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A B S T R A C T

Based on micro X-ray computed tomography data, the spherical harmonic (SH) function can be employed to
reconstruct the nature sand particle, referred to as SH-body. Thus, the sand particle micromorphology can be
described by analytic functions. Thanks to these analytic functions, the closest points between SH-bodies for
contact detection can be identified by using a second-order geometric iteration algorithm. Meanwhile, the
equivalent variational inequality is formulated to determine the inter-particle contact forces for the three-di-
mensional cases. To capture the kinematics and kinetics of SH-bodies, this study deduces discontinuous de-
formation analysis (DDA) formula based on the principle of minimum potential energy. The study establishes a
framework for simulating the dynamic behavior of SH-bodies, and the proposed methodology is validated
through numerical examples.

1. Introduction

Recently, researches have been rapidly developed to investigate
origin, chemical components, physical properties, microstructures, and
surface texture of granular materials. Particularly, the development and
application of the micro X-ray computed tomography (µCT) [1–3] have
greatly promoted the insight on the micromorphology of sand particle.

A typical procedure of acquiring µCT data contains the several steps:
Scanning the specimen to obtain a series of X-ray adsorption images
(i.e. projections, cross-sectional images, or slices) indicated by two-di-
mensional pixel [4]; Assembling these slices to produce corresponding
stereoscopic digital image (or tomographic map) described by three-
dimensional voxel [5]; Extracting spatial coordinates to generate geo-
metry model (or reconstructed surface) [6]. Generally speaking, there
mainly are several approaches to represent geometry of a reconstructed
surface: The first approach is the triangular meshes, which is usually
obtained from the marching cubes [7] on the basis of the tomographic
map. The marching tetrahedrons [8] can be employed to correct some
ambiguities in marching cubes. Moreover, Laplacian smoothing [9] and
Gaussian filtering [10] can be utilized to eliminate the artificial stair-
steps appearing the marching-type algorithms. The second approach is
the level set [11,12], which is a real-valued implicit function whose
value is the signed distance from a point to an interface. Specified that it
is positive outside the particle and it is negative inside the same particle
[13], one can obtain the discretized level set [14], which is the result of

image segmentation by using the edge-based level set algorithm [15].
The particle surface is the set of all real-valued roots of an equation
indicating the zero level set. Thus, the reconstructed surface is com-
posed of a large number of discrete points. The third method is B-spline
method [16]. The interpolation-type algorithm will generates an in-
terpolating reconstructed surface that passes through the data points.
While the approximation-type algorithm will leads to an approximating
reconstructed surface that passes near the data points, minimizing the
deviation of the surface from the data points [17]. Firstly, the ap-
proximations on some sub-domains are solved. Then, these approx-
imations are blended by weight functions to build the global approx-
imation [18]. However, how to insert the knots and choose the proper
weight functions is still an open question [19]. And the fourth approach
is the spherical harmonic (SH) functions [20]. Spherical harmonic
functions are defined as the eigenfunctions of the angular part of the -
Laplacian equation in spherical coordinates [21]. The spherical har-
monics, the low-resolution spherical harmonics [22], and weighted
spherical harmonics [23] have become a powerful tool in re-
constructing the star-shaped objects [24–32]. In this study, this type of
reconstructed surface is referred to as SH-surface and the corresponding
body is called as SH-body that is regarded as rigid body.

In 2006, Li et al. [33] designed the so-called CLAD mapping algo-
rithm that can control the length and area distortions simultaneously
and that can enable the mapping operation work on the general tri-
angular meshes no limited to the voxel data. Moreover, the open source
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code SPHARM-MAT [34] makes the SH-based reconstruction easier to
carry out. Based on these works, several SH-based descriptors were
suggested [35,36] to quantify the micromorphology of sand particles
and regenerate near-real sand particles statistically. In order to reveal
the relationship between the macroscopic mechanical behaviors and
the particle microscopic morphology, the capture of the motion of
particles plays an important role especially the treatment of the con-
tacts between particles. In the context of the SH-surface, the re-
constructed surface is described explicitly by several analytic functions.
However, the analytic properties of the reconstructed surface are still
underutilized. On the other hand, discontinuous deformation analysis
(DDA) had been generally recognized as a useful tool for describing the
motion of discrete medium [37–41] and solving geotechnical en-
gineering problems, such as the cohesive-frictional slope analysis [42],
the dynamic response of sites containing discontinuities [43], the eva-
luation of impact force induced by rock landslides [44]. An explicit
version of DDA [45] and a new joint definition [46] have been pro-
posed. Most recently, parallel computing of DDA had also been im-
plemented [47,48]. Nevertheless, to the best knowledge of the authors,
the DDA framework accommodating complex morphology of particles
or bodies has not been established.

To capture the interaction between SH-bodies carrying the in-
formation on nature bodies’ shapes, in this study, from the view of the
principle of minimum potential energy, we deduce the formula of DDA,
in which the degree of freedoms and interpolation matrix are both in-
dependent of the geometry of particle. We extend the geometric itera-
tion algorithms [49] to closed SH-surface to identify contacts among
SH-bodies. To calculate the contact force, we generalize an equivalent
variational inequality [50] to the three-dimensional setting, from which
the resulting contact forces preserve momentum and energy [51].
Consequently, a DDA framework for simulating the dynamic behavior
of SH-bodies is established. The presented methodology has a broad
application in simulating interaction involving complex-shaped objects,
which can be reconstructed by SH functions.

2. Description of particle surface by SH

Mathematically, a star-shaped object has at least one interior point
that can connect any surface point with a line lying entirely within the
particle. The surface of a star-shaped object can be entirely defined by a
continuous function r(θ, φ), which is the radial distance from centre of
particle to a point on the particle surface along the direction (θ, φ). The
angles θ and φ are called polar and azimuthal angles, respectively, as
shown in Fig. 1(a).

