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SUMMARY

Performance-based earthquake engineering often requires ground-motion time-history analyses to be per-
formed, but very often, ground motions are not recorded at the location being analyzed. The present study
is among the first attempt to stochastically simulate spatially distributed ground motions over a region using
wavelet packets and cokriging analysis. First, we characterize the time and frequency properties of ground
motions using the wavelet packet analysis. The spatial cross-correlations of wavelet packet parameters are
determined through geostatistical analysis of regionalized ground-motion data from the Northridge and
Chi-Chi earthquakes. It is observed that the spatial cross-correlations of wavelet packet parameters are
closely related to regional site conditions. Furthermore, using the developed spatial cross-correlation model
and the cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and
regionalized ground-motion time histories can be synthesized. Case studies and blind tests using data from
the Northridge and Chi-Chi earthquakes demonstrate that the simulated ground motions generally agree well
with the actual recorded data. The proposed method can be used to stochastically simulate regionalized
ground motions for time-history analyses of distributed infrastructure and has important applications in
regional-scale hazard analysis and loss estimation. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Studying the spatial distribution of ground motions is important in regional seismic hazard assessment
and loss estimation [1, 2]. Intensity measures (IMs), such as peak ground acceleration, peak ground
velocity, and spectral acceleration, are most commonly used to characterize ground motions. In
recent years, the spatial correlations of various IMs at multiple sites have been actively researched.
Models have been developed to quantify significant spatial correlations of various scalar IMs [2–6],
as well as spatial cross-correlations of vector IMs [6, 7]. Studies on ground-motion data in
California, Taiwan, and Japan have also indicated that the spatial correlations of IMs can be
significantly influenced by regional site conditions [6, 8], implying that region-specific correlation
models should be developed for applications. These spatial correlation models for IMs can be used
to develop rigorous frameworks for seismic risk and regional loss assessment of spatially distributed
structures provided that the structural responses and IMs are well correlated, and various sources of
uncertainty and variability are incorporated in the analyses (e.g., [9, 10]).
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A ground-motion time history is a complex, transient time sequence, and an IM describes only one
aspect of its many attributes. In the performance-based earthquake engineering, ground-motion time
histories are often needed, but very often, they are not recorded at the location being analyzed.
Motivated by the previous studies on the spatial correlation of IMs, a stochastic method to simulate
spatially distributed time histories over a region is developed in this study. This method represents a
big step toward more accurate performance-based hazard analysis and loss estimation on the
regional scale using time-history analyses. It should be emphasized that the present study should not
be confused with several previous studies on the spatial variation of strong ground motions
(SVSGM), which has been used extensively in multiple-input analysis of structures [11]. First,
SVSGM studies are mainly focused on quantifying the spatial variation in ground-motion time
histories that are recorded within a short separation distance [12–14] using closely spaced
seismograph arrays (e.g., the SMART 1 array in Taiwan, the USGS Parkfield Seismograph Array,
and the Borrego Valley Differential Array in California). Data obtained from these closely spaced
arrays allow empirical ‘coherency functions’ to be derived to measure the similarity among
frequency characteristics of waves along the travel path and to quantify the wave-passage effects
and site-response effects. Based on nearby earthquake recordings, spatially varying ground motions
can be simulated using the coherency functions [15–20]. However, it should be noted that the
coherency functions usually decay quickly with distance. The coherency relationship usually
vanishes when the separation distance is greater than 5 km. On the other hand, ground-motion IMs
can still be strongly correlated even at a separation distance greater than 10 km [8]. Therefore, the
SVSGM technique is not suitable for simulating incoherent ground motions that are situated several
kilometers apart.

The present study is among the first attempt to stochastically simulate ground motions on a regional
scale. First, we characterize spatial correlations and spatial cross-correlations of important stochastic
measures of ground motions, based on well-populated regionalized ground-motion data recorded
from the 1994 Northridge earthquake in California and the 1999 Chi-Chi earthquake in Taiwan. For
this purpose, we develop correlation models for 13 wavelet packet parameters used in a recently
developed stochastic model by Yamamoto and Baker [21]. The model uses wavelet packet analysis
to characterize the wave energy, and the time-domain and frequency-domain statistics of ground
motions at an individual site, based on seismological parameters such as earthquake magnitude,
distance, and local site conditions. The spatial correlation model that we develop in this study for
the wavelet parameters extends the Yamamoto–Baker model to regional-scale applications, by
simulating spatially correlated ground motions at multiple locations for a given scenario earthquake.
It is interesting to mention that the previous scope of work has also been attempted in a recent study
using stochastic point-source simulation [22], where the point-source model is modified to prescribe
a spatial correlation and coherency structure.

The second scope of the present study is to conditionally simulate ground-motion time histories at
unmeasured sites based on strong-motion data recorded in that region. Using the developed spatial
cross-correlation model and the cokriging technique, wavelet parameters at unmeasured locations
can be best estimated, from which ground-motion time histories can be synthesized. As part of this
study, case studies are conducted using the Northridge and Chi-Chi earthquake data. The model
capability is verified in blind tests by comparing simulated ground motions with the actual recorded
data. It is also worth pointing out that, if not unlikely, it is not entirely clear how the conditional
simulation could be conducted using the point-source model in [22].

