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a b s t r a c t

Finite element (FE) response sensitivity analysis is an important component in gradient-based struc-

tural optimization, reliability analysis, system identification, and FE model updating. In this paper,

the FE response sensitivity analysis methodology based on the direct differentiation method (DDM) is

applied to a bounding surface plasticity material model that has been widely used to simulate

nonlinear soil behavior under static and dynamic loading conditions. The DDM-based algorithm is

derived and implemented in the general-purpose nonlinear finite element analysis program OpenSees.

The algorithm is validated through simulation of the nonlinear cyclic response of a soil element and a

liquefiable soil site at Port Island, Japan, under earthquake loading. The response sensitivity results are

compared and validated with those obtained from Forward Finite Difference (FFD) analysis. Further-

more, the results are used to determine the relative importance of various soil constitutive parameters

to the dynamic response of the system. The DDM-based algorithm is demonstrated to be accurate and

efficient in computing the FE response sensitivities, and has great potential in the sensitivity analysis of

nonlinear dynamic soil-structure systems.

& 2013 Published by Elsevier Ltd.

1. Introduction

Finite element (FE) response sensitivity analysis is an essential
ingredient of gradient-based optimization methods and is
required in structural optimization, system identification, relia-
bility, and FE model updating [1–4]. Furthermore, the sensitivity
analysis results may be used to propagate the material and
loading uncertainty to the structural responses of interest. In
addition, FE response sensitivities provide invaluable insight into
the effects of system parameters on, and their relative importance
to, the system response [5]. Several methods are available for
response sensitivity analysis, including the Finite Difference
Method (FDM), the Adjoint Method (AM), the Perturbation
Method (PM), and the Direct Differentiation Method (DDM)
[6–11]. The FDM is the simplest method for response sensitivity
computation, but is computationally expensive and can be nega-
tively affected by numerical noise. The AM is efficient for linear
and non-linear elastic systems, but is not a competitive method
for path-dependent (i.e., inelastic) problems. The PM is computa-
tionally efficient but generally not very accurate. The DDM, on the
other hand, is a general, accurate and efficient method that is
applicable to any material constitutive model. The DDM-based

response sensitivity analysis methodology shows great promise
in the analysis of large and complex structural or geotechnical
systems.

However the DDM method requires analytical derivations and
their computer implementation to differentiate the system
responses with respect to sensitivity parameters. Over the past
decade, the DDM-based sensitivity analysis method has been
actively developed and implemented in an open source FE
analysis framework known as OpenSees [12]. The DDM has been
developed for various constitutive models including uniaxial
materials, three-dimensional J2 plasticity models and pressure-
independent multi-yield surface J2 plasticity models [13]. These
models can be used to simulate truss and beam components in
structures, and nonlinear clay behaviors. Detailed descriptions of
the DDM-based sensitivity analysis methodology implemented in
OpenSees can be found in the literature [14–17].

Yet, the method has not been formulated for sandy soils,
which usually exhibit different behavior from clayey soils, such
as pressure-dependent cyclic behaviors, shear-induced volumetric
dilation and contraction, as well as liquefaction under low effective
confinement. The objective of this paper is to extend the DDM-based
sensitivity analysis to a class of bounding surface models for
sandy soils. The bounding surface model has been widely used
and proven to be an effective and robust model to simulate the
behaviors of sandy materials under cyclic and seismic loading condi-
tions [18–21]. The DDM-based sensitivity algorithm is particularly
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efficient for strongly nonlinear, large-scale problems with a large
number of sensitivity parameters. Geotechnical problems modeled
using the bounding surface model are such examples. Thus devel-
oping a DDM-based sensitivity algorithm for the bounding surface
model will allow us to solve a large number of challenging
geotechnical problems, such as the earthquake-induced liquefaction
phenomenon in sandy soils. When combined with the existing
sensitivity analysis framework for clayey soils and soil-structure
systems, the DDM-based sensitivity analysis may be readily applied
to real soil-foundation-structure interaction systems [17].

This paper provides a summary of the bounding surface model
and detailed DDM formulation, followed by examples to validate
the DDM-based FE response sensitivity algorithm. The algorithm
is applied to study the sensitivity of liquefied ground responses
observed at Port Island in Japan under a real earthquake scenario.
The results are further used to identify the relative importance of
the soil parameters to the ground surface response.