The micro X-ray computed tomography (μXCT) technology can be
employed to acquire the cross-sectional images (or slices) of a star-
shaped object, which can be further assembled (or stacked) into 3D
images that is usually a 3D binary voxel data representing a particle
surface. In general, 3D binary voxel data may contain some non-con-
nective edges and vertices, or inherent internal voids. Obviously, the
existence of these components will violate the continuity of the function
r(θ, φ). Thus, before further analysis, they should be first identified and

discarded. This study employs the “Topology Fix” tool of the open-
source program SPHARM-MAT [34] to achieve this purpose, followed
by the so-called spherical parameterization, through which the points
on the original star-shaped object are mapped to the corresponding
points on the unit sphere in the one-to-one manner. During the sphe-
rical parameterization, it is necessary to sample the spherical co-
ordinates (θ, φ) from the unit sphere (see Fig. 1(a)), whose centre is
taken as the origin, to set up the SH functions (Y ( , )n

m in Eq. (1)).
Two sampling tessellations provided by the SPHARM-MAT are ex-

hibited in Fig. 1. In current study, the quadrangular tessellation with
65× 65=4225 sampling points (sampling intervals Δθ = π/
65≈ 0.0483 rad, Δφ =2π/65≈0.0967 rad) is adopted, as shown in
Fig. 1(c). Further, the reconstructed SH-surface can be expressed by
[33–36]
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where the undermined coefficients cxn
m, cyn

m, and czn
m are estimated by the

standard least squares method. While Y ( , )n
m is the so-called SH

function, and integers m and n are referred to as the degree and order of
SH function, respectively. In this study, the integer N is set to be 15,
which has been validated to be adequate for reconstruction of natural
sand particles [35,36]. Any individual SH-surface has a unique set of
coefficients. Note that the coefficients cxn

m, cyn
m, or czn

m will be complex
number if the complex-valued SH function is adopted. It has been va-
lidated that the SH-surface reconstructed from the complex-valued and
real-valued SHs with the same degree and order are identical [30,36].

For the real-valued SH function adopted in this study, it can be
expressed as
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by
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Meanwhile, Eq. (1) can deduce the center (xc, yc, zc) of re-
constructed SH-surface when N =0, that reads

Fig. 1. Spherical coordinate system and sampling tessellations.
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where =Y 1/ /20
0 .

On the other hand, Eq. (1) can be rewritten in matrix form as
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where CSH is called the SH coefficient matrix, Y is referred to as the SH
function vector. From the standpoint of geometry, the movement of any
SH-body can be seen as the result of a series of coordinate transfor-
mations, including rotation, scaling, and translation transformations.

At time t = tk (the k-th time step), firstly, consider a rotation
transformation of vector =x x y z( ( , ), ( , ), ( , ))k k k k T around the
center =x x y z( , , )k k k k

c c c c
T of SH-body, we have

= + = +°x R x x x RC Y I R x( ) ( )k
c
k

c
k k k

SH c (7)

where = ° °° °x x y z( ( , ), ( , ), ( , ))T is the new Cartesian co-
ordinate after the rotation transformation, and I is the 3×3 identity
matrix. The 3× 3 rotation matrix R is defined as

(8)

where rx , ry, and rz are the three Euler angles around x-, y-, and z-axis,
respectively. Secondly, consider a scaling transformation of vector
° = ° ° °x x y z( ( , ), ( , ), ( , ))T with respect to the center

=x x y z( , , )k k k k
c c c c

T of SH-body, reading
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where =x x y z( ( , ), ( , ), ( , ))T is the new Cartesian co-
ordinate after the rotation and scaling transformation, and the 3× 3
scaling matrix S is given by

=S
S

S
S

0 0
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where Sx, Sy, and Sz are the scaling factors along x-, y-, and z-axis, re-
spectively. It is worth mention that scaling operation is needed to en-
large or reduce the particle size during preparation process of a
packing.

Finally, adding a translational increment x̄ to Eq. (9) yields the
updated coordinates at tk+1:

= ++x x x̄k 1 (11)

Eq. (11) can be recast as
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1 T of reconstructed SH-
surface can be updated as
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1
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Note that Eq. (13) suggests that the SH coefficient matrix +C k
SH

1at tk+1

can be obtained recursively from C k
SHat the previous step. Once CSH is

calculated by Eq. (6) for t =0, the subsequent SH coefficient matrix can
be simply updated by rotation and scaling operations via Eq. (13) at
each step, resulting in a highly efficient algorithm. Eq. (12) gives us a
new SH-surface after rotation, scaling, and translation transformations.
The SH-surface forms the basis of the geometric iteration algorithm for
contact detection, as shown in Section 4 for details.

3. Dynamics of SH-body

In this section, we assume firstly the SH-body is perfect rigid. Then
the motion of SH-body will be formulated within the framework of
DDA. Therefore, the treatments on inertia, external load, and dis-
placement constraints are the same as the original DDA [37]. Mean-
while, the Newmark time integration scheme is still adopted to dis-
cretize temporal domain. Thus, the resulted method inherits the
unconditional stability of the original DDA.

3.1. Equations of motion

Fig. 2 shows a rigid SH-body under loading and constrains. Point C
is the center of the SH-body, and F, G, and p̄ are the point loading, the
gravity, and the distributed loading, respectively. Moreover, ū is the
specified displacement constraints. Following the original DDA [37]
and using the Newmark time integration scheme (algorithm parameters
γ =1.0 and β =0.5), we can obtain the equation of motion for rigid
SH-body-i

=M d f
t
2

i i i2 (16)

where Mi and fi are the 6× 6 equivalent mass matrix and the 6×1
equivalent force vector, respectively, and t is the time step. Note that
the initial velocity is contained in fi . The increment of DOF is given by

=d u v w r r r[ , , , , , ]i x y zc c c
T (17)

where uc, vc, and wc are three translational increments of the cen-
troid of the body, rx , ry, and rz are three rotation angle increments
of the rigid-body.

After solving Eq. (16), to eliminate the nonphysical expansion of a
rigid body existing in the original DDA, the increments of displacement
at any point within the SH-body is obtained from

= + R I
u
v
w

u
v
w

x x
y y
z z

( )
c

c

c
Translation components

c

c
c

Rotation components (18)

where I is identity matrix, R is a rotation matrix defined in Eq. (9) and is
calculated by replacing rx , ry, and rz with rx , ry, and rz, respectively.

Fig. 2. Constraints and loading on a rigid SH-body.
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Eq. (18) is the so-called the rotation martix modification method [52],
which allows a rigid body to undergo any arbitrary large rotation
without the change in both volume and shape. In Eq. (16), the
equivalent mass matrix and equivalent force vector involve volume
integrals that can be boiled down to the following ten formulas:

=S dV , =S xdVx , =S ydVy , =S zdVz ,
=S x dVxx

2 , =S y dVyy
2 , =S z dVzz

2 , =S yzdVyz ,
=S zxdVzx , and =S xydVxy . Mathematically, although the

variables x, y, and z can be expressed explicitly as a analytic function of
the two angle parameters θ and φ (refer to Eq. (1)), they all have a large
number of terms, which makes that the above ten formulas too complex
to be calculated analytically with ease. Thus, in this study, we still
adopt the simplex integration method [53] to compute the relevant
volume integrals based on discrete vertexes.