2. WAVELET PACKET ANALYSIS OF GROUND MOTIONS

Most recently, a stochastic model was proposed by Yamamoto and Baker [21] to simulate
nonstationary ground motions using the wavelet packet transform. The wavelet method
decomposes an acceleration time history x(t) into a collection of wavelet packets localized in
time (t) and frequency ( f ) domain. The wavelet packet coefficients for each packet are defined
as follows:
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cij;k ¼ ∫∞�∞x tð Þψi
j;k tð Þdt (1)

where cij;k is the ith set of wavelet packets at the jth decomposition level (in frequency) and k is

the translation parameter (in time), while ψi
j;k tð Þ is the wavelet packet function. To standardize the

process, the decomposition level of the discrete wavelet transform j = 8 and the time interval of
the time series dt = 0.01 s are used in this study. Therefore, the time interval between the
centers of adjacent wavelet packets is dtw = 2jdt = 2.56 s, and the frequency interval between the
centers of adjacent wavelet packets is dfw = 1/(2dtw) = 0.1953Hz. In total, there are 2j frequency
discretizations and 2N–j time discretizations, if the number of data points in the time series is
2N. Conversely, ground-motion time histories can be synthesized based on the time-frequency
distribution of wavelet packet coefficients via the following reverse transform:

x tð Þ ¼
X2j
i¼1

X2N�j

k¼1

cij;k ψ
i
j;k tð Þ (2)

E(t)

E(f)

2S(f)

2S(t)

FAS

Figure 1. Wavelet packet spectrum, showing the distribution of the squared wavelet packet coefficients of
the recorded acceleration time history at Los Angeles Baldwin Hills site in the 1994 Northridge earthquake.

Table I. Summary of wavelet parameters and parameter groups.

Energy
parameter

Time-domain mean and
standard deviation

Frequency-domain mean and
standard deviation

Time-frequency
correlation Randomness

Eacc E(t)major E( f )major ρ(t, f )major S(ξ)
E(a)major E(t)minor E( f )minor ρ(t, f )minor

S(t)major S( f )major
S(t)minor S( f )minor
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Figure 1 illustrates a wavelet packet spectrum, showing the time and frequency-domain distribution

of squared wavelet packet coefficients cij;k

��� ���2 for an acceleration time history. The wavelet packet

spectrum clearly indicates the nonstationarity of wave characteristics in the time and frequency
domains. To further quantify the distribution of wavelet coefficients, they are separated into a major
group containing 70% of the total energy and a minor group containing the remaining 30%. The
stochastic model requires 13 parameters to characterize the wave energy and time-domain/
frequency-domain distribution of the wavelet coefficients for the major and minor groups, as shown
in Table I. One may refer to Yamamoto and Baker [21] for detailed definition of each parameter.

Of the 13 parameters, two are used to represent the wave energy. For example, the sum of squared
wavelet packet coefficients represents the total energy contained in the ground motion, defined as Eacc:

Eacc ¼
X
i

X
k

cij;k

��� ���2 ¼ ∫
∞

�∞
x tð Þj j2dt (3)

Clearly, Eacc is related to the well-known Arias intensity [23] by a constant factor. As 70% of energy
is contained in the major group, the average of the squared wavelet coefficients for the major group can
be defined as E(a)major. The wavelet packet coefficients are assumed to follow a lognormal distribution
in the time and frequency domains. Two parameters, E(t)major and E(t)minor, are defined to describe the
mean location of the distribution in the time domain, where the subscripts indicate the major group and
the minor group. Similarly, E( f )major and E( f )minor quantify the mean of the major group and that of
the minor group in the frequency domain, respectively. S(t)major and S(t)minor are defined to
characterize the standard deviation of the time-domain distribution; S( f )major and S( f )minor are
defined as the standard deviation of the frequency-domain distribution, for the major and minor
groups, respectively. The time-frequency correlations for the major group and minor group
distributions are characterized by ρ(t, f )major and ρ(t, f )minor. Finally, a randomness parameter S(ξ) is
introduced to quantify the magnitude of wavelet coefficients in the minor group.

Given an earthquake event i, the wavelet parameters at site j can be written as follows:

Yij ¼ Yij Mw;Rhyp;Rrup;Vs30
� �þ ηi þ εij (4)

where Yij represents a wavelet parameter as shown in Table I for the earthquake event i at site j, all in
natural logarithm scale (e.g., ln(Eacc), ln(E(t)major)) except for ρ(t, f)major and ρ(t, f)minor. The mean
Yij Mw;Rhyp;Rrup;Vs30

� �
can be predicted using seismological variables, such as the moment

magnitude, site-to-source distances, and site conditions, through regression analysis of strong-motion
data [21]:

Yij Mw;Rhyp;Rrup;Vs30
� � ¼ αþ β1Mw þ β2 ln Mwð Þ þ β3 exp Mwð Þ
þ β4 Rhyp � Rrup

� �þ β5 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
rup þ h2

q
þ β6 ln Vs30ð Þ (5)

where Mw is the moment magnitude, Rrup is the rupture distance, Rhyp is the hypocentral distance, and
Vs30 is the average shear-wave velocity in the top 30m. The variability of simulated ground motions is
introduced in Equation (4), as the predictive equations quantify not only the mean but also the inter-
event residuals ηi and intra-event residuals εij. The residual terms are assumed to follow a normal
distribution with a zero mean, an inter-event standard deviation of τi and an intra-event standard
deviation of σij.