2. Numerical implementation of a bounding surface model

The bounding surface model presented herein was developed
for simulating the pressure-dependent behaviors of sandy soils
under complex loading conditions [18,19]. Compared with the
classical plastic theory using yield surfaces, flow rules and hard-
ening laws to characterize the plastic behavior of a material, this
model generalizes the yield-surface-based plasticity theory by
defining a bounding surface or a failure surface. The plastic
deformation within the bounding surface is determined by a
varying plastic modulus, which is defined as a continuous func-
tion of the distance from the current stress to a properly defined
‘image’ stress on the bounding surface. The model was further
improved to incorporate the basic premises of critical-state soil
mechanisms to allow for the realistic modeling of the shear-
induced volumetric changes (i.e., contraction or dilation) in either
a loose or a dense state, and the phase transition from one state to
another [20,21], which is the basis for modeling the liquefaction
behavior of sandy soils. In practice, this model has been imple-
mented in some commercial softwares, and verified using exten-
sive experimental data and real earthquake records [22].

2.1. Constitutive formulation

The bounding surface model employs a stress ratio invariant,
defined as R¼ 1

2 r:r
� �1=2

, where r is the stress ratio of the
deviatoric stress s over pressure p, i.e., r¼ s

p, and the notation
‘‘:’’ is the double contraction between two second-order tensors,
i.e., A:B¼AijBij. Accordingly, an ultimate failure surface, or a
failure-bounding surface, is defined as

bf ¼ R�Rf ¼ 0 ð1Þ

where the parameter Rf is the stress ratio invariant at the failure
surface, which is related to the corresponding classical critical
state triaxial parameter M by Rf ¼M=

ffiffiffi
3
p

. Stress is not allowed to
trespass the failure-bounding surface f̂ ¼ 0. Similarly, the max-
imum prestress memory bounding surface is defined as:

f ¼ R�Rm ¼ 0 ð2Þ

where Rm is a history parameter providing the maximum pres-
tress level. The two bounding surfaces f̂ ¼ 0 and f ¼ 0 are
combined to compute the plastic modulus.

Inside the failure-bounding surface, the hypoelastic response,
i.e., the elastic strain rate _ee, is defined as the summation of

deviatoric strain _ee and volumetric strain tr _ee:

_ee
¼ _ee
þ

1

3
ðtr _ee
ÞI¼

1

2G
_sþ

1

3K
_pI¼

1

2G
p_rþ

1

2G
rþ

1

3K
I

� �
_p ð3Þ

where G and K are the pressure-dependent elastic shear and bulk
moduli, respectively. Similarly, the hypoplastic response, i.e., the
plastic strain rate _ep, can be written as

_ep
¼

1

Hr
nDþ

1

3Kr
I

� �
ðp_r:nNÞþ

1

Hp
rþ

1

3Kp
I

� �
hðp�pmÞ/ _pS ð4Þ

where Hr and Kr are, respectively, the plastic shear and bulk
moduli associated with the deviatoric stress ratio _r; parameters
Hp and Kp are, respectively, the plastic shear and bulk moduli
associated with the pressure rate _p. The vectors nD and nN are unit
vectors in stress space along the deviatoric part of _ep and the
associated deviatoric loading direction, respectively. In this paper
both nD and nN are taken to be the same as the unit vector normal
to the maximum prestress memory bounding surface f ¼ 0 (i.e.,
vector n in Fig. 1). The pm is the maximum value of mean pressure
p experienced in past loading. The Heaviside step function
h(p�pm) and the Macaulay brackets /S around _p indicate that
the plastic mechanism due to _p operates only when p¼pm and
_p40. As shown in Fig. 1, the previous unloading stress point
(i.e., a in Fig. 1), the current deviatoric stress ratio r and a properly
defined ‘image’ stress r on the maximum prestress memory
bounding surface f ðrÞ ¼ 0 are combined to determine variable
plastic moduli Hr and Kr, which are continuous functions of the
distance r from a to r (r¼ :r�a:2) and the distancer from a to r
(r¼ :r�a:2) [18]. It is worth mentioning that for practical
applications, the shear-induced plastic strains usually dominate.

Therefore, the second term in Eq. (4), i.e., 1
Hp

rþ 1
3Kp

I
� �

hðp�pmÞ

/ _pS, is neglected in this paper for simplicity. The plastic strain

rate _ep can be simplified as:

_ep
¼

1

Hr
nþ

1

3Kr
I

� �
ðp_r:nÞ ð5Þ

2.2. Numerical implementation

The numerical implementation of the constitutive model
employs an explicit algorithm for computing the plastic moduli
Hr and Kr. In this section, the discretized version of the constitu-
tive model is presented in detail. The variables with subscript
n denote the ones at the last time step at discrete time tn.
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Fig. 1. The bounding surface model in deviatoric stress ratio space.
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The numerical integration of this model is conducted in three
steps:

Step 1. Compute the state variables at the last time step.

