = 1000 and 1500, unit: m, m/s).
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heights H and h are smaller than the initial values. Relatively speaking,
along the ellipsoids, which are immediately close to the slope, we can
draw a flat outline (see the red solid line in Fig. 34) rather than an
irregular outline (see the red solid line in Fig. 33). In addition, from
Fig. 34 it is can be found that there seem to be 7 ellipsoids that are
squeezed out firstly. At this moment, among these ellipsoids the max-
imum of the velocity of centroids is about equal to 12.51 m/s. The
positions of these ellipsoids corresponding to CS = 1000 and
CS = 1500 are further described in Fig. 35.

Due to the action of the gravity, contact with friction, and inertia,
these ellipsoids continue to collapse and slide along the inclined slope
and the horizontal plane, as shown in Fig. 35. As CS = 1000, the
maximum of the velocity of centroids is about equal to 14.46 m/s
among these ellipsoids. Meanwhile, the posterior of the ellipsoids occur
collapse towards the back of the slope. When CS = 1500, the velocity of
centroids reaches as fast as 17.33 m/s. At the same time, the collapse
becomes more apparent. As for the forepart of these ellipsoids, the
sliding distances towards the front of the slope are about equal to 5 m
and 10 m respectively corresponding to CS = 1000 and 1500. Si-
multaneously, these ellipsoids also run off towards the two sides of the
slope. Through this example, the validity and application prospect of
the proposed DDA method is further illustrated. Further, the proposed
method can be used to solve more complex, real engineering problems,
such as landslide hazard assessment, in which, reliability method such
as interval non-probabilistic reliability method [42] becomes important
to handle uncertainty in material properties.

6. Conclusions

In this study, an accurate and efficient numerical simulation plat-
form was developed for modeling ellipsoidal particles and frictional
contact between them. In the proposed framework, firstly, the geo-
metric convexity of ellipsoid itself has been fully exploited to create a
semi-analytic geometry iteration (SAGI) algorithm for identifying the
contact positions and contact directions between rigid bodies. In the
appendix, algorithms for the closest points between ellipsoid and

cylindrical/truncated conical boundaries are also presented. In terms of
the computational efficiency, some designed examples have demon-
strated that the SAGI algorithm is significantly superior than the tra-
ditional optimization algorithm without any loss of accuracy. Secondly,
based on the principle of minimum potential energy, the discontinuous
deformation analysis (DDA) was employed to set up the governing
equation of motion of these rigid bodies. Thirdly, the linearized cone
complementarity formulation has been deduced in detail to further
address the frictional contact problems. By using the fixed point itera-
tion algorithm, the contact forces between bodies can be calculated
accurately. These inherent characteristics of the proposed methodology
can ensure the conservation of the energy, linear momentum, and an-
gular momentum of the system, which have been validated through a
set of numerical experiments. Some challenging problems have been
simulated to further demonstrate the advantages and application pro-
spects of the numerical method. In the near future, we intend to extend
the linearized cone complementarity formation to general polyhedral
block system and to develop the corresponding parallel iteration algo-
rithm.
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Appendix A

A1. The closest point between a point and a cylindrical surface

In Fig. A1, points C1 and C2 are the centroids of the bottom and upper surfaces of a cylinder, respectively. Namely, line C1C2 is the center axis. To
find the closest point between point P and the cylinder surface, the following geometric algorithm can be employed:

(1) Find the projection A onto line C1C2.
(2) Determine the closest point Q between point P and the cylinder surface by

= +x x x xR ( )
|AP|Q A
P A

(A1)

where xA = (xA, yA, zA), xP = (xP, yP, zP), and xQ = (xQ, yQ, zQ) are the coordinates of points A, P, and Q, respectively. R is the radius of the bottom
surface of the cylinder. And |AP| is the distance between points A and P.

A2. The closest point between a point and a truncated cone surface

Line C1C2 is the center axis of the truncated cone. In other words, points C1 and C2 are the centroids of the bottom and upper surfaces of a
truncated cone, respectively, as exhibited in Fig. A2. We give the following geometric algorithm to compute the closest point between point P and the
truncated cone surface:

(1) Find the projections A and B onto the bottom and upper surfaces of the truncated cone, respectively.
(2) Determine points D and E on the bottom and upper circles of the truncated cone by using

= + = +x x
x x

x x
x xR r( )

|C A|
,

( )
|C B|D C1

A C

1
E C2

B C

2

1 1

(A2)

where xA = (xA, yA, zA), xB = (xB, yB, zB), xC1 = (xC1, yC1, zC1), xC2 = (xC2, yC2, zC2), xD = (xD, yD, zD), and xE = (xE, yE, zE) are the coordinates of
points A, B, C1, C2, D, and E, respectively. Moreover, R and r are the radius of the bottom and upper surfaces of the truncated cone. |C1A| is the
distance between points C1 and A. Whereas, |C2B| is the distance between points C2 and B.
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Fig. A1. The closest point from point to cylinder surface.

Fig. A2. The closest point from point to truncated cone surface.

Fig. A3. Projection iteration for the closest point between an ellipsoid and a plane.

Fig. A4. Projection iteration for the closest point between ellipsoid and cylinder surface.
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(3) Determine projected point Q of the point P onto line DE. The point Q is the closest point to the truncated cone.

A3. The closest point between an ellipsoid and a plane/cylindrical surface/truncated cone surface

For the closest point between an ellipsoid and a plane/cylindrical surface/truncated cone surface as shown in Figs. A3–A5, the following
projection iteration algorithm can be used.

(1) Find the projection B1 of the centroid C of the ellipsoid onto the plane/cylindrical surface/truncated cone surface (see Sections A1 and A2 for
more details).

(2) Compute the closest point A1 between point B1 and the ellipsoid.
(3) Calculate the projection B2 of point A1 onto the plane/cylindrical surface/truncated cone surface.
(4) Repeat steps (2)–(3) until |An-1An|/|AnBn+1|≤10−4 or the angler between vector AB and the outwards normal vector of the ellipsoid at pint A is

about equal to 10−4.
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