Note that the Yamamoto–Baker model can simulate nonstationary ground motions at a given site
location for a given earthquake scenario but it does not provide the spatial correlation of wavelet
parameters, and so it cannot be used to generate spatially correlated ground motions at multiple sites
over a region. In the following section, we will develop a spatial correlation to extend the
Yamamoto–Baker model to regionalized ground-motion simulation.
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3. SPATIAL CORRELATION OF WAVELET PACKET PARAMETERS

3.1. Semivariogram analysis

In this study, the normalized intra-event residuals of wavelet parameters are used in the spatial analysis.
First, the intra-event residuals are corrected to remove their overall biased trend against the rupture
distance, if there is any, as the bias could result in inaccurate estimates of the spatial correlation [2,
6, 8, 24]. For better comparisons, the corrected intra-event residuals are further normalized by the
sample standard deviation:

ε′ij ¼
εcorrij

σij
¼ εij � φ1 þ φ2 ln Rrup

� �� �
σij

(6)

where φ1 and φ2 are correction factors obtained from linear regression for each event and σij is the
sample standard deviation. It should be emphasized that throughout the paper, the spatial correlation
and cross-correlation analyses are performed using the normalized residuals of parameters instead of
the values of the parameters themselves. For convenience, we may simplify the statement as ‘the
spatial correlation of parameters’ if there is no confusion.

In this section, the spatial correlations of wavelet parameters are investigated using semivariogram
analysis. The semivariogram is a widely used geostatistical tool for modeling regionalized variables,
such as spatially distributed ground-motion IMs [5–8]. It characterizes the dissimilarity or
decorrelation of a set of spatial data, which can be thought of as a stationary regionalized variable
{Z(u) : u ∈D}, in which the spatial index u varies continuously over the region D. For a data pair
separated by a vector h, the semivariogram is defined as follows [25]:

γ hð Þ ¼ 1
2
E Z uþhð Þ � Z uð Þð Þ2
h i

(7)

Previous studies suggested that the vector lag distance h in Equation (7) can be replaced by a scalar
variable h = ‖h‖ based on the assumption that the variable Z(u) is spatially isotropic and second-order
stationary. However, it is not always the case that two sites are separated by an exact lag distance h.
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Figure 2. (a) Vs30 map of Los Angeles area. Triangles indicate a total of 148 earthquake recording stations in
this region; (b) Vs30 map of Taiwan. Triangles indicate a total of 381 earthquake recording stations in this

region.
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Therefore, this study employs a separation-distance bin [h�Δh, h +Δh] with a bin size of 4 km to
group all data pairs when computing semivariograms.

Recent advances in geostatistical studies of earthquake ground motions have led to the use of
various estimators to estimate semivariograms, such as the method-of-moments estimator and the
robust estimator [24]. To provide consistent results, the method-of-moments estimator is used to
compute semivariograms throughout this study. It is formulated as follows:

eγ hð Þ ¼ 1
2N hð Þ

XN hð Þ
i¼1

z ui þ hð Þ � z uið Þ½ �2 (8)

where N(h) represents the number of distinct data pairs in the separation-distance bin [h�Δh, h +Δh].
Four basic continuous models are commonly used to fit the empirical semivariograms, namely, the

exponential model, the spherical model, the Gaussian model, and the nugget effect model [25]. Among
these models, the exponential model is found to provide the best fit and is thus adopted throughout this
study. The exponential model is given by

eγ hð Þ ¼ a 1� exp �3h=bð Þ½ � (9)

where a and b are defined as the ‘sill’ and ‘range’ of the semivariogram, respectively. The exponential
model specifies that 95% of the spatial correlation vanishes beyond the range b.

In the following section, semivariograms of 13 wavelet parameters are developed using ground-
motion data from two well-recorded earthquakes, the 1994 Northridge earthquake and the 1999 Chi-
Chi earthquake. These two earthquakes represent different regional geological conditions. The
Northridge earthquake occurred in a heterogeneous region, whereas the Chi-Chi earthquake took
place in a homogeneous region, based on their estimated ranges of Vs30. Previous studies reported
that the range of Vs30 for the Northridge earthquake is 0 km, indicating an independent spatial
distribution of Vs30 over the region. On the other hand, the range of Vs30 for the Chi-Chi earthquake
was estimated to be more than 30 km, representing a relatively homogeneous geological condition
[6, 8]. Figure 2(a) and 2(b) shows Vs30 maps of the Los Angeles area and Taiwan, respectively.

3.2. Influence of regional site conditions

The earthquake data used in developing empirical spatial correlations are a subset of the NGA database
used by Boore and Atkinson [26], and only fault-normal components are adopted in the analyses.
These criteria result in 148 ground-motion recordings available for the Northridge earthquake and
381 recordings for the Chi-Chi earthquake, as shown in Figure 2. Normalized residuals of wavelet
parameters of each record are computed using the prediction model proposed by Yamamoto and

Figure 3. Semivariograms of Eacc residuals for the 1994 Northridge earthquake and the 1999 Chi-Chi earth-
quake using the weighted-least-square method to fit the exponential model.
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Baker [21]. To construct semivariograms, the bin size is set to 4 km to compensate for the lack of
seismic data within short separation distances.

Figure 3 presents semivariograms of the normalized residuals of Eacc for the Northridge and Chi-Chi
earthquakes using the weighted-least-square method to fit an exponential model [8]. Ranges of
semivariograms for Eacc are estimated to be 9.7 and 41.6 km for the Northridge and Chi-Chi
earthquakes, respectively. These ranges are consistent with those obtained from Arias intensity (Ia)
residuals in the same region [6], because Eacc and Ia both represent the integration of acceleration
time histories and differ only by a constant multiplication factor.

Figure 4 shows semivariograms for the remaining wavelet parameters, whose range values are found
to vary from 7.7 to 19.7 km for the Northridge earthquake and from 13.2 to 58.8 km for the Chi-Chi
earthquake. It is observed that the spatial correlations of most wavelet parameters are closely related
to regional site conditions. The correlation ranges for the Northridge earthquake are generally
smaller than those obtained from the Chi-Chi earthquake. Therefore, it is important to investigate
the region-specific spatial cross-correlations of these wavelet parameters when they are used for
region-specific applications. A follow-up study has been recently conducted by the authors in [27]
using strong-motion data from eight earthquake events in California, Japan, Mexico, and Taiwan.