Note that =S dV is just the volume of SH-body, thus, it is a
constant. Next, we will deduce the recursion formula for calculating the
other nine volume integrals from time step k to time step k +1. Based
on Eq. (18), we have

= + ++x R x I R x u( )k k k1
c c (19)

where Δuc= [Δuc, Δvc, Δwc]T. Then, the three integrals Sx, Sy, and Sz
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As for the last six integrals, from Eq. (19), one can construct an
interim matrix, reading
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After some mathematical manipulations, we can obtain
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The elements in the upper triangular matrix of the interim matrix
are the desired last six integrals. Eqs. (20) and (23) imply that the
simplex integrations are needed to be calculated only at the initial time
step (i.e. t =0). For the subsequent time steps, the abovementioned ten
volume integrals can be obtained recursively according to Eqs. (20) and
(23). In this way, the computational cost can be reduced significantly.

3.2. Treatment of contact

In this section, we will extend the variational or quasi-variational
inequality formulation dealing with contact for the two-dimensional
settings [50] to the three-dimensional cases. Firstly, we will define the
contact points and the directions of contact force, as shown in Fig. 3.

Consider a scenario where two SH-bodies, SH-body-i and SH-body-j
(assume i < j), draw close to each other, points A and B are the closest
points between them (refer to Section 4 for more details). In this study,
line AB is called as the normal contact line. If the length of line AB is
less than a preset tolerance dcontact, then a pair of contact has been
detected. The mid-point of line AB is divided into two contact points C1

and C2, which belong to SH-body-i and SH-body-j, respectively. As our
convention, the unit contact normal vector n is parallel to line AB and
points to the interior of the SH-body with a smaller global index,

namely, SH-body-i (i < j), as presented in Fig. 3. At the beginning of
the current time step, points C1 and C2 are superimposed. Without re-
gard to the contact force, assume that points C1 and C2 move to point C1

*

andC2
* at the end of the current time step, respectively. From point C2

* to

point C1
* we have a relative displacement vector = =g C C  C C2

*
1
*

1
*

2
* ,

which can be expressed as = +g ng gn . Thus, the unit contact tan-
gent vector can be obtained from = g n g ng g( )/| |n n .

Some loadings and constraints on a rigid SH-body have been con-
sidered in the previous section. Now, let us pay attention to the contact
forces p1, p2, …, pk, and pm (m is assumed to be the total number of
contact-pairs) on the rigid SH-body-i, as illustrated in Fig. 4. For any
contact force pk, we have = +p np pk k

n
k . Note that the vectors n and τ

are not necessarily parallel to the global coordinate system. To in-
troduce these contact forces into Eq. (16) with respect to the global
coordinate system, we should need the transform matrix

=C C C C C[ , , , , , ]i i i i
k

i
m1 2 i (24)

where mi is assumed to be the total number of these contact forces on
the SH-body-i. And each Ci

k is the 6×2 matrix associated with the k-th
contact-pair on the SH-body-i, reading

= =C T nx y z s x y z k m( , , ) ( , , )[ , ], 1, ,i
k

k k k k i k k k k k i
T (25)

where (xk, yk, zk) are the coordinates of the k-th contact point at the
beginning of the current time step. Note that sk is a sign function to
consider the definition of unit vectors nk and τk. Note that the contact
forces always come in pairs. Complying with the definitions of the unit
vectors nk and τk (refer to Fig. 3) of the k-th contact-pair, if i < j, sk

associated with SH-body-i is a positive sign (+), while sk related to SH-
body-j is a negative sign (−). Additionally, the 3×2 matrix [nk, τk] is
defined as

Fig. 3. Contact points and contact directions (i < j).

Fig. 4. Contact force on a rigid SH-body.
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where (cos k
n, cos k

n, cos k
n) and (cos k , cos k , cos k ) are the di-

rection cosines of the vectors nk and τk, respectively. For these ni contact
forces on SH-body-i, we can further construct a non-negative contact
vector pi

=p p p p p p p[ , , , , , , ]i
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m
n

m1 1 2 2
T

i i (27)

Finally, by introducing the contact forces the governing equation
Eq. (16) becomes

=M d C p f
t
2

i i i i i2 (28)

In fact, Eq. (28) (considering the contact forces) can be interpreted
as a “correction” of Eq. (16) (without considering the contact forces).
Therefore, the total of increment of DOF can be rewritten as the su-
perposition of two components, reading

= +d d di i
p

i
f (29)

where di
p and di

f are the contributions of the contact force vector pi

and the equivalent force vector fi, respectively. And

=

=
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i
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i
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2
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2
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(30)

On the other hand, from Fig. 3 we have known that we can construct

a relative displacement vector = =R C C  C Ck 2
*

1
*

1
*

2
* for the k-th con-

tact-pair without considering the contact forces. Assume that (xi, yi, zi)
and (xj, yj, zj) are the coordinates of the contact point C1

* and C2
* ,

respectively. Then, the normal component of gk
n can be given by

= n x xg ·( )k
n

k i j
T (31)

where

=
= + + =

x y z
x y z x y z l i j

x
T d d

[ , , ]
[ , , ] ( , , )( ), ,

l l l l

l l l l l l l
f

l
p

T

0 0 0 T 0 0 0 (32)

and superscript “0” denotes the initial coordinates of contact points,

=T x y z
z z y y

z z x x
y y x x

( , , )
1 0 0 0
0 1 0 0
0 0 1 0

c c

c c

c c (33)

where (xc, yc, zc) is the coordinate of the center of the SH-body-l. Likely,
the tangent component of gk can be defined as

= x xg ·( )k k i j
T (34)

In the current study, the components gk
n and gk are also referred to

as the normal contact gap and the tangent contact gap, respectively. If
necessary, we can adopt the Coulomb friction law = +p c µ p( )k

n
k k k

n

Fig. 6. First order geometric iteration method.

Fig. 7. Second-order geometric iteration method.

Fig. 8. Iteration search zone.

Fig. 9. Limitation of angles ( =θ, φ).