The pressure is computed using the last converged stress rn as:

p¼
1

3
trðrnÞ ¼

1

3
ðrn:IÞ ð6Þ

The deviatoric stress ratio is defined as

r�
rn

p
�I ð7Þ

The stress ratio invariant is defined as

R¼
ffiffiffiffiffiffiffi
r:r
p

ð8Þ

Based on the comparison of the stress ratio invariant R and the
maximum ratio invariant Rm at maximum prestress memory
bounding surface f ¼ 0, the mapping center a, the distance r and
r, and the unit vector n normal to f ¼ 0 are computed as follows:
If RZRm, the current step is a virgin loading step, and

a¼ 0, Rm ¼ R, n¼ r=R, r ¼ r, r ¼ Rm, r¼ R ð9Þ

Otherwise, the current step is a reloading step, and

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�aÞ:ðr�aÞ

p
ð10Þ

r ¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þR2

m�a:a
q

, where b¼
�ðr�aÞ:affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�aÞ:ðr�aÞ

p ð11Þ

n¼ r=
ffiffiffiffiffiffiffi
r:r
p

¼ r=Rm, where r ¼ aþ
r
r ðr�aÞ ð12Þ

Step 2. Compute the hypoelastic and hypoplastic moduli.

The hypoelastic shear modulus G, the hypoelastic bulk mod-
ulus K, the plastic shear modulus Hr, and the plastic bulk
modulus Kr are computed respectively as [23,19]:

G¼ paG0
ð2:973�einÞ

2

1þein

ffiffiffiffiffi
p

pa

r
ð13Þ

K ¼
2Gð1þnÞ
3ð1�2nÞ ð14Þ

Hr ¼ Ghr
Rf

Rm

r
r

� �� ~m
�1

 !
ð15Þ

Kr ¼ K=w ð16Þ

where pa denotes the atmospheric pressure, G0 is a nondimen-
sional constant parameter, ein is the initial void ratio, n is Poisson’s
ratio, ~m ¼ 2Rm=r, and hr is model parameter. The variable w is
defined as an interpolation between the value wm for monotonic
loading and the value wr for cyclic loading as follows:

w¼wrþðwm�wrÞ
r
r

� � ~n

ð17Þ

where ~n is a constant that is usually taken in the range ~n ¼

20� 30, and

wm ¼
1

kr

p

pm

� �a Rm

Rf

� �b Rp�Rm

Rf�Rm

� �
ð18Þ

wr ¼
Rm

Rf

� �dþ2sinðpp=pmÞ

ð1�e1�p=pmin Þ ð19Þ

where parameters a, b, d, and kr are model constants. Rp is
the stress ratio invariant delimitating the phase transfor-
mation between volumetric contraction and dilation. It is defi-
ned as

Rp ¼ Rf exp signðcÞm 9c9n
� �

ð20Þ

where m and n are constants used to calibrate the phase
transformation line. The phase transformation line is assumed to
be dependent on a state parameter c, which is defined as the
difference between ein and the critical void ratio ec as follows:

c¼ ein�ec ð21Þ

The critical void ratio ec is uniquely determined by the effective
confining pressure. The critical-state line can be defined by
constants g, l and x in the e–p space as follows:

ec ¼ g�l
p

pa

� �x

ð22Þ

It is worth mentioning that the state-dependent dilatancy for-
mulation in Eq. (20) effectively bounds the dilatancy behavior at
the critical state limit. A detailed discussion of this can be found in
the literature [20,21].
Step 3. Compute the current stress based on loading or unloading

conditions.
Given a strain increment De, a trial elastic stress increment
Drtr is computed as:

Dstr ¼ Ce:De ð23Þ

where Ce denotes the tensor of elastic moduli, which in
the case of isotropic elasticity can be expressed as Ce

ijkl ¼

K� 2
3 G

� �
dijdkl þGðdikdjlþdildjkÞ. Correspondingly, the pressure

increment is

Dp¼
1

3
Drtr:I ð24Þ

The loading index is computed as:

L¼ pDr:n¼ Drtr�
Dp

p
rn

� �
:n ð25Þ

If LZ0, this step is a loading step, and so the current stress can
be computed as

rnþ1 ¼ rnþDrtr�
2G

C2
pr � Q p:De¼ rnþCep:De ð26Þ

where � is the tensor product operator defined as A�B¼AijBkl,
and

pr ¼ nþ
1

2

K

Kr

Hr

G
I ð27Þ

Qp
¼ Bpn�BrI ð28Þ

C2 ¼ ArBp�ApBr ,Ar ¼
1

2

Hr

G
þ1,Ap ¼

Hr

Kr
,Br ¼ r:n,Bp ¼ 2

G

K
ð29Þ

The elasto-plastic tangent modulus is computed as:

Cep
¼ C�

2G

C2
pr �Q p

ð30Þ
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On the other hand, if Lo0, this step is an elastic unloading step. In
this case, the current stress is computed as

rnþ1 ¼ rnþDrtr ¼ rnþCe:De ð31Þ

After the instantaneous unloading step, the mapping center a is
updated to rn. Step 3 is repeated for subsequent stress
computation.