Figure 4. Empirical semivariograms of the normalized residuals of wavelet packet parameters for the
Northridge and Chi-Chi earthquakes versus fitted curves using weighted least square.
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The influence of regional site conditions is further indicated by the ratio of the correlation range
from the Chi-Chi earthquake to that from the Northridge earthquake, as shown in Table II, where a
larger ratio means that the spatial correlation is more significantly affected by the regional site
conditions. Accordingly, the wavelet parameters are divided into four groups. Group I includes two
wavelet parameters for the total energy and energy in the major group (Eacc and E(a)major) as well as
two wavelet parameters that define the centroids of the major group coefficients in the time and
frequency domains (E(t)major and E(f)major). They are found to be most strongly affected by regional
site conditions.

In groups II and III, the influence of regional site conditions becomes slightly less pronounced.
Group II represents the centroid of the minor group coefficient distribution; group III is the standard
deviations of coefficients for both major and minor groups. The ratios of ranges are approximately 3
and 2 for groups II and III, respectively. On the other hand, group IV describes the time-frequency
correlation, that is, ρ(t, f)major and ρ(t, f)minor, and randomness in the minor group, that is, S(ξ). The
spatial correlations of these wavelet parameters are not strongly influenced by regional site conditions.

4. SPATIAL CROSS-CORRELATION OF WAVELET PACKET PARAMETERS

4.1. Linear model of coregionalization for multivariate spatial analysis

Cross-semivariogram analysis is an important extension of the univariate analysis particularly to the
multivariate random field [25]. Considering n variables (i.e., the normalized residuals of wavelet
parameters in this study) denoted by Z1, Z2,…,Zn, the cross-semivariogram γij(h) describes the
average dissimilarity between two variables Zi and Zj separated by distance h. The formulation of an
empirical cross-semivariogram is as follows:

eγij hð Þ ¼ 1
2N hð Þ

XN hð Þ
α¼1

zi uα þ hð Þ � zi uαð Þ½ � zj uα þ hð Þ � zj uαð Þ� �� 	
(10)

where N(h) represents the number of distinct data pairs in the separation-distance bin, and zi(uα + h) and
zi(uα) represent the αth data pair in this bin for the ith wavelet parameters.

To build a permissible cross-semivariogram model, this study uses the linear model of
coregionalization (LMC), which combines a set of basic structures gl(h) to fit the empirical cross-
semivariograms as follows:

Table II. Estimated correlation ranges of wavelet parameters and the ratios for the Chi-Chi and Northridge
earthquakes.

Group
Wavelet
parameter

Range (km) for
Northridge

Range (km) for
Chi-Chi

Ratio of
ranges

Average ratio in the
group

I Eacc 9.7 41.6 4.29 4.39
E(a)major 8.4 34.5 4.11
E(t)major 12.1 58.8 4.86
E( f )major 7.7 33.1 4.30

II E(t)minor 11.3 38.1 3.37 3.07
E( f )minor 11.6 32.0 2.76

III S(t)major 11.9 25.7 2.20 2.39
S( f )major 8.9 22.9 2.57
S(t)minor 10.0 18.4 1.84
S(f)minor 9.3 27.7 2.98

IV ρ(t, f )major 11.5 13.2 1.15 1.08
ρ(t, f )minor 19.7 14.8 0.75
S(ξ) 12.3 16.4 1.33
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Γ hð Þ ¼ γij hð Þ
h i

¼
XL
l¼1

Blgl hð Þ (11)

where Bl ¼ blij

h i
i; j ¼ 1;…; n; l ¼ 1; 2;…; Lð Þ is an as-yet-unknown n× n coregionalization matrix

associated with each of the specified basic models gl(h). Mathematically, Bl has to be positive semi-
definite in order to guarantee a permissible cross-correlation model [25]. Therefore, an iterative
procedure should be followed to minimize the weighted sum of differences between the empirical
and estimated cross-semivariograms. Meanwhile, the positive semi-definiteness of Bl can be satisfied
[7, 28].

Using the LMC scheme, the spatial cross-correlations of normalized residuals of different wavelet
parameters are developed using ground-motion data recorded from the Northridge and Chi-Chi
earthquakes. Based on previous univariate analyses, a short-range (5 km) exponential function and a
long-range (50 km) one are chosen as basic models in the LMC model. The LMC structure is found
to be effective in capturing major features of the empirical data and provides the best overall fit to
the empirical semivariograms among all possible combinations we have experimented. Finally, the
cross-semivariogram Γ(h) and the covariance matrix C(h) are written in the following form:

Γ hð Þ ¼ B1 1� exp
�3h
5


 �� 
þ B2 1� exp

�3h
50


 �� 
(12)

C hð Þ ¼ B1 exp
�3h
5


 �
þ B2 exp

�3h
50


 �
(13)

Note that the above LMC model is used to fit both the Northridge and Chi-Chi data. Further, the
elements blij in the coregionalization matrices can be standardized as follows [7, 8]:

Eacc E(a)major

E(a)major

Eacc

Figure 5. Cross-semivariograms of wavelet parameters E(a)major and Eacc, and fitted LMC curves for the
Northridge and Chi-Chi earthquakes.
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plij ¼
blijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1ii þ b2ii

q
 �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1jj þ b2jj

q� � (14)

Thus, the correlation matrix R(h) = [ρij(h)] can be obtained using standardized coregionalization

matrices Pl ¼ plij

h i
, as shown in the following equation:

R hð Þ ¼ P1 exp
�3h
5


 �
þ P2 exp

�3h
50


 �
(15)

4.2. Cross-correlations of wavelet parameters

In this section, spatial cross-correlations of wavelet packet parameters for the Northridge and Chi-Chi
earthquakes are investigated. Recall that in Table I, the wavelet parameters are separated into five
groups. Although it is not described in detail here, the cross-correlations of wavelet parameter
(normalized residuals) at an individual site are usually strong, that is, ρij(h = 0) > 0.6, if they are
from the same group; while the cross-correlations of parameters from two different groups are
generally much weaker, that is, ρij(0)< 0.4. For simplicity, the cross-group correlations can be
neglected in spatial analysis. This significantly reduces the computational costs in the cokriging
analyses presented in a later section.