Fig. 5. Closest point between point P and SH-surface.
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(here, ck is the cohesion of the contact surface, µk is the sliding friction
coefficient) to take into account the friction-induced shear contact force
pk , which should fall in the interval of [- p( )k

n , p( )k
n ]. Meanwhile, gk

n

and gk are both the function in terms of pk and pk
n. Assume that there

are N contact-pairs in total system at the current time step, by applying
the theory of finite-dimensional variational inequality, we have the
equivalent variational or quasi-variational inequality format for the
contact force: find the global contact force vector p pX R( ) N2 , such

that

q p G p q pX( ) ( ) 0, ( )T (35)

where the contact gap function G(p) is given by

=G p p p p pg g g g( ) [ ( ), ( ), , ( ), ( )]n
N

n
N1 1

T (36)

and the global contact force vector is

=p p p p p[ , , , , ]n
N

n
N1 1

T (37)

The constraint X(p) is a closed set in R2N, which dependents on the
global contact force vector p, and is defined as

= × × ×pX X p X p X p( ) ( ) ( ) ( )n n
N N

n
1 1 2 2 (38)

where X p R( )k k
n 2 is the constraint set of the contact forces pk

n and pk
in the k-th contact pair, which dependents on the normal contact force
pk

n of the k-th contact-pair and is expressed as

= = ×X p q q q q p p p( ) {( , )| 0, | | ( )} [0, ) [ ( ), ( )]k k
n

k
n

k k
n

k k
n

k
n

k
n (39)

Then, the compatibility iteration [50] based on the projection-
contraction algorithm [54] can be utilized to solve the contact forces.
One can refer to Refs. [50] and [54] for more details. As thus, we can
bypass the use of artificial contact spring, whose value is usually pro-
blem dependent and is difficult to determine. Moreover, we can also
avoid the open-close iteration, whose convergence has not yet been
proven.Fig. 10. A SH-body and its external box ABCDEFGH.

(a) Non-contact (EOB is inexistent)     (b) Contact (EOB is the green box)

(c) EBs (non-contact) (d) EOB: ABCDEFGH (contact)
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Fig. 11. Two SH-bodies and their external overlapping box (EOB).
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4. Contact between two SH-bodies

By means of SH reconstruction, the particle surface (SH-surface) can
described by three analytic functions, i.e. S: r(θ, φ)= (x(θ, φ), y(θ, φ), z

(θ, φ)), which is continuous and smooth.

4.1. The closest point between point and SH-surface

Consider point P that is outside of SH-surface S: r(θ, φ)= (x(θ, φ), y
(θ, φ), z(θ, φ)), as depicted in Fig. 5. We can construct the squared
distance function between point P and SH-surface S

= + +d x x y y z z( ) ( ) ( )P
2

P
2

P
2 (40)

where (x, y, z) represents a point on SH surface, while (xP, yP, zP) are the
Cartesian coordinates of point P. The substitution of Eq. (1) into Eq.
(40) yields

=

+

+

= =

= =

= =

d c Y x

c Y y

c Y z

( ( , ) )

( ( , ) )

( ( , ) )

n
N

m n
n

xn
m

n
m

n
N

m n
n

yn
m

n
m

n
N

m n
n

zn
m

n
m

0 P
2

0 P
2

0 P
2

(41)

The closest point between point P and SH-surface S requires the
following stationary conditions:

= =d d( , ) 0, ( , ) 0
(42)

which can be solved by using Newton-Raphson iteration method.
Nevertheless, this method is known to be sensitive to initial iteration
values and would be suffered numerical instability to failure. In this
study, we mainly focus on the geometric iteration method to determine
the closest point.

For a continuous and smooth surface, the closest point between it
and a given point is the orthogonal projection of the point onto the
surface. Next, we will extend the first-order geometric iteration method
[48] and the second-order geometric iteration method [49] to SH-sur-
face.

Assume that point Ik is the current iteration point and that k is the
current iteration step. From point Ik to point P we can construct a vector
I Pk that can be decomposed along tangent directions r/ and r/ ,
and unit external normal direction n, respectively, as exhibited in
Fig. 6. It is

= + +r r nI Pk n (43)

where λθ, λφ, and λn are the three components along the three

Fig. 12. Two cases if there is an EOB between two SH-bodies.

Fig. 13. Overlap checking of two cases.
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directions, respectively. And

= =

= =

= ×
×

{ }
{ }r

r

n

, ,

, ,

r

r

r r
r r

x y z

x y z

,

,

| |
, ,

, , (44)

By dot multiplying Eq. (43) with r,θ and r,φ, respectively, we can get

= +

= +

r r r r

r r r r

·I P ·

·I P ·
k

k

, ,
2

, ,

, , , ,
2

(45)

so λθ and λφ can be calculated as the solution of a regular system of
linear equations. Then, θ and φ can be updated by adding λθ and λφ,
respectively [55], namely iteration increments δθ = λθ and δφ = λφ.
Note that the convergence of iteration will make vector I Pk and normal
vector n are collinear. This implies δθ 0 and δφ 0. Thus, there are
two approaches to terminate the iteration. (1) The angle between I Pk
and normal vector n is less than a pre-set angle tolerance, which is
called the angle control approach in current paper. (2) δθ and δφ are
both less than a pre-given increment tolerance, which is referred as to
the increment control approach in this study. The predetermined angle
and increment tolerances depend on the requirement for accuracy.

The second-order geometric iteration method [49], which makes
use of the second-order derivative of a surface, as described in Fig. 7.
First, we have a direction as follows

= +c r rk , , (46)

Correspondingly, the normal curvature can be obtained from

= + + + +k L M N E F G[ 2 ][ 2 ]n
2 2 2 2 1 (47)

where E, F, and G are the coefficients of the first fundamental form of
the surface, while L, M, and N are the coefficients of the second fun-
damental form of the same surface. They are defined as

= = =
= = =

r r r r
r n r n r n

E F G
L M N

, · ,
· , · , ·

,
2

, , ,
2

, , , (48)

The corresponding curvature circle O has radius 1/kn and center Ik
+ |n/kn. Then, point A, which is the intersection point between line OP

Fig. 14. “Overlap-based” scheme for two overlap SH-bodies.

SH-body-i* 

SH-body-j* 

Rollback separation

SH-body-j

SH-body-i

A AA*( , )θ ϕ

B BB*( , )θ ϕ
•

A

B

A A( , )θ ϕ

B B( , )θ ϕ

•

•
•

•
C

Fig. 15. “Separation-based” scheme for the case of two overlap SH-bodies.