3. The response sensitivity algorithm based on the direct
differentiation method

Response sensitivity is defined as the first derivative of a response
quantity r (e.g., displacement, strain, stress) with respect to a sensi-
tivity parameter y, i.e., dr=dy. The sensitivity parameter could be
a geometric, material or loading parameter. In general, the scalar
response quantity r(y)¼r(f(y),y) depends on the parameter y both
explicitly and implicitly through the vector function f(y). The DDM-
based response sensitivities are computed after convergence of each
time or loading step in nonlinear FE response analysis. This requires
consistent differentiation of the FE algorithm for the response-only
computation with respect to each sensitivity parameter y. Conse-
quently, the response sensitivity computation algorithm involves
various hierarchical levels of FE response analysis: (1) the structure/
system level, (2) the element level or section level, and (3) the
material level. Details about the DDM-based sensitivity formulations
in classical displacement-based, force-based and mixed finite element
methods can be found in the literature [7–10,24].

3.1. Displacement-based FE response sensitivity analysis using DDM

After spatial discretization using the finite element method,
the equations of motion of a structural system can be represented
by the following nonlinear differential equation:

MðyÞ €uðt,yÞþCðyÞ _uðt,yÞþRðuðt,yÞ,yÞ ¼ Fðt,yÞ ð32Þ

where t is time, y is a scalar sensitivity parameter, u(t) is a vector of
nodal displacements, M is the mass matrix, C is the damping matrix,
R(u, t) is a history-dependent internal resisting force vector, F(t) is
the applied dynamic load vector, and _u and €u denote, respectively,
the first and second derivatives of u with respect to time. Without
loss of generality, Eq. (32) can be integrated numerically using time-
stepping methods such as the well-known Newmark-b method [25].
The system of equations can be solved using the Newton–Raphson
iteration procedure, which consists of solving a linearized system of
equations at each iteration. In the following discretized format, a
subscript nþ1 is used to denote the variables at the time step nþ1.
Assuming that unþ1 is the converged solution for the current time
step tnþ1, and recognizing that R(unþ1)¼R(unþ1(y),y) depends on y
explicitly and implicitly through unþ1, we obtain the following
response sensitivity equation at the structural level using the chain
rule of differentiation [2,5]:

1

bðDtÞ2
Mþ

a
bðDtÞ

Cþ ðKTÞ
stat
nþ1

" #
dunþ1

dy

¼
d ~Fnþ1

dy
�
@Rðunþ1ðyÞ , yÞ

@y

				
unþ 1

�
1

bðDtÞ2
dM

dy
þ

a
bðDtÞ

dC

dy

 !
unþ1

ð33Þ

where

d ~Fnþ1

dy
¼

dFnþ1

dy
þ

dM

dy
1

bðDtÞ2
unþ

1

bðDtÞ
_un� 1�

1

2b

� �
€un

" #

þM
1

bðDtÞ2
dun

dy
þ

1

bðDtÞ

d _un

dy
� 1�

1

2b

� �
d €un

dy

" #

þ
dC

dy
a

bðDtÞ
un� 1�

a
b

� �
_un�ðDtÞ 1�

a
2b

� �
€un


 �
þC

a
bðDtÞ

dun

dy
� 1�

a
b

� �
d _un

dy
�ðDtÞ 1�

a
2b

� �
d €un

dy


 �
ð34Þ

In Eq. (33), a and b are Newmark integration parameters,
and ðKTÞ

stat
nþ1 denotes the static algorithmic (consistent) tangent

stiffness matrix of the structure/system, which is defined as the
assembly of the consistent tangent stiffness matrices of the
elements as

ðKTÞ
stat
nþ1 ¼

@Rðunþ1Þ

@unþ1
¼ A

nel

e ¼ 1

Z
Oe

BT Calg
nþ1B dOe

� �
ð35Þ

where Anel
n ¼ 1ðÞ denotes the direct stiffness assembly operator, nel

represents the number of elements in the FE model, B is the
strain–displacement transformation matrix, Calg

nþ1 denotes the
algorithmic (consistent) tangent moduli obtained through con-
sistent linearization of the constitutive law integration scheme
[26,27], i.e.,

Calg
nþ1 ¼

@rnþ1ðrn,en,enþ1:::Þ

@enþ1
ð36Þ

where rnþ1 is the stress at current time step tnþ1. Since an
explicit integration method is used in this model, i.e., rnþ1¼

rnþCep: De, it is straightforward to show that the consistent
tangent modulus for the presented bounding surface plasticity
material model is the same as the continuum tangent moduli
as shown in Eq. (30), i.e., Calg

nþ1 ¼ Cep. In addition, the DDM
sensitivity results are verified by using FDM results, showing that
the consistent tangent modulus is correct.

