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1 INSTRUCTION 

Estimating seismic displacement of natural slopes 
and earth structures is important for risk assessment 
of earthquake-induced landslides and performance-
based evaluation of key infrastructures. In practice, 
the seismic slope displacement at a single site can be 
evaluated using a pseudo-probabilistic or a fully 
probabilistic approach based on hazard information 
derived from Probabilistic Seismic Hazard Analysis 
(PSHA) (Rathje & Saygili 2008). However, 
quantifying the seismic performance of a slope 
system over a spatially distributed region rather than 
at just a single site is critical for a variety of 
applications, including regional risk assessment of 
landslide and landslide-related damage to lifelines, 
road systems and portfolios of infrastructures in this 
region. Rigorous seismic analysis over a spatially 
distributed region is less straightforward than that 
for an individual site.  

Two major issues need to be addressed in develop-
ing a rational analytical scheme for predicting earth-
quake-induced slope displacements in a regional 
scale. First, the spatial cross-correlations between im-
portant ground motion intensity measures (IMs) re-
lated to the estimation of seismic slope displacement 
have to be systematically studied. Recently the spa-
tial correlations of some important IMs, such as the 
peak ground acceleration (PGA) and Arias intensity, 
have been developed by several researchers (e.g., 

Jayaram & Baker 2009, Du & Wang 2013). In addi-
tion, the cross-correlation between spectral accelera-
tions at multiple periods is investigated (Loth & 
Baker 2013). Currently, there is no spatial cross-
correlation study between PGA and other important 
parameters (Ia and PGV) available in the literature. 

The second major issue is related with 
computational efficiency. For a fully probabilistic 
analysis of spatially distributed slopes, Monte Carlo-
based Simulation (MCS) is the only feasible approach 
to rigorously treat all sources of uncertainties. In this 
study, we propose the following MCS-based 
framework: First, multiple magnitude-location 
earthquake scenarios are simulated with frequencies 
assigned according to recurrence relationships based 
on the seismicity of the source; Second, for each 
earthquake magnitude-location scenario, vector-IMs 
at all sites (called IM maps) will be randomly 
generated using GMPEs by incorporating inter-event 
variability and intra-event spatial variability (using 
the derived spatial cross-correlation matrix) in the 
process; Third, for each set of vector-IM map, 
multiple sliding displacement maps will be randomly 
generated using empirical displacement prediction 
equations and considering their corresponding 
uncertainties. In the end, the displacement hazard 
curve for the whole region can be further computed. 
The MCS approach would result in increasing 
computational demanding downstream in this 
process. Several recent studies have been devoted to 
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providing some suitable techniques to reduce the 
computational cost (e.g., Jayaram & Baker 2010, 
Han & Davidson 2012). 

This paper aims at developing a framework for a 
fully probabilistic analysis of spatially distributed 
slopes. The spatial correlation between several key 
IMs most relevant to the prediction of seismic slope 
displacement, i.e., PGA, Ia and PGV is studied using 
eleven recent well-recorded earthquakes. A MCS-
based computational framework is also developed to 
rigorously account for all sources of uncertainties. 
Three data reduction techniques are explored to 
reduce the computational cost. Following this 
framework, an illustrative example is also provided 
in the end.   

2 SCALAR AND VECTOR IMS FOR PREDICT- 
ING SEISMIC SLOPE DISPLACEMENTS 

A suitable prediction model is necessary to predict 
seismic slope displacement based on ground motion 
IMs. Since Newmark’s pioneering work on the rigid 
sliding block method (Newmark 1965), the New-
mark sliding displacement has important applica-
tions in evaluating natural slopes or earthquake-
induced landslides. The Newmark displacement 
analysis assumes that the slope behaves as a rigid-
plastic material, and the slope displacement is calcu-
lated by double integrating the part of the input ac-
celeration that exceeds a critical value (ac, which can 
be determined by the properties of slopes). It pro-
vides a simple index of seismic slope performance. 
In the past, a large number of empirical prediction 
equations have been proposed to predict the New-
mark displacement based on a single (scalar) or mul-
tiple intensity measures (a vector IM). The PGA, Ia 
and PGV were often used as predictors for the 
Newmark displacement, (e.g., Saygili & Rathje 
2008). As earthquake records are complex, transient 
time series, multiple ground motion IMs are neces-
sary to represent different aspects of ground motion 
characteristics. The predictive models using a vector 
IM usually result in reduced aleatory variability (i.e., 
improved efficiency) and unbiased results for a wide 
range of earthquake scenarios.  