A

B

n τ

P( , , )x y z
•

C

Fig. 16. Point on plane ABC.
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A

B

C

A

B

C

Fig. 17. Points distributing uniformly on plane ABC.

Fig. 18. Flowchart of dynamic modeling of SH-Bodies.
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and curvature circle, can be adopted to estimate the iteration incre-
ments that are

= =s s, (49)

where

= ×c c
c

s
k

sign( ·I A) 2 | I A|
| || |k k

k k

n k
3 (50)

where sign(·) is the sign function. I Ak is a vector from point Ik to point
A.

It should be pointed out that the geometric iteration method is a
kind of local method. The initial iteration point should generally be
determined first. Instead of using infinitely many points, any numerical
method uses finitely many points to represent a SH-surface. A triangular
or quadrilateral mesh can be generated by these large numbers of
points. For convenience of presentation, we take the quadrilateral mesh
as an example, as shown in Fig. 8. By comparing the distance between
point P and these large numbers of points, we can pick out a point with
the minimum distance as the initial iteration point. Assume that point
I0(θ0, φ0) is the initial iteration point (see Fig. 8). Around point I0, eight
points V1, V2, …, up to V8 can be found out with the sampling intervals
Δθ and Δφ along tangent directions r , and r , , respectively. Because
point I0 is the relative closest point to point P among these nine points,
therefore, we can limit all iteration points to the zone
V1V2V3V4V5V6V7V8V1, namely θ ∈ [θ0−Δθ, θ0+Δθ] and
φ ∈ [φ0−Δφ, φ0+Δφ]. At the current iteration step, the angles are
denoted as k( =θ, φ), we employ the following formulation to esti-
mate the angles +k 1 for the next iteration step.

= + <

= + > +

+

+

rem( ) , ¯

rem( ) , ¯

k

k

1 0
¯

2 0

1 0
¯

2 0

0

0

(51)

where rem(·) is the remainder function, and the interim angle ¯ is given

by

= + =¯ , ,k (52)

The geometric meaning of Eq. (51) can be illustrated by Fig. 9 in-
dicating that if the interim angle <¯

0 , then we can use Eq. (51)
to make ++ [ , ]k 1 0 0 and = + +( ) ¯ ( ) k0 0 1
(see the blue dotted line with an arrow in Fig. 9); if > +¯

0 , then
Eq. (51) can make + [ , ]k 1 0 0 and

= ++ ( ) ¯ ( )k 1 0 0 (see the purple dotted line with an
arrow in Fig. 9). Eq. (51) is a key ingredient for applying the geometric
iteration method to a SH-surface. In Section 5, we will test the proposed
method.

Note that the SH-surface of any SH-body is closed, if point P is inside
of SH-surface, the first- and second geometric iteration algorithms are
still available. In this case, however, for the angle control approach, the
preset angle tolerance to terminating the iteration should be close to π
(180°). If we don’t know in advance whether point P is inside or outside
of SH-surface, the increment control approach is recommended. If

Table 1
Some representative sand particles.

Original particles Reconstructed SH-bodies Original particles Reconstructed SH-bodies

 

ϕ

θ

n

1P

2P

2 ϕ∆

2 θ∆

P( , )θ ϕ

•

•
•

Fig. 19. The relative positions of points P, P1, and P2.
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necessary, when the iteration completed the angle between I Pk and
normal vector n can be used to judge whether point P is inside or
outside of SH-surface.

4.2. The closest points between two SH-bodies

In this section, we will extend the geometric iteration methods for
the closest point between point and SH-surface described above to find
the closest point between two SH-bodies.

Any individual SH-body has a unique external box (EB) to surround
itself for a preliminary check of inter-body contact, as shown in Fig. 10.
The external box is defined as a rectangular parallelepiped (or cuboid),
of which three orthogonal edges are the projected segments of the SH-
body onto x, y, and z axes, respectively (see Fig. 10). Thus, the external
box is an axis-aligned bounding box [56] and has been widely used to
accelerate the performance of collision detection algorithms.

For two SH-bodies, assume that their EBs are A1B1C1D1E1F1G1H1

and A2B2C2D2E2F2G2H2, respectively (see Figure (c) in Fig. 11). Their
external overlapping box (EOB) is defined as the intersection between
the two EBs, namely the EOB (ABCDEFGH). In order to locate the EOB,
vertex E is firstly determined by E= (Ex, Ey, Ez)= (max(E1x, E2x), max
(E1y, E2y), max(E1z E2z)), then the three lengths of the EOB can be

estimated by a =|EH| =min(H1x, H2x)− Ex along x-axis,
b =|EF| =min(F1y, F2y)− Ey along y-axis, and c =|EA| =min(A1z,
A2z)− Ez along z-axis, respectively. If a ≤0 or b ≤0, or c ≤0, we can
conclude that the EOB is inexistent. Otherwise, we can get a EOB,
whose eight vertexes are defined as: A(Ex, Ey, Ez + c), B(Ex, Ey + b,
Ez + c), C(Ex + a, Ey + b, Ez + c), D(Ex + a, Ey, Ez + c), E(Ex, Ey, Ez), F
(Ex, Ey + b, Ez), G(Ex + a, Ey + b, Ez), and H(Ex + a, Ey, Ez), as depicted
in Figure (d) in Fig. 11.

If an EOB does not exist, then we may draw that the two related SH-
bodies do not contact. However, if an EOB does exist, there are two
possible cases: two non-overlap SH-bodies and two overlap SH-bodies.
For convenience of illustration and observation, here, two dimensional
schematics are only given, as displayed in Fig. 12.

In general, an overlap checking procedure should be conducted to
identify the two possible cases (see Fig. 12). For this purpose, the dis-
tance-based algorithm [57], the contact equation [57], or the separa-
tion axis theorem [58] could be employed. However, these methods all
seem to be complicated. Note that there is at least one intersection point
between two overlap SH-surfaces. From two SH-surfaces, if we can find
out a pair of vertices between that the distance is less than an enough
small value doverlap (e.g. 1.0× 10-6), then we can conclude that the two
SH-surfaces overlap with each other. Based on this, we have the fol-
lowing overlap checking approach (called as the orthogonal projection-

Fig. 21. Differences between closest distances predicted by the first- and second-order algorithms for 1000 random checking points.

Fig. 20. A SH-body and its external sphere.