The second term on the right-hand side of Eq. (33) represents
the partial derivative of the internal resisting force vector,
R(unþ1), with respect to the sensitivity parameter y under the
condition that the nodal displacement vector unþ1 remains fixed.
It is computed through the direct stiffness assembly of the
element resisting force derivatives as:

@Rðunþ1Þ

@y

				
unþ 1

¼ A
nel

e ¼ 1

Z
Oe

BT
ðxÞ
@rðenþ1ðyÞ,yÞ

@y

				
enþ 1

dOe

 !
ð37Þ

Although the conditional stress sensitivity @rðenþ 1ðyÞ,yÞ
@y

			
enþ 1

is

required to solve Eq. (33) for the unknowndunþ 1

dy , only the for-

mulation of unconditional stress sensitivities @rðenþ 1ðyÞ,yÞ
@y is pre-

sented in the following section. The conditional stress
sensitivity is obtained as a special case of the unconditional one

by setting the term @enþ 1

@y ¼ 0 in the derivation.

3.2. A stress sensitivity computation algorithm for the bounding

surface plasticity model

Without loss of generality, fourteen material parameters are
considered as potential sensitivity parameters in this paper: the
reference shear modulus G0 and the initial void ratio ein in
Eq. (13), Poisson’s ratio n in Eq. (14), the constants g,l, and x in
Eq. (22), the failure deviatoric stress ratio Rf, the constants m and
n in Eq. (20), the constants a, b, d, and kr in Eqs. (18) and (19), and
the constant hr in Eq. (15). Following the stress computation
process in steps 1–3 in Section 2.2, the sensitivities of each
intermediate variable are derived as follows.

Step 1. Compute the sensitivities of the state variables at the last

converged time step.
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Differentiating Eqs. (6)–(12) with respect to parameter y gives

@p

@y
¼

1

3

@rn

@y
:I

� �
ð38Þ

@r

@y
¼

1

p

@rn

@y
�

rn

p2

@p

@y
ð39Þ

@R

@y
¼

1

R
r:
@r

@y
ð40Þ

If RZRm

@a
@y
¼ 0,

@Rm

@y
¼
@R

@y
,
@n

@y
¼

1

R

@r

@y
�

r

R2

@R

@y
,
@r

@y
¼
@r

@y
,
@r
@y
¼
@Rm

@y
,
@r
@y
¼
@R

@y
ð41Þ

otherwise

@r
@y
¼

1

r
@r

@y
�
@a
@y

� �
:ðr�aÞ ð42Þ

@b
@y
¼

1

r
@a
@y
�
@r

@y

� �
:aþða�rÞ:

@a
@y
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�
@r
@y

b
r

ð43Þ

@r
@y
¼
@b
@y
þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þR2

m�a:a
q bU

@b
@y
þRmU

@Rm

@y
�a:

@a
@y

� �
ð44Þ

@r

@y
¼
@a
@y
þ
r
r

@r

@y
�
@a
@y

� �
þ

1

r2

@r
@y

r�r @r
@y

� �
ðr�aÞ ð45Þ

@n

@y
¼

1

Rm

@r

@y
�

n

ðRmÞ
2

r:
@r

@y

� �
ð46Þ

Step 2. Compute the sensitivities of the moduli needed for current

step.

Differentiating Eqs. (13) to (22) with respect to parameter y
gives

@G

@y
¼

G

G0

@G0

@y
�

G

ð1þeinÞ
þ

2G

ð2:973�einÞ

� �
@ein

@y
þ

G

2p

@p

@y
ð47Þ

@K
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K

G

@G
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þ

K
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þ
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ð1�2nÞ

� �
@n
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ð48Þ

@ec

@y
¼
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�
@l
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p
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x
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p
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� �x�1 @p
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p
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p
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� �
@x
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ð49Þ

@c
@y
¼
@ein
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�
@ec
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ð50Þ

@Rp

@y
¼

Rp

Rf

@Rf
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þRpUsignðcÞ

@m
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þm n 9c9n�1

signðcÞ
@c
@y
þ ln9c :c9n @n

@y

� ��
ð51Þ

@wm

@y
¼wm ln

p
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� �
@a

@y
þ

a
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pm�
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p

� �
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þwm ln
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� �
@b
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þ

b
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�

b
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@Rmax
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Step 3. Compute the sensitivities of the current stress.