In this study, four recently-developed Newmark 
displacement prediction equations are chosen based 
on a scalar IM (termed as PGA model), two-IMs 
(termed as (PGA, Ia) model and (PGA, PGV) mod-
el), as well as three-IMs (termed as (PGA, Ia, PGV) 
model) as follows (Saygili & Rathje 2008): 

 
(1) PGA model: 
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( )ln 0.2 0.79 /D ca PGAσ = +                   (4) 
where D is the predicted sliding displacement in cm; 
ac and PGA are in the unit of g; PGV is the peak 
ground velocity in cm/s; Ia is Arias intensity in the 
unit of m/s.  

3 SPATIAL CROSS-CORRELATION FOR 
VECTOR IM [PGA, IA, PGV]  

3.1 Ground motion database for the spatial 
correlation 

A total of 2686 ground motion recordings from 
eleven earthquakes are compiled to develop the spa-
tial cross-correlation models for PGA, Ia and PGV 
in this study. These earthquakes occurred in Califor-
nia (1994 Northridge earthquake, 2004 Parkfield 
earthquake, 2005 Anza earthquake, 2007 Alum 
Rock earthquake, 2008 Chino Hills earthquake), in 
Mexico (2010 EI Mayor Cucapah earthquake), in 
Japan (2000 Tottori earthquake, 2004 Niigata earth-
quake, 2007 Chuetsu earthquake and 2008 Iwate 
earthquake) and in Taiwan region (1999 Chi-Chi 
earthquake).  
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Figure 1. Magnitude and rupture distance distribution of records 
in the database. 
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 The recorded time histories for these events are 
obtained from CESMD, CESMOS for US earth-
quakes and K-NET, Kik-Net for Japan earthquakes. 
The moment magnitude and rupture distance distribu-
tion of the data in the database is illustrated in Figure 
1.  

3.2 Geostatistical analysis of intra-event residuals 
Based on ground motion prediction equations 
(GMPEs), the observed logarithmic IM, denoted as 
lnYij, at site j for an earthquake event i, can be writ-
ten as follows: 

( )ln ln , ,ij ij i ijY Y M R θ η ε= + +          (5) 
where lnYij(M,R,θ) is the predicted median IM based 
on magnitude (M), rupture distance (R) and other 
variables (θ);ηi is the inter-event residuals with zero 
means and standard deviations of τi; and εij denotes 
the intra-event residuals with zero means and stan-
dard deviations of σij. Both ηi and εij are assumed to 
be normally distributed independent random vari-
ables (Abrahamson & Youngs 1992). In this study, 
GMPEs developed by Campbell & Bozorgnia (2008, 
2012) are used for PGA, PGV and Ia respectively. 

For a vector IM=[PGA, Ia, PGV], the intra-event 
residuals can be assumed to follow a multivariate 
normal distribution. Under this assumption, the in-
tra-event residuals ( )1 ,..., n

ij ij ijε ε=ε  for n IMs for 
earthquake event i at site j can be fully obtained by 
their mean (zero vector in this case) and covariance 
matrix.  