In what follows, LMC models are determined for all of the wavelet parameters except for the
randomness parameter S(ξ). The LMC structure in Equation (12) is adopted for all analyses
presented here because it provides a consistent and the best overall fit to the empirical cross-
semivariogram data. Figure 5 shows cross-semivariograms and the LMC fitting curves for energy
parameters (i.e., E(a)major and Eacc) using the Northridge and Chi-Chi earthquake data. The
coregionalization matrices for the Northridge earthquake are as follows:

P1 ¼ 0:76 0:70

0:70 0:74

� 
; P2 ¼ 0:24 0:20

0:20 0:26

� 
(16)

and the coregionalization matrices for the Chi-Chi earthquake are as follows:

P1 ¼ 0:22 0:17

0:17 0:19

� 
; P2 ¼ 0:78 0:72

0:72 0:81

� 
(17)

Obviously, each entry in the short-range matrix P1 for the Northridge earthquake is larger than its
corresponding entry in the short-range matrix P1 for the Chi-Chi earthquake, while the opposite can
be observed for the two long-range matrices P2. This is not unexpected, as the Chi-Chi earthquake
has a stronger spatial correlation (hence a larger correlation range) than the Northridge earthquake,
because of the influence of local site conditions (refer to Section 3.2). In fact, P1 and P2 can be
regarded as the weights for the short-range and long-range functions. When the site conditions
become more homogeneous as in the case of Chi-Chi, the weights for the long-range function
become dominant.

Similarly, cross-semivariogram analysis is conducted for the time-domain parameters (i.e., E(t)minor,
S(t)minor, E(t)major, and S(t)major), the frequency-domain parameters (i.e., E( f )minor, S( f )minor, E( f )major,
and S(f )major), and the time-frequency correlation parameters (i.e., ρ(t, f )minor and ρ(t, f )major).
Tables III–VIII present P1 and P2 matrices using the Northridge and Chi-Chi earthquake data. All
P1 and P2 matrices are verified to be positive definite. For both the time-domain and frequency-
domain parameters, it can be observed that each component in the short-range coregionalization
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matrix P1 for the Northridge earthquake is larger than the corresponding component in P1 for the Chi-
Chi earthquake. On the other hand, each component in the long-range coregionalization matrix P2 for
the Northridge event is substantially smaller than its counterpart for the Chi-Chi event. This is
consistent with previous observations regarding the energy parameters, indicating that these spatial
cross-correlations are significantly influenced by regional site conditions.

Nonstationarity in time and frequency is another important characteristic of ground-motion time
histories, which is quantitatively described in the stochastic model using ρ(t, f )major and ρ(t, f )minor.
Tables VII and VIII compare the coregionalization matrices of ρ(t, f )major and ρ(t, f )minor obtained
from the Northridge and Chi-Chi event. Apparently, their spatial cross-correlations are not strongly
influenced by regional site conditions, consistent with the univariate case in Section 3.2.

5. COKRIGING ESTIMATION OF WAVELET PACKET PARAMETERS AT UNMEASURED
LOCATIONS

5.1. Ordinary cokriging estimation

Spatial cross-correlations developed in the previous section allow for estimation of wavelet parameters
at unmeasured locations, using a spatial interpolation technique called ordinary cokriging. Ordinary
cokriging provides the best linear unbiased estimate of variables at an unsampled location, given the
covariance structure of variables C(h) [25, 29]. It is worth mentioning that cokriging estimates are
not only derived from the data of the primary variable but also influenced by the secondary
variables. In particular, the contribution of a secondary attribute to the primary attribute depends on
the correlation coefficient ρij(0) between them, the sample density of each variable, as well as the

Table III. P1 matrix for time-domain mean and standard deviation.

Northridge Chi-Chi

E(t)minor S(t)minor E(t)major S(t)major E(t)minor S(t)minor E(t)major S(t)major

E(t)minor 0.67 0.43 0.59 0.47 0.28 0.35 0.19 0.24
S(t)minor 0.43 0.47 0.33 0.43 0.35 0.47 0.25 0.37
E(t)major 0.59 0.33 0.71 0.51 0.19 0.25 0.15 0.20
S(t)major 0.47 0.43 0.51 0.61 0.24 0.37 0.20 0.39

Table IV. P2 matrix for time-domain mean and standard deviation.

Northridge Chi-Chi

E(t)minor S(t)minor E(t)major S(t)major E(t)minor S(t)minor E(t)major S(t)major

E(t)minor 0.33 0.20 0.31 0.29 0.72 0.16 0.76 0.42
S(t)minor 0.20 0.53 0.15 0.36 0.16 0.53 0.18 0.43
E(t)major 0.31 0.15 0.29 0.25 0.76 0.18 0.85 0.47
S(t)major 0.29 0.36 0.25 0.39 0.42 0.43 0.47 0.61

Table V. P1 matrix for frequency-domain mean and standard deviation.