Differentiating Eqs. (23) and (24) with respect to the sensitiv-
ity parameter y gives,
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If LZ0 (a loading step), differentiating Eqs. (7), (12), (26)–(29)
with respect to y yields

@Ar

@y
¼

1

2G

@Hr

@y
�

1

2

Hr

G2

@G

@y
ð59Þ

@Ap

@y
¼

1

Kr

@Hr

@y
þHr

@ð1=KrÞ

@y
ð60Þ

@n

@y
¼

1ffiffiffiffiffiffiffi
r:r
p

@r

@y
� r:

@r

@y

� �
n

r:r
ð61Þ

@r

@y
¼

1

p

@rn

@y
�

rn

p2

@p

@y
ð62Þ

@Br

@y
¼
@r

@y
:nþr:

@n

@y
ð63Þ

@Bp

@y
¼

2

K

@G

@y
�

2G

K2

@K

@y
ð64Þ

@C2

@y
¼
@Ar

@y
BpþAr

@Bp

@y
�
@Ap

@y
Br�Ap

@Br

@y
ð65Þ

@Q p

@y
¼
@Bp

@y
nþBp

@n

@y
�
@Br

@y
I ð66Þ

@pr

@y
¼
@n

@y
þ

1

2

1

Kr

Hr

G

@K

@y
þ

K

Kr

1

G

@Hr

@y
�

K

ðKrÞ
2

Hr

G

@Kr

@y
�

K

Kr

Hr

G2

@G

@y

 !
I ð67Þ

@rnþ1

@y
¼
@rn

@y
þ
@Drtr

@y
�2

@G

@y
1

C2
pr �Q p:De�

2G

C2

@pr

@y
� Q p:De

�
2G

C2

@Q p

@y
:DeþQ p:

@De
@y
�

1

C2

@C2

@y
Q p:De

� �
pr ð68Þ

Q. Gu, G. Wang / Soil Dynamics and Earthquake Engineering 49 (2013) 135–145 139



Author's personal copy

On the other hand, if Lo0 (an elastic unloading step), the
differentiation of Eq. (31) with respect to y reads
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¼
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þ
@Drtr

n

@y
ð69Þ

From Eqs. (38)–(69), the unconditional stress sensitivity
@rnþ 1ðenþ 1ðyÞ,yÞ

@y can be obtained. The conditional stress sensi-

tivity @rnþ 1ðenþ 1ðyÞ,yÞ
@y

			
enþ 1

can be also computed following

Eqs. (38)–(69) by simply setting @enþ 1

@y to zero in Eq. (57), i.e.,
@De
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@y ¼�
@en

@y , since enþ1 is assumed to be fixed in the

conditional case. Then from Eq. (37), @Rðunþ 1Þ

@y
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can be computed

and finally the unknown dunþ 1

dy can be solved by Eq. (33).

4. Numerical examples

In this section, two examples are presented to verify the above
DDM algorithm and illustrate its application in modeling liquefi-
able soils. In these examples, the soils are considered fully
saturated and undrained based on the following assumptions:
(a) The process of water seepage is much slower than that of the
earthquake loading, thus can be ignored; (b) Volumetric modulus
of water is much larger than that of soil, thus water is considered
as incompressible. The soil-water interaction can be modeled by
prescribing the following ‘‘equalDOF’’ constraints: after the initial
pressure is applied, the volume of each element is kept constant
by fixing the vertical displacement of all nodes and imposing the
same horizontal displacements to each pair of nodes at the same
depth. Therefore, the volume soil element and the volume of
water inside soil keep constant during earthquake shaking. For a
horizontally layered soil subject to horizontal earthquake loading,
the total pressure at any point keeps constant and is equal to the
initial pressure. The soil effective pressure is computed by using
the bounding surface soil model presented herein. Thus, the pore
water pressure can be obtained as the difference between the
initial total pressure and the soil effective pressure, and it is not
modeled as an independent variable. Compared to using a fully
coupled fluid–soil element, i.e., u–p formulation [28], the limita-
tion of this method is that it cannot realistically simulate the
post-liquefaction process, which involves the water drainage and
pore water pressure dissipation.

4.1. A sand block subjected to quasi-static cyclic loading

In this example, a soil block with dimensions 1 m�1 m�1 m
(see Fig. 2) subjected to quasi-static cyclic loading is studied to
validate the bounding surface model and its sensitivity algorithm.
The block is modeled using one eight-node, trilinear isopara-
metric brick element with eight integration points. The following
parameters are used in the bounding surface model for a sand
with initial void ratio ein¼0.818, reference shear modulus
G0¼200 Pa, and Poisson’s ratio n¼0.05. Other model constants
used are g¼0.934,l¼0.019, and x¼0.7 in Eq. (22); Rf¼1.0154,
m¼3.5, and n¼0.75 in Eq. (20); kr¼0.5423, a¼0.0, b¼1.0, and
d¼1.9 in Eqs. (18) and (19); and hr¼0.1811 in Eq. (15). The initial
horizontal and vertical pressures are 1.2�105 Pa and 2.4�105 Pa,
respectively. The above-mentioned ‘‘equalDOF’’ constraints are
specified to model a plane-strain, undrained, simple-shear con-
dition. The volume of the element remains constant during the
loading. Each of the top nodes {A, B, C, D} is subjected to a cyclic
load with magnitude F¼104 N as shown in Fig. 2.