Semivariogram is a widely used statistical tool to 
estimate the spatial correlation of random variables. 
The semivariogram can be defined as measuring the 
average dissimilarity between two second-order sta-
tionary random variables Zi and Zj separated by a 
distance vector h as follows (Goovaerts 1997): 

( ) ( )( )1 ( ) ( ) ( ) ( )
2ij i i j jE Z u Z u Z u Z uγ ⎡ ⎤= + − + −⎣ ⎦h h h   (6) 

where Zi(u) and Zi(u+h) are variable Zi evaluated at 
position u and at a position separated by a distance 
vector h, respectively. In this study, Zi and Zj refer to 
the intra-event residuals of the i-th and the j-th com-
ponent of the vector IM. Under the assumptions that 
the spatial field is isotropic and second-order sta-
tionary, a scalar variable h = h  can be used in the 
formulation.  

An exponential functional form can be used to fit 
the above empirical semivariogram data:  

 ( ) [ ]1 exp( 3 / )ij h a h bγ = − −           (7) 
where a is the sill of the semivariogram, and b is the 
range of the semivariogram, defined as the separa-
tion distance h at which ( )ij hγ equals 95% of the 
sill. The fitting parameters a and b can be obtained 
by least square or manual fit method. It is straight-
forward to show that the following relationship 
holds between the covariance function and the semi-
variogram function (Goovaerts 1997, p. 72-74): 

( ) ( ) ( )( )( ) lim (0)ij h ij ij ij ijC h h h C hγ γ γ→∞= − = −    (8) 
The unit-free correlation coefficient between two 
variables Zi and Zj is: 

 ( ) ( ) (0) (0)ij ij ii jjh C h C Cρ = ⋅           (9) 
Accordingly, the covariance matrix ( )hC for the 

n-component vector IM is defined as follows: 
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Therefore, the total covariance matrix 
(event )iΣ can be implemented by submatrix ( )hC in 

Equation (10) as follows: 
                                           

1

1
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h

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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…C C

C C
Σ          (11) 

where ijh represents the specific separation distance 
between site i and site j among a total of J sites (the 
separation distance is always zero for diagonal ele-
ments).  

In summary, the total covariance matrix for the n-
component vector IM at J sites can be obtained once 
the correlation range b in Equation (7) is obtained by 
semivariogram regression. The procedure (called 
“direct fit method”) is straightforward and efficient. 
However, the total covariance matrix obtained by 
the direct fit method cannot guarantee the positive-
definiteness, making it difficult to generate spatially 
correlated random field in application. Hence, a sta-
tistical approach termed as the linear model of core-
gionalization (LMC) will be subsequently adopted in 
this study to overcome the above limitation, such 
that the resulted total covariance matrix will guaran-
tee to be positive-definite. 

3.3 Coregionalization matrix for vector IM [PGA, 
Ia, PGV]  

The linear model of coregionalization (LMC) can be 
used to decompose the semivariograms γij(h) as a 
linear combination of independent random func-
tions. Accordingly, the semivariogram matrix Γ(h) 
can be decomposed as (Journel & Huijbregts 1978, 
p.171-173): 

1( ) ( )L l
llh g h

=
=∑Γ B            (12) 

where Bl=[bij
l] is called the coregionalization matrix. 

It is to be noted that as long as the positive definite-
ness of matrix Bl is satisfied, the total covariance 
matrix is guaranteed to be positive definite regard-
less of the number of sites located in this region. 
This condition can be easily satisfied since Bl is just 
a n n×  matrix (n is the number of IMs considered).  

In this study, a short range (10 km) and a long 
range (60 km) exponential functions are used as the 
basic functions of Γ(h), h is in the unit of km: 
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Accordingly, the spatial correlation coefficient 
matrix can be obtained as: 

1 23 3( ) exp exp
10 60

h hh
⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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where R(h) is the correlation matrix, P1 and P2 are 
standardized versions of B1 and B2.  
 

  
 
 
 
 
 

 
 
 
 
    
 
 
 
 
 
 
 
 
Figure 2. Cross-semivariograms and fitted LMS curves for the 
Chi-Chi earthquake. 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
Figure 3. Cross-semivariograms and fitted LMS curves for the 
Northridge earthquake. 