Northridge Chi-Chi

E( f )minor S( f )minor E( f )major S( f )major E( f )minor S( f )minor E( f )major S( f )major

E( f )minor 0.59 0.56 0.58 0.57 0.27 0.26 0.24 0.29
S( f )minor 0.56 0.65 0.50 0.58 0.26 0.30 0.22 0.31
E( f )major 0.58 0.50 0.68 0.62 0.24 0.22 0.27 0.29
S( f )major 0.57 0.58 0.62 0.68 0.29 0.31 0.29 0.42
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locations of the primary and secondary data [29]. In this study, all 13 wavelet parameters are equally
sampled in the study region. For a particular wavelet parameter, all other parameters in the same group
(cf. Table I) are considered as secondary attributes. Taking the energy parameter group as an example,
to estimate the total energy Eacc at an unmeasured location, both the measured Eacc (as a primary
variable) and the measured E(a)major (as a secondary variable) are used in the ordinary cokriging
approach, which accounts for the spatial cross-correlation between the primary and secondary
variables. Similar cokriging analyses are conducted separately for the time-domain parameters,
frequency-domain parameters, and time-frequency correlation parameters.

Consider a multivariate random field Z consisting of n isotropic, second-order stationary
regionalized variables, that is, Z(u) = [Z1(u), Z2(u), � � � Zn(u)]T, where u is the position vector, Z(u) at
an unobserved location u0 can be estimated from a linear combination of the observed values at a
total of J sites, located at uα (α= 1,2,…,J) [25]:

Ẑ u0ð Þ ¼ ∑
J

α¼1
Λ αð ÞZ uαð Þ ¼ Λ 1ð ÞΛ 2ð Þ⋯Λ Jð Þ

h i Z u1ð Þ
Z u2ð Þ

⋮
Z uJð Þ

2
6664

3
7775 (18)

where Λ αð Þ ¼ λ αð Þ
ij

h i
is an as-yet-unknown n × n cokriging weight matrix associated with the αth

observed site. Specifically, the component λ αð Þ
ij is the weight assigned to the observed value Zj (uα)

for the estimation of Zi at the unobserved site u0. In indicial notation, the previous estimation can be

written as Ẑ i u0ð Þ ¼
XJ
α¼1

Xn
j¼1

λ αð Þ
ij Zj uIð Þ . The cokriging weights can be determined by satisfying the

following conditions:

Table VI. P2 matrix for frequency-domain mean and standard deviation.

Northridge Chi-Chi

E( f )minor S( f )minor E( f )major S( f )major E( f )minor S( f )minor E( f )major S( f )major

E( f )minor 0.41 0.32 0.35 0.30 0.73 0.64 0.68 0.64
S( f )minor 0.32 0.35 0.24 0.32 0.64 0.70 0.50 0.60
E( f )major 0.35 0.24 0.32 0.23 0.68 0.50 0.73 0.58
S( f )major 0.30 0.32 0.23 0.32 0.64 0.60 0.58 0.58

Table VII. P1 matrix for time-frequency correlation.

Northridge Chi-Chi

ρ(t, f )minor ρ(t, f )major ρ(t, f )minor ρ(t, f )major

ρ(t, f )minor 0.46 0.39 0.56 0.42
ρ(t, f )major 0.39 0.63 0.42 0.62

Table VIII. P2 matrix for time-frequency correlation.

Northridge Chi-Chi

ρ(t, f )minor ρ(t, f )major ρ(t, f )minor ρ(t, f )major

ρ(t, f )minor 0.54 0.43 0.44 0.39
ρ(t, f )major 0.43 0.37 0.39 0.38
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(1) The cokriging estimate is ‘unbiased’, that is, E Ẑ u0ð Þ � Z u0ð Þ� � ¼ 0. The condition requires the

sum of the cokriging weights
XJ
α¼1

Λ αð Þ ¼ I, where I = [δij] is an n × n identity matrix. In indicial

notation,
XJ
α¼1

λ αð Þ
ij ¼ δij, for i, j= 1, 2,…,n, which represents n × n constraints.

(2) The cokriging estimate is the ‘best’ estimate in the sense that it minimizes the variance of errors,

that is, minΛ E Ẑ u0ð Þ � Z u0ð Þ� �2� �
.

Using the method of Lagrangian multipliers, the previous two conditions lead to the following
augmented system of equations:

KL u0ð Þ ¼ k u0ð Þ (19)

where

The cokriging weight Λ(α) can thus be solved using the previous equations. Note that K is an
assemblage of (J + 1) × (J + 1) submatrices, where C(hαβ) = [Cij(hαβ)] is an n × n covariance submatrix
derived in Section 4, hαβ represents the separation distance between site α and site β (α, β = 1,2,…,
J), I= [δij] is an n × n identity matrix, and M= [μij] is an n × n matrix for Lagrangian multipliers. The
boxed term in K highlights the total covariance matrix for all J observed sites.

Finally, Z(u) at an unobserved location u0 can be estimated using Equation (18). The covariance
matrix for the cokriging estimate is

C u0ð Þ ¼ cov Zi u0ð Þ; Zj u0ð Þ� � ¼ C 0ð Þ � kTK�1k (21)

It is worth pointing out that C(u0) is only dependent on the spatial correlation structure but not on
the observed values. C(u0) should be understood as a conditional covariance matrix (conditioned on
observed values in the neighborhood), which is smaller than the unconditional covariance matrix
C(0) at a location.