H. Fan, et al. Computers and Geotechnics 117 (2020) 103234

11



based algorithm, which is simple and intuitive.):

(1) Calculate EB-i and EB-j to determine if there is EOB between SH-
body-i and SH-body-j.

(2) If EOB don’t exist, shift to consider another pair of SH-bodies.
(3) If EOB do exist,

(a) From EOB, find out the set of vertices-i and the set of vertices-j,

which are on SH-body-i and SH-body-j, respectively.
(b) From the set of vertices-i and the set of vertices-j pick out a pair

of closest vertices, e. g. i1 and j1 in Fig. 12. Line i1j1 is called the
initial iteration line.

(c) Choose an endpoint of the initial iteration line as the given
point P and another endpoint as the initial iteration point I0 to
find the closest point Ik between a point and a SH-surface. Then,

Fig. 22. Iteration curve of the proposed methods for a random internal checking point.
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we take point Ik as the new initial iteration point for the next
geometric iteration. Usually, after several time repeats we can
get a common perpendicular line AB to the two SH-bodies, see
Fig. 13.

(d) If the distance d between point pair A-B is more than doverlap (e.g.
1.0×10-6), it is the case of two non-overlap SH-bodies (Fig. 13(a));
otherwise, it is the case of two overlap SH-bodies (Fig. 13(b)).

It should pointed out that there may exist multi-point pairs, e. g. A1-
B1, A2-B2,.., the corresponding distances d1, d2, … between each of
point pairs are all more than doverlap, meanwhile, these distances are
almost equal to each other. Namely, there exist multi-non-overlap re-
gions. In this case, we should deal with these non-overlap regions one
by one using the following contact determining algorithm to find out
multi-contact pairs.

Fig. 23. Iteration curve of the proposed methods for a random external checking point.
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After distinguishing the two cases, we can subsequently perform the
following contact determining algorithm to dispose the non-overlap
case firstly:

(1) For the case of two non-overlap SH-bodies, the common perpen-
dicular line AB (see Fig. 13(a)) severs as the normal contact line AB.
And the direction of normal contact is defined as from the SH-body
with a smaller global index to the SH-body with a bigger global
index (assume i < j, see red solid lines in Fig. 13(a)). Corre-
spondingly, the mid-point of the normal contact line AB is divided
into two contact points C1 and C2, which belong to SH-body-i and
SH-body-j, respectively.

(2) Determine the direction of tangent contact according to the pre-
estimated (without considering the contact force) relative dis-
placement of the two contact points C1 and C2 (referred to Section
3.2 for more details).

Before further dealing with the case of two overlap SH-bodies, we
would like to scrutinize closely on the widely-used tactic adopted by the
contact function method [59,60], the common plane method [61,62],
the geometric potential method [63], and the common normal algo-
rithm [64] in order to reveal its logics. The contact function method
takes the intersection line of two SH-surfaces as the tangent contact
line, whose mid-point serves as the contact point. For the common
plane method, its normal vector is chosen as the contact normal vector.
The tangent contact line is on the common plane (see Fig. 14). While in
the geometric potential method, one should firstly find out the
minimum geometric potential line, which is regarded as the contact
normal line whose mid-point is defined as the contact point. As for the
common normal method, two specific points on each of two SH-surfaces
are found in a condition such that the normal directions at these points

are parallel to the line that passes through the two points. The mid-
point of the common line is specified as the contact point, as described
in Fig. 14. Obviously, the contact points and the contact directions
provided by these methods are not necessarily the same. However, the
starting point behind them is exactly identical: firstly, let two SH-sur-
faces overlap each other; and then, based on the overlap region to de-
fine the contact point and the contact directions. Thus, we can call this
approach as the “overlap-based” scheme. Realistically, the overlap be-
tween two rigid bodies in contact is not allowed. Computationally, the
displacement of any individual body is a small value within a time
increment. To address the contact corresponding to the case of two
overlap SH-bodies, we employ a different strategy (referred to as “se-
paration-based” scheme), as illustrated in Fig. 15.

If there is at least one intersection point between two SH-surfaces
(see the overlap checking algorithm), the following “separation-based
procedure” should be performed to “push” the two bodies to their re-
spective temporary locations, i.e. SH-body-i* and SH-body-j*.

(1) Change the positions of the two bodies by -k d i
last and -k d j

last,
where d i

last and d j
last are the increments of DOFs of the two

bodies within the last time step. The coefficient k (recommended
value k ∈ [0.3, 0.7]) is a positive real number. In current study, we
set k =0.4. The negative sign (−) indicates that the “separation-
based” scheme is a reverse “operation”.

(2) Invoke the overlap checking algorithm to determine whether there
is at least one intersection point between the two SH-surfaces.

(3) Repeat the steps (1) and (2) until the two SH-bodies have been
separated.

(4) Call the contact determining algorithm to obtain the temporary
contact line A * (θA, φA) B * (θB, φB), which belong to SH-body-i*
and SH-body-j*, respectively, see Fig. 15.

(a) First-order algorithm (mean: 21, min: 11, max: 45)

(b) Second-order algorithm (mean: 10, min: 3, max: 44) 
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Fig. 24. Iteration steps of the proposed method for 1000 random checking points.

Fig. 25. Histograms of iteration steps for 1000 random checking points.
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(5) Determine the contact line AB on SH-body-i and SH-body-j ac-
cording to two sets of angle parameters (θA, φA) and (θB, φB), re-
spectively. Then, the contact point C and the contact direction can
be obtained easily.

Usually, we can successfully separate the two bodies within two or
three cycles. Moreover, the usage of the separation-based scheme can
avoid some difficulties that might exist in the overlap-based scheme,
such as the increment of computation cost, the degradation of stability,
the decrement of accuracy, and even calculation failure, especially for
handling two highly complex SH-surfaces. In addition, the separation-
based scheme is more in line with the physical reality.

We know that a plane with the normal vector n can be determined
by points A, B, and C, as shown in Fig. 16. An arbitrary point P(x, y, z)
on this plane is given by

= + +
= + +
= + +

x x x x mµ
y y y y nµ
z z z z pµ

( )
( )
( )

A B A

A B A

A B A (53)

where λ and μ are the parameters. Vector τ(m, n, p) is the direction
vector of line BC. Using the following pseudo-code, we can generate
(N +1)×(N +1) points distributing uniformly on this plane, as sket-
ched in Fig. 17.