 
 
An iterative algorithm can be used to obtain a 

positive-definite matrix lB efficiently for the LMC 
model. This method minimizes the weighted sum of 
squares of differences between the empirical semi-
variograms and the one estimated by the LMC mod-

el. The algorithm checks and ensures the positive-
definiteness of lB matrix during iterations. One can 
refer to (Goulard & Voltz 1992) for the details.  

Following the above procedures, the cross-
semivariograms with respect to separation distances 
for PGA, Ia and PGV, along with the fitted curves 
by the LMC method are illustrated in Figure 2 and 
Figure 3 for the Chi-Chi and the Northridge earth-
quake, respectively. All fitting curves approximate 
the empirical data reasonably well for each case. 
Similar results can be observed for other earth-
quakes considered in this study. 

The final coregionalization matrix P1 and P2 for 
the vector IM=[PGA, Ia, PGV] can be obtained by 
averaging the coregionalization matrices obtained 
from each earthquake event as follows: 

     
(15) 

 
 
Both P1 and P2 are positive definite, which as we 

introduced earlier, is vitally important for stochastic 
simulation of spatially correlated fields. These pro-
posed correlation matrices will be used to generate 
spatially correlated fields of PGA, Ia and PGV for 
calculating the Newmark displacement. 

4 STOCHASTIC SIMULATION USING DATA 
REDUCTION TECHNIQUES  

4.1 Importance sampling (IS) technique 
Importance sampling is a widely used data reduction 
technique to sample earthquake scenarios. Generally 
speaking, earthquake magnitudes follow some recur-
rence relationships (e.g., Gutenberg-Richter law). 
Random sampling of earthquake scenario is ineffi-
cient because large magnitude events are infre-
quently sampled although they are more important in 
hazard analysis. Instead, the importance sampling 
technique preferentially samples the rare large 
events. The effects of IS technique are accounted for 
through assigning suitable weights to each sampling 
so that the occurrence rate of the earthquake scenar-
ios can still be correctly represented. The procedure 
is introduced as follows:                             
 (1) Rupture location is assumed to be uniformly 
distributed within each earthquake source zone, and 
a magnitude density function f(m) is used to charac-
terize each earthquake source. The range of magni-
tude (between a lower bound Mmin and an upper 
bound Mmax) is divided into nm intervals. The interval 
can vary with magnitude (i.e., a smaller interval for 
larger magnitudes). 
 (2) A magnitude can be randomly selected within 
each interval [mk, mk+1], with an actual probability 
of 1 ( )k

k

m
m

f m dm+∫ . So a total of nm earthquake events can 
be sampled for each rupture location. The sampling 
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probability is 1/nm for each event.  
 (3) The importance sampling weight for each 
sampled scenario k is computed as:  

1 ( ) 1/k

k

m
k mm

IS f m dm n+= ∫              (16) 

 (4) If a total of NM magnitude-location scenarios 
are generated from all earthquake sources, the actual 
annual occurrence probability for scenario j is as-
signed as:       

       
1
M

j
j N

ii

IS
P

IS
=

=
∑

                  (17) 

4.2 Stratified sampling (SS) method 
In conventional MCS, a constant number of ground 
motion maps are generated for each earthquake sce-
nario. Yet, the number of intensity maps can be re-
duced for some unimportant events (e.g., a small-
magnitude far-distance event). Using the stratified 
sampling (SS) technique (Cochran, 1977), an opti-
mal number of intensity maps can be assigned for 
each scenario. Let Nj denote the number of corre-
sponding intensity maps for the j-th event. The total 
number of intensity maps is 1

J
jjN N== ∑  for all 

events. The value of Nj for each event can be given 
as: 

1

( ) 1 ( )

( ) 1 ( )

j ij ir ij ir
j J

j ij ir ij irj

P P y Y P y Y
N N

P P y Y P y Y
=

⎡ ⎤⎡ ⎤≥ ⋅ − ≥⎣ ⎦⎢ ⎥= ⋅ ⎢ ⎥
⎡ ⎤≥ ⋅ − ≥⎢ ⎥⎣ ⎦⎣ ⎦∑

    (18)                  