5.2. An illustrative example

In this section, an illustrative example is presented to estimate wavelet parameters using strong-motion
data from the Chi-Chi earthquake. First, intra-event residuals of wavelet parameters at recorded stations
are corrected to remove their biased trend against the rupture distance following Equation (6). The
corrected intra-event residuals are then normalized by the sample variance for better comparison of
variables. Second, the study region is evenly discretized into a total of 74,000 interpolated locations,
with 1 km×1 km separation in longitude and latitude. Finally, wavelet parameters at interpolated
locations are computed using ordinary cokriging estimates.

Figure 6 shows six estimated wavelet parameters throughout the whole region with a spatial
resolution of 1 km×1 km. The earthquake epicenter, surface trace of the Chelungpu fault, and
horizontal projection of the fault plane are also plotted. Seismology investigation reveals that the
fault is reverse-oblique and the rupture propagated to the north [30, 31]. Figure 6(a) clearly shows
the pattern of energy radiation, which is concentrated on the hanging wall side of the rupture plane
and attenuates over distances. In the near-fault and forward-directivity region, E(t)major is less than

(20)
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10 s. In the far field, the seismic waves usually have higher energy (larger Eacc) and prolonged duration
(larger E(t)major and S(t)major) on soil sites than on rock sites. Interestingly, the time-frequency
correlation ρ(t, f)major is very weak near the fault and becomes more pronounced at the far field.

Figure 7 compares cokriged and observed wavelet parameters over rupture distance. To facilitate
visual inspection, cokriged values are sampled at a separation distance of 5 km× 5 km. Evidently,
the cokriged and observed data share a high degree of similarity in distance scaling.

6. STOCHASTIC SIMULATION OF REGIONALIZED GROUND MOTIONS

6.1. Ground-motion simulation using the Northridge earthquake data

Cokriging estimation of wavelet parameters provides a viable approach to simulate ground-motion
time histories at any unmeasured location in a region. In this section, regionalized ground motions
are simulated stochastically using strong-motion data from the Northridge and Chi-Chi earthquakes.
For validation, blind tests are conducted. In a blind test, one recording station is completely
removed from the ground-motion database throughout the spatial cross-correlation analysis and
cokriging estimation. The simulated ground motion at that station is then compared with the actual
recorded ground motion. It should be noted that in the blind test, the accuracy of cokriging
estimation can be greatly undermined in some areas if a particular station is removed or its
neighboring stations are sparsely or unevenly distributed in that area. Therefore, it is expected that
the actual performance should be better than that indicated in the blind tests.

Figure 8(a) is a map of Los Angeles county, showing the epicenter (red star) and projection of the
fault plane (dashed line) for the 1994 Northridge earthquake. Six representative recording stations

Figure 6. Cokriged wavelet packet parameters for the Chi-Chi earthquake (spatial resolution of
1 km× 1 km).
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(solid triangles) are chosen for the blind test. They are the Tarzana-Cedar Hill station, the Sun Valley-
Roscoe Blvd station, the UCLA Grounds station, the Hollywood Store station, the Baldwin Hills
station, and the Inglewood-Union Oil station. The rupture distance of these stations ranges from 10

(a) (b) (c)

Figure 8. (a) A map of Los Angeles area, showing the six recording stations used in the blind test (solid
triangles), all other recording stations in this region (open triangles), the epicenter of the 1994 Northridge
earthquake (red star), and surface projection of the Northridge blind thrust fault plane (dashed line). (b) Re-
corded acceleration time histories at the six stations. (c) Simulated acceleration time histories at the six stations.

Figure 7. Cokriged (spatial resolution of 5 km× 5 km) versus recorded wavelet packet parameters for the
Chi-Chi earthquake over rupture distance.
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to 42 km, while the recorded peak ground acceleration ranges from 0.09 to 1.33 g. Other recording
stations used in the analysis are indicated with open triangles.

Figure 8(b) and 8(c) provides a side-by-side comparison of the actual recorded and simulated
acceleration time histories in the blind test. Response spectra for the recorded and simulated ground
motions are compared in Figure 9. By visual inspection, the simulated and recorded acceleration
time histories are found to be similar in terms of both time and frequency characteristics. In general,
the simulation captured the overall spectral shapes of the recorded motions reasonably well. To
further quantify the similarity, five important ground-motion IMs, namely, peak ground acceleration
(PGA), peak ground velocity, significant duration T5-95, Ia, and cumulative absolute velocity ([32])
from the recorded and simulated ground motions are compared in Table IX. On average, the
absolute relative errors are in the range of 15–25% for all IMs.

6.2. Ground-motion simulation using the Chi-Chi earthquake data

Similar blind tests are conducted using the Chi-Chi earthquake data. Figure 10(a) shows a map of the
1999 Chi-Chi earthquake with the red star indicating the epicenter. The surface traces of the Chelungpu
fault and the horizontal projection of the fault plane are also shown. Seven seismic stations are chosen
for the blind tests. They are TCU074 and TCU079 on the hanging wall side, TCU063 and TCU113 on

Figure 9. Response spectra for the recorded and simulated ground motions at the six stations used in the
blind test during the Northridge earthquake.

Table IX. Comparison of intensity measures of recorded (the first rows) and simulated (the second rows)
ground motions for the Northridge earthquake.