Δ= |AB|/N;
i =−1;
for(x =0; x ≤|AB|; x +=Δ)

for(y =0; y ≤|AB|; y +=Δ)
point[++i]=A+ (B−A) * x + τ * y;

where |AB| is the length of edge AB.
Obviously, only these points that are in the triangle ABC will be

likely to be valid contact points. We can further use existing open
source code [65] to identify these points.

Then, the overlap checking approach, the contact determining al-
gorithm, and the separation-based procedure can be extended easily to
deal with the contact between plane and SH-surface.

For the sake of convenience, the main process of conducting dy-
namic simulation is summarized in Fig. 18.

5. Numerical examples

In this section, we will compare the first-order and second-order
algorithms. Then, the validity of SH-body-based DDA (abbreviated as
SHB-DDA) will be demonstrated.

Table 1 shows some representative real sand particles and the cor-
responding reconstructed ones that will be used to examine the relevant
algorithms. Moreover, instead of using fixed springs, which maybe in-
duce additional energy, we assign a huge value of material density to a
rigid body that is desired to be stationary. Compatibility iteration [50]

Fig. 26. Initial configuration of two SH-bodies.
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is used to calculate the contact force. Moreover, to reduce computa-
tional cost, the unit normal vector at any point P(θ, φ) is approximated
by

= ×
×

n PP PP
|PP PP |

1 2

1 2 (54)

where points P1 and P2 are both very near to point P. The relative
positions of points P(θ, φ), P1(θ+Δθ/108, φ), and P2(θ, φ+Δφ/108) are
sketched in Fig. 19.

5.1. Test of the closest point from point to SH-surface

Before testing, for the sake of generality, the vertices of a SH-body
are firstly scaled to a unit sphere through the following procedure: (1)
Determine the farthest distance dmax between these vertices and the
center of the SH-body; (2) Calculate three scaling factors
Sx = Sy = Sz =1.0/dmax; (3) Scale these vertices by Sx, Sy, and Sz taking
the centroid of the SH-body as the scaling center. Then, the SH-body’s
external sphere with the radius r =1.0 can be constructed, as shown in
Fig. 20. Further, the nearest distance dmin between these new vertices
and the center of the SH-body can be evaluated to generate the SH-
body’s internal sphere with the radius r = dmin/dmax. In order to test the
algorithm for finding the closest point between a point and the SH-
surface, 1000 random checking point PRandom will be generated

randomly on the internal or external spheres, respectively. Assume that
the unit normal vector n of the SH-surface is outward. The target of the
geometric iteration algorithm is to find out the closest point IClosest. Set
the maximum number of iterations is to be 50. And the other iteration
termination conditions are δθ ≤1.0×10-5 rad and δφ ≤1.0×10-5

rad. Some results are shown in Figs. 21–25.
For the 1000 random checking points, the differences between the

closest distances obtained from the two proposed methods are sketched
in Fig. 21, in which the fluctuation of the red line indicates that there
are differences between the closest distances given by the two methods.
Upon closer examination, we find that the maximum difference be-
tween the two sets of data is about equal to 0.0020, which is an error
that cannot be ignored in the contact analysis of rigid particle in our
experiences. Next, we will take two random checking points for an
example to demonstrate the iteration process of the two methods.

We first observe the iteration process of a random internal point.
This means that the angle between vector I PClosest Randomand normal
vector n should be close to π (≈3.14159 rad) when the iteration
achieves to convergence. For the first-order algorithm, the corre-
sponding iteration curves are presented in Fig. 22. As δθ and δφ both
approach to 1.0× 10-5, compared with the first-order algorithm and
the first-order algorithm, the angles are about equal to 3.14152 rad and
3.14156 rad, respectively. Meanwhile, the closest distances obtained
are about 0.1736 and 0.1733, respectively. While the iteration steps are
12 and 6, respectively. This is to say that the second-order algorithm
enjoys a faster convergence speed (6 < 12) and a higher computa-
tional accuracy (0.1733 < 0.1736) then the first-order algorithm.

Now, we scrutinize the iteration process of a random external point.
This is to say that the angle between vector I PClosest Randomand unit
normal vector n should be close to 0 when the iteration is completed.
For the first-order algorithm, as we can see from Fig. 23(a) and (b),
along with the decrements of δθ and δφ, the angle approaches gradually
to 0. Meanwhile, the closest distances are about equal to 0.3294 and
0.3291, respectively. Moreover, the iteration steps are 15 and 13 cor-
responding to the first- and second-order algorithms, respectively. Si-
milar to the previous case of a random internal point, generally, in
terms of computational accuracy and convergence speed, the second-
order algorithm has the better performance. For more clearly explain
this point, the corresponding iteration steps of the 1000 random points
are further summarized in Figs. 24 and 25.

For the 1000 random checking points, the iteration steps of the
proposed methods are demonstrated statistically in Fig. 24. For the first-
order algorithm, by calculating the mean, minimum, and maximum of
the iteration steps are 21, 11, and 45 (Fig. 24(a)), respectively. For the

Front-wall

SH-body-1 SH-body-2

Fig. 28. Configuration (TS=400) of two SH-bodies.

Fig. 27. Configuration (TS= 300) of two SH-bodies.
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second-order algorithm, on the other hand, they are equal to 10, 3, and
44 (Fig. 24(b)), respectively. These data reveal that the second-order is
superior to the first-order one.

The iteration steps corresponding to the 1000 random checking
points are illustrated statistically in Fig. 25. From the two histograms,

we can find that the majority checking points (i.e. 87.3%) whose
iteration steps associated with the first-order algorithm is about in be-
tween 13 and 25. Meanwhile, for the second-order algorithm, there are
the majority checking points (i.e. 86.5%) whose iteration steps are
roughly in between 5 and 15. It is suggests that the second-order

Front-wall

Fig. 31. Configuration (TS=1000) of two SH-bodies.

SH-body-2SH-body-1

Rear-wall

Fig. 29. Configuration (TS=550) of two SH-bodies.

Front-wall

Fig. 30. Configuration (TS=800) of two SH-bodies.
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algorithm is recommendable. From Fig. 25, it is can be found that there
are very small amount of checking points (< 1%), whose iteration steps
are up to 44 or 45. On scrutiny, we further find that the closest points
on the SH-surface corresponding to these checking points are almost
always concave points with relative larger curvatures, which mean that
at these points the SH-surface bend towards its interior in a relative
steep way. These points are unlikely to be contact points between two
SH-bodies. All in all, the extended geometric iteration algorithms has
good convergence for a majority of cases, and the second-order algo-
rithm is shown to be superior to the first-order one.