This method results in an optimal number of 
ground motion IM maps, Nj for each scenario j for 
each site i that minimizes the generated and the ana-
lytical hazard curves at a given return period r. We 
used four return periods (r =100, 475, 1000 and 
2475 years) in this study. An averaged value of Nj 
over all sites, all return periods and all IMs is chosen 
as the final number of ground motion maps to be 
generated for each scenario. Finally, the annual oc-
currence probability for each ground motion inten-
sity map is:   

   j
n

j

P
P

N
=  (n=1,…,N)              (19) 

4.3 Summary of the fully probabilistic analysis 
procedure 

A fully probabilistic analysis procedure is summa-
rized in the following steps:  

Step 1: A set of earthquake magnitude-location 
scenarios can be simulated using stochastic method 
following magnitude-recurrence relationships. Im-
portant sampling technique is used in this step to re-
duce the number of samplings.  

Step 2: The median predicted values of IMs and 
their corresponding standard deviation ( iτ and ijσ ) of 
the inter/intra-event residuals for each site are com-
puted using Equation (5). 

Step 3: The inter-event residuals ( ijη ) are ran-
domly generated following univariate normal distri-
bution (0, )ij iη τ=N . The spatially-correlated intra-
event residuals ( ijε ) are randomly generated for n 
IMs at all sites following multivariate normal distri-
bution with a zero mean, standard deviation ( ijσ ) 
and the total spatial correlation matrix R.  

Step 4: Ground motion IM maps are calculated by 
combining the median, inter-event and intra-event 
residuals for each scenario. The SS method is used 
to determine the number of ground motion IM maps 
need to be generated, and Pn is calculated via Equa-
tion (19) for each IM map. 

Step 5: The median predicted Newmark dis-
placement and the standard deviation Dσ  are com-
puted for each IM map using predictive models. 
Displacement residuals are generated following uni-
variate normal distribution ln(0, )DσN  .  

Step 6: A total number of ND displacement maps 
are retained using the SS method. For j-th displace-
ment map, the corresponding probability is calcu-
lated as Dj n nP P N= , where Nn is the assigned number 
of displacement maps for the n-th IM map by SS 
method. Finally, the annual probability of ex-
ceedance *Dλ   for specific value *D  for site i can 
be computed as: 

*
1

( )
DN

D Dj ij
j

P P D Dλ ∗

=

= ⋅ ≥∑             (20) 

where ( *)ijP D D≥  is again a binary function (equals 
1 if ‘true’, and 0 otherwise). 

5 AN ILLUSTRATIVE EXAMPLE 

5.1 Problem description 
In this section, a hypothetical area is investigated by 
the proposed fully probabilistic approach. The 30 
km × 30 km area is divided into 900 sites separated 
by 1 km × 1 km in distance. A constant critical ac-
celeration 0.1ca g= is assigned to all sites. A 5 km-
long linear fault is located close to this area, shown 
in Figure 4(a). The following Gutenberg-Richter 
relationship is assumed to describe the seismicity of 
the source: 

log 4.4 1.0m wMλ = − ×               (21) 
where λm is the mean annual rate of exceedance of 
the moment magnitude Mw. The minimum and max-
imum magnitudes are set as 4.4 and 7.5, respectively. 
The linear source is divided into five 1-km long 
segments. The location of rupture scenarios is ran-
domly distributed within each segment. The GMPEs 
(Campbell & Bozorgnia 2008, 2012) are used to es-
timate the predicted median values for PGA, PGV 
and Ia, respectively. The four aforementioned models 
Equations (1)-(4) are adopted to compute the New-
mark displacement.   