Fig. 3 shows the displacement response of node A (see Fig. 2) in
the x1-direction under the cyclic load. The shear stress vs. shear
strain response at Gauss point G (see Fig. 2) is plotted in Fig. 4(a),
where the starting point is marked by a circle. Fig. 4(b) plots the
shear stress vs. the effective confining pressure p under cyclic
loading. During the first few cycles, the soil exhibits shear-
induced volumetric contraction such that p keeps reducing until
the phase transformation line is reached. Then the soil exhibits
dilative behavior and p increases accordingly. The repeated
loading and unloading result in the distinctive ‘‘butterfly’’ loops
in Fig. 4(b).

The DDM-based sensitivities of the displacement response u(t)
of node A in the x1-direction to the model constant G0, the initial
void ratio ein, and the failure deviatoric stress ratio Rf, are
compared with the FFD-based sensitivities using different nor-
malized perturbation Dy/y¼10�3, 10�4, and 10�5. The compar-
ison results and the enlarged views of sections of interest are
shown in Figs. 5–7. From these figures, it is clear that the FFD
results converge asymptotically to the DDM results as Dy/y
changes from 10�3 to 10�5. One can also see spikes in the
sensitivity results in Figs. 6 and 7. A close inspection reveals that
the spikes correspond to the phase transfer points, at which soils
transform suddenly from volumetric contraction to dilation, and
the plastic modulus Kr changes sign from positive to negative.
Thus the first derivative of the response has a spike at the phase
transfer point.
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Fig. 2. Solid block of sand subjected to horizontal quasi-static cyclic loading (loads

applied for initial pressure are omitted for clarity).
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4.2. A multi-layered soil column subjected to earthquake excitation

The second example investigates the response sensitivities of a
multi-layered soil site located at Port Island in Kobe, Japan,
subjected to earthquake loading. The soil there is composed of
an 18 m thick layer of reclaimed sand on top of silty clay, sand
and silt layers. The soil profile is illustrated in Fig. 8(a). The top
layer of reclaimed sand underwent extensive liquefaction, lateral
spreading, and liquefaction-induced settlement during an earth-
quake on January 17, 1995. Ground motion acceleration time
histories have been recorded using a downhole array with

stations at the ground surface, at 16 m, 32 m, and 82 m below
ground surface, providing valuable information for studying the
liquefaction phenomenon [29,30].

In this study, the soil column is discretized using two-
dimensional plane-strain quadrilateral elements with a dimension
of 1 to 2 m in vertical direction. The ‘‘equalDOF’’ constraints are
prescribed so the soil column deforms under undrained simple-
shear condition. The sand and clay materials are both modeled
using the bounding surface model presented in this paper, and
the material parameters are listed in Table 1. Gravity is first
applied statically, which generates the initial confining pressure
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Fig. 4. Local responses at Gaussian point G under undrained cyclic loading. (a) Shear stress vs. strain responses and (b) shear stress vs. mean effective pressure.
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within the soil column. The actual acceleration recorded using the
downhole array at a depth of 82 m is applied to the base of the FE
model, see Fig. 8 (b). The Newmark-beta integration method is
used with parameters a¼0.55 and b¼0.2756 and a constant time
step Dt¼0.01 s. Good agreement is obtained between the
recorded and computed horizontal displacement histories at the
ground surface and between the recorded and computed

acceleration histories at various soil depths, as can be seen in
Fig. 8(b). A typical shear stress vs. shear strain response and a
typical shear stress vs. effective confining pressure response in
the top soil layer at a depth of 3.2 m are shown in Fig. 9. During
shaking, excessive pore-pressure builds up progressively in the
reclaimed sand, resulting in reduced effective confining pressure.
Liquefaction in the top soil layer occurs at about 10 s, as is
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Table 1
Material parameters used in the example 2.

Materials r (kg/m3) G0 ein v Rf d kr hr g l x

1 2100 256 0.74 0.15 0.69 1.25 0.05 0.256 0.94 0.019 0.7

2 2100 232 0.53 0.15 0.67 1.25 0.05 0.345 0.94 0.019 0.7

3 1550 223 – 0.15 0.69 100 1 0.763 0.94 0.042 0.7

4 1950 317 0.76 0.17 0.89 5 0.5 0.243 0.94 0.019 0.7

5 2000 370 0.72 0.01 0.89 5 0.5 0.294 0.94 0.019 0.7

6 1750 374 – 0.27 0.69 100 1 0.757 0.94 0.025 0.7

Note: Parameters a¼0, b¼2, m¼3.6, n¼0.75 are used for all materials.