Station PGA (g) PGV (cm/s) T5-95 (s) Ia (g × s) CAV (g × s)

Cedar Hill 1.33 65.8 10.44 1.09 2.65
0.80 67.7 11.94 1.06 2.89

Roscoe Blvd 0.30 25.7 15.57 0.14 1.04
0.31 42.8 11.41 0.19 1.21

UCLA 0.34 19.7 11.90 0.11 0.94
0.27 20.3 14.02 0.07 0.75

Hollywood 0.29 23.7 11.14 0.16 1.07
0.31 21.5 14.32 0.15 1.13

Baldwin Hills 0.19 15.4 17.71 0.06 0.78
0.18 12.7 13.09 0.05 0.65

Inglewood 0.09 7.71 20.34 0.02 0.43
0.11 7.76 18.77 0.03 0.57

Avg. relative absolute error 16% 17% 20% 24% 17%

PGA, peak ground acceleration; PGV, peak ground velocity; T5-95, significant duration; Ia, Arias intensity; CAV,
cumulative absolute velocity.
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the footwall side, TCU046 in the region of forward directivity, and CHY039 and CHY063 in the
region of backward directivity. Rupture distances of these stations range from 9.8 to 72 km, while
recorded PGAs range from 0.06 to 0.73 g. Figure 10(b) and 10(c) compares simulated time-history traces
with recorded ones at these stations. Figure 11 presents comparisons of response spectra. Comparisons
of PGA, peak ground velocity, T5-95, Ia, and cumulative absolute velocity are reported in Table X. On
average, the absolute relative errors of simulated versus recorded IMs are in the range of 10–30%.

Figure 10. (a) A map of the location of the Chi-Chi earthquake, showing the seven recording stations chosen
for the blind tests (solid triangles), other recording stations in this region (open triangles), the epicenter of the
earthquake (red star), and surface projection of the Chelungpu fault (dashed line). (b) Recorded acceleration

time histories at the seven stations. (c) Simulated acceleration time histories at the seven stations.

Figure 11. Response spectra for recorded and simulated ground motions at the seven recording stations used
in the blind tests during the Chi-Chi earthquake.

STOCHASTIC SIMULATION OF REGIONALIZED GROUND MOTIONS 791

Copyright © 2014 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2015; 44:775–794
DOI: 10.1002/eqe



7. CONCLUSIONS

In this study, ground-motion time histories are characterized using the wavelet packet transform,
following a model proposed by Yamamoto and Baker. As ground-motion time histories are
transient, complex, nonstationary time sequences, wavelet packet analyses provide useful parameters
to quantify the wave energy, the distribution of wavelet amplitudes in the time and frequency
domains, their time-frequency correlation, and so on. On the other hand, ground-motion time
histories can be stochastically simulated if their wavelet packet parameters are available.

Based on geostatistical analyses, spatial correlations of individual wavelet packet parameters are
developed and compared using regionalized ground-motion data from the Northridge and Chi-Chi
earthquakes. The spatial cross-correlations of wavelet packet parameters within four wavelet-
parameter groups are developed using an LMC. The spatial cross-correlation model enables wavelet
packet parameters at an unsampled location to be best estimated using cokriging analysis.
Accordingly, ground-motion time histories can be simulated at unmeasured sites.

Case studies and blind tests using data from the Northridge and Chi-Chi earthquakes demonstrate that the
simulated ground motions generally agree well with the actual recorded data, by checking the simulated time
sequences, response spectra, and various IMs. As mentioned before, the blind tests are performed by
completely removing the recording stations from the analysis, which could significantly reduce the accuracy
of simulation in some cases. For example, the simulated PGAs on the hanging wall side (e.g., Cedar Hill,
TCU079) are largely underestimated in the blind test. This is due to the uneven and sparse distribution of
recording stations in that area after removal of blind-test stations. On the other hand, the model performance
can be improved with more accurate empirical prediction of wavelet packet parameters in the near-fault region.

Regional site conditions are found to influence the spatial correlations of wavelet parameters to
varying degrees. In general, ground motions in the Chi-Chi event have a stronger spatial correlation
than those in the Northridge event in terms of the energy parameters, and the time-domain and
frequency-domain parameters, while the spatial correlations of the time-frequency correlation
parameters and the randomness parameter are not much influenced by regional site conditions. In a
follow-up study, we further investigate the region-specific cross-correlation structure of wavelet
packet parameters using eight earthquake events from different regions [27]. A simple model for
predicting the cross-correlation structure has also been proposed based on site conditions.

In summary, the proposed method is an innovative approach to stochastically simulate regionalized
ground motions. The simulated ground motions can enrich the strong-motion database in ground
motion selection and modification process [33, 34]. More importantly, the regionalized ground

Table X. Comparison of intensity measures of recorded (the first rows) and simulated (the second rows)
ground motions for the Chi-Chi earthquake.

Station PGA (g) PGV (cm/s) T5-95 (s) Ia (g × s) CAV (g × s)

TCU074 0.61 76.1 11.8 0.73 2.80
0.54 82.4 18.8 0.74 2.96

TCU079 0.73 62.6 23.4 0.79 3.15
0.45 34.3 23.4 0.63 3.14

TCU046 0.14 44.0 18.5 0.05 0.76
0.17 16.1 24.0 0.05 0.81

TCU063 0.17 61.3 33.6 0.15 1.71
0.21 45.9 30.5 0.22 2.07

TCU113 0.07 27.8 44.2 0.03 0.92
0.09 18.2 44.3 0.05 1.08

CHY039 0.11 26.1 37.5 0.05 1.01
0.13 23.5 37.0 0.07 1.23

CHY063 0.06 8.17 40.6 0.01 0.52
0.05 5.81 40.0 0.01 0.59

Avg. relative absolute error 22% 30% 14% 24% 12%

PGA, peak ground acceleration; PGV, peak ground velocity; T5-95, significant duration; Ia, Arias intensity; CAV,
cumulative absolute velocity.
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motions can find important applications in time-history analyses of distributed infrastructure systems
and regional-scale hazard analysis and loss estimation.
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