5.2. Interaction of two SH-bodies

Based on comparison done in the previous section, the second-order
algorithm will be employed to further demonstrate the effectiveness of
the method. In the followings, we design two complex examples. One
can refer to Section 3.2 for more details about handling of contact
forces. The treatment of loads and inertia is the same as that in original
DDA. During the simulation, we will pick out some results at re-
presentative time steps to show the motion of SH-bodies.

Firstly, the motion of two SH-particles in a fixed box with dimen-
sions 3.6×2.0×2.0m3 is simulated. The two SH-particles are both

(a) 3D view-1 

G

Fixed “hourglass”

10m

10 m

10m

22 m

9 m

6.6 m

(b) 3D view-2 

(c) 2D view-1                                  (d) 2D view-2 

SH-body-1

Left-wall

Right-wall

Front-wall

Rear-wall

Fig. 32. Initial configuration of a group of random SH-bodies.
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scaled to the unit sphere, as shown in Fig. 26. Initially, the distance
between their centers O1 and O2 is equal to 2m. Set the initial velocities
V01 = -V02 = (1.0, 0.0, 0.0) m/s, which means that the two SH-bodies
will move towards each other in the opposite directions at the begin-
ning of simulation. Moreover, the size of time step is to be 0.001 s, and
the total time step (TS) is 1000. In this example, the gravity is not
considered. Note that the choice of these numerical values is just for
demonstrating purpose. For the proposed methods itself, there is no
limitation on the choices of the box size and initial velocities. Some
results are illustrated in Figs. 27–31.

As TS=300, the two SH-bodies are just in contact with each other,
as presented in Fig. 27. Then, under the action of the contact force and
the inertia, the two SH-bodies are separated. Meanwhile, from this
moment they have no-zero angle velocity, which means that the two
SH-bodies will undergo the composite motion including the translation
and rotation.

When TS= 400, SH-body-2 touches with the front-wall of the fixed
box, as depicted in Fig. 28. While SH-body-1 continues to move without
subjecting to any external force.

While TS=550, SH-body-1 contacts with the rear-wall of the fixed
box, as indicated in Fig. 29. At the same time, SH-body-2 continues to
move freely. For TS=800, 1000, the position of the two SH-bodies are
displayed in Figs. 30 and 31, respectively.

5.3. Motion of a group of random SH-bodies

Fig. 32 shows a group of random SH-bodies (outline dimension:
10.0×10.0×10.0m3, and 10.0m is identified the characteristic
length for convenience of presentation) that are generated randomly
according to the sample SH-bodies listed in Table 1. To generate
random SH-bodies sample, statistical information about morphologies
and characteristics of nature sands or bodies should be taken in to ac-
count [35,36,66]. One can further refer to [67,68] for considering the
influence induced by parameter uncertainty.

Under the action of the gravity, these SH-bodies will fall into the
bottom fixed “hourglass”, which is a frustum without the upper and
bottom surfaces. The edge length of the upper surface is equal to 22m,
while for the bottom surface the edge length is 6.6 m. And the high is
equal to 9m, as indicated in Fig. 32(a). In this example, the size of time
step is to be 0.001 s, and the total time step (TS) is 2000. Some results
are exhibited in Figs. 33–37.

Along with the advance of time, when TS=850, SH-body-1 just
contacts with the left-wall of the hourglass, as shown in Fig. 33, and is
ready to rebound. While the other SH-bodies continue falling down-
wards.

At TS=890, SH-body-2 touches with the front-wall of the hour-
glass, as exhibited in Fig. 34. At the next time step, it will rebound

under the relevant contact force. Moreover, there are interaction be-
tween SH-body-1 and the others around it.

On one hand, the edge length (6.6m) of the bottom open of the
hourglass is less than the characteristic length (10.0 m) of the group of
SH-bodies, these SH-bodies on the bottom layer will first meet obstacle
during their descent. On other hand, these SH-bodies on the upper layer
are still free falling. Thus, about before TS=1240, the group of random
SH-bodies that are relative loose at the initial time become relative
density little by little, as illustrated in Fig. 35.

When the group of random SH-bodies are more and more density,
the interactions between SH-bodies tend to be more intense. Therefore,
about after TS=1240, these SH-bodies start to be scattered due to the
repulsive contact forces, as displayed in Fig. 36.

Next, we pick out 12 SH-bodies to track their movements. At

SH-body-1

Left-wall

Fig. 33. Configuration of a group of random SH-bodies at TS= 851.

Front-wall

SH-body-2

SH-body-1

Fig. 34. Configuration of a group of random SH-bodies at TS= 890.

(a) TS = 1000

(b) TS = 1240

Fig. 35. Configurations of a group of random SH-bodies from TS=1000 and
TS=1240.
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TS=0, 1300, and 2000, their positions and the trajectories of their
centers are presented in Fig. 37, respectively. For ease of observation,
we adopt the same color for a SH-body and its trajectory of its center. In
Figs. 35 and 36, we have noted that about TS=1240 the group of SH-
bodies start to be scattered upward. Thus, about before TS=1240 the
trajectories are 12 vertical lines, see Fig. 37. Because the shapes of SH-
bodies are complex and the initial configuration is not in a dense state,
the bounces of these 12 SH-bodies are not synchronous, as shown in
Fig. 37. This example demonstrates the ability of the SHB-DDA to
capture the motion of multiple SH-bodies.

6. Conclusions

The surface of star-shaped object, either nature or artificial, can be
reconstructed by using the spherical harmonic functions to resulting the
so-called SH-body. In order to make full use of the analytical properties
of the reconstructed surface, a framework for modeling the kinematics
and kinetics characteristics of SH-bodies has been established. In the
proposed framework, the discontinuous deformation analysis was em-
ployed to formulate the governing equation of motion of individual SH-
body. Meanwhile, an extended second-order geometric iteration

(a) TS = 1500

(b) TS = 2000

3D view

2D view-1 2D view-2

Fig. 36. Configurations of a group of random SH-bodies from TS=1500 and TS=2000.
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algorithm was adopted to identify the contact points between SH-sur-
faces. To ensure the conservation of energy and momentum, the contact
forces were determined by solving the equivalent problem of varia-
tional inequality being suitable for the three-dimensional cases. The
validation of proposed methodology was demonstrated by several ex-
amples. This demonstrates that the new framework will have a broad
application prospect.
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