Q. Gu, G. Wang / Soil Dynamics and Earthquake Engineering 49 (2013) 135–145142



Author's personal copy

evidenced by the significant loss of strength and stiffness of the
soil material. These figures demonstrate that the numerical
simulation agrees well with the real recorded data, and the
presented bounding surface model is able to capture the key
features of the sand behavior including earthquake-induced
liquefaction.

For practical interests, the sensitivity of the ground surface
response to various material parameters of the top soil layer (i.e.,
layer #1 in Fig. 8(a)) is investigated. The DDM-based response
sensitivity results are verified using the FFD method with different
levels of parameter perturbation and are shown in Figs. 10–12.
The FFD results are shown to converge asymptotically to the DDM

results as the FFD perturbation reduces from 10�1 to 10�3and
then 10�5. Thus the DDM-based sensitivity algorithm and its
implementation are verified to be correct for this multilayer soil
system.

The advantage of the DDM method over the FFD method is
evident from the following error analysis. If the round-off error of u
from FE analysis is d, then the error of parameter sensitivity @u

@y y from
the DDM method is also in the order of d. However, the error from
the FFD method consists of two parts: the round-off errors
in the order of O y

Dy d
� �

where O is the Landau symbol; and the
truncation error due to finite difference approximation is in the order
of O Dy

y

� �
M, where M¼ y2

U
@2u
@y2 ðxÞ is a finite number, xA[y,yþDy].
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When Dy/y is large, the truncation error term dominates, and so the
total error from the FFD method decreases as Dy/y is reduced. On the
other hand, when Dy/y is small enough, the round-off error O y

Dy d
� �

becomes dominant. In this case, reducing Dy/y continuously will
induce large round-off errors in the FFD results. The significant
limitation of the FFD method is illustrated in Fig. 11, where the FFD
result is affected by the round-off errors and diverges significantly
from the DDM results when Dy=y¼ 10�7. In this example, the
incremental displacement is used as the convergence criterion,
which is set to be 10�12 m for verification purpose. However, the
convergence criterion for the geotechnical systems is not necessarily
so tight. In that case, it will be difficult to get accurate derivative
using FFD method, and DDM becomes particularly useful.

The relative importance of system parameters in regard to the
system response can be quantified according to the peak absolute
value of the normalized response sensitivity time history @u

@y y.
Fig. 13(a) shows the normalized sensitivities of the horizontal
displacement response of the ground surface to the five most
sensitive material parameters of the top soil layer. The order of
importance of these parameters (in descending order) is as follows:
(1) the initial void ratio ein, (2) the model constant G0, (3) the failure
deviatoric stress ratio Rf, (4) the constant parameter hr for the plastic
shear modulus, and (5) the constant parameter g for the critical state
line. The void ratio ein is identified as the most important parameter
affecting the ground surface displacement response. From Fig. 13(a),
one can see that most parts of the sensitivity histories

@usurf ace

@ein
ein are

positive. Thus, reducing the void ratio will reduce the ground surface
displacement. Fig. 13(b) shows the normalized sensitivities of the
horizontal acceleration response of the ground surface to the five
most sensitive parameters of the top soil. These results indicate that

the ground surface acceleration is most sensitive to the same set of
parameters as the ground surface displacement, except that the
order of importance is slightly changed (in descending order) to (1)
ein, (2) Rf, (3) G0, (4) hr, and (5) g. From these observations, it is clear
that the initial void ratio ein is the controlling parameter affecting
significantly both ground surface displacement and acceleration
during earthquake excitation.

5. Conclusions

The DDM method is a general, accurate and efficient method for
computing FE response sensitivities to model parameters, especially
in the case of nonlinear materials. This paper applies the DDM-
based response sensitivity analysis methodology to a bounding
surface plasticity material model that has been widely used to
simulate nonlinear sandy soil behaviors under static and dynamic
loading conditions. The algorithm is implemented in the general-
purpose nonlinear FE analysis software Open Sees. The new algo-
rithm and its software implementation are validated through two
application examples, in which the DDM-based response sensitiv-
ities are compared with their counterparts obtained using FFD
analysis. The advantage of the DDM method over the FFD method is
also highlighted through convergence tests.

In the application example, the normalized response sensitiv-
ity analysis results are also used to measure the relative impor-
tance of the soil constitutive parameters in regards to the ground
surface displacement and acceleration in the case of ground
liquefaction. The example illustrates the use of finite element
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response sensitivity analysis to determine the relative importance
of material parameters for specified system response parameters.

The work presented in this paper significantly broadens the
application of DDM-based response sensitivity analysis, since it
enables numerous applications involving the use of the bounding
surface plasticity material model. Work is underway to extend the
present study to sensitivity analysis of large-scale nonlinear soil-
structure interaction systems.
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