The IS method is applied to stratify the range of 
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magnitudes. The partition interval is 0.3 for 
4.4 5.6wM≤ < , 0.2 for 5.6 6.6wM≤ ≤ , and 0.1 for 

6.6wM > . 18 scenarios are sampled within each fault 
segment, resulting in a total of 90 scenarios consid-
ered. After applying the SS method, 400 maps are 
generated for each IM (PGA, Ia and PGV) in the 
“reduced set” with assigned probability Pn. One 
group of generated IM maps for PGA, Ia and PGV 
are shown in Figure 4 for demonstration. By apply-
ing SS method, a total of 3000 displacement maps 
are generated in the reduced set each with assigned 
probability PD.  
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Figure 4. (a) A 30 km×30 km area divided into 1 km×1km grids 
showing the location of the fault trace. Site A and Site B are two 
selected sites for comparison. Examples of spatially-correlated 
vector IM fields for (b) PGA (in natural log scale, unit of g), (c) 
Ia (in natural log scale, unit of m/s) and (d) PGV (in natural log 
scale, unit of cm/s), respectively. 
 
 

After the earthquake scenarios are sampled using 
IS, the conventional MCS method is used to gener-
ate 100 sets of inter and intra-event residuals for 
each intensity measure and each earthquake scenario 
for comparison (i.e., a total of 9000 IM maps, called 
the “large set”). For each group of intensity maps, 
the MCS is also carried out to get the 60 sets of dis-
placement maps, resulting in a total number of 
540000 displacement maps. 

5.2 Hazard consistency of the reduced sets 
The hazard consistency is checked by comparing the 
intensity and displacement hazard curves obtained 
from the reduced set and the large set of IM maps 
and displacement maps. The simulated intensity haz-
ard curve can be obtained by calculating the prob-
ability of exceedance for each IM and each site as:    

*
1

( *)
N

y n in
n

P P y yλ
=

= ⋅ ≥∑           (22) 

where nP  is the probability for the n-th IM map, 
iny represents IM value at site i on the n-th IM 

map; ( *)inP y y≥  is binary function (equals 1 if 
*iny y≥ , 0 otherwise). On the other hand, the ana-

lytical (‘true’) intensity hazard curve for intensity 
measure Y at each site can be computed using PSHA 
approach: 

* ( * , ) ( ) ( )y P Y y m r f m f r dmdrλ = ≥∫∫     (23) 
where ( * , )P Y y m r≥  is computed using GMPEs by 
assuming lognormal distribution of IM.  
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Figure 5. Comparison of seismic hazard curves obtained using 
the reduced IM maps (400 maps) and the large IM maps (9000 
maps) method for PGA, PGV and Ia at site A and site B.  
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Figure 6. Comparison of displacement hazard curves at two 
sites using the reduced set and the large set. (a) PGA model, 
and (b) (PGA, Ia) model.  
 
 

Intensity hazard curves obtained from the reduce 
set and the large set are compared with the analytical 
hazard curves for PGA, Ia and PGV in Figure 5 for 
two representative sites A and B shown in Figure 
4(a). Quite consistent results can be observed for 
both sites and all IMs. The displacement hazard 
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curves for the two sites are also compared in Figure 
6 using the scalar (PGA) model and (PGA, Ia) mod-
el. It can be seen that the displacement hazard curves 
obtained by using data reduction technique are in 
reasonable agreement with these obtained using 
conventional MCS method, although the former only 
requires about one-180th number of realizations of 
the latter. Also, all these hazard curves obtained 
from sampling maps are consistent with the analyti-
cal hazard curves. By this example, it is demon-
strated that the proposed computational framework 
can result in stable, fast and hazard-consistent results, 
and can be used to estimate the seismic risk over a 
large region. 

5.3 Importance of spatial correlation 
The importance of spatial correlation on the regional-
scale hazard analysis is highlighted by considering 
several special cases. Given a specified value of D 
(denoted as *D ) and its exceedance area ratio *AR (de-
fined as the ratio of the areas where displacements 
exceed the specified *D value against the total area of 
the region), the annual rate of exceedance (termed as 
“aggregated displacement hazard curve”) can be com-
puted as: 

 * *

1
( & )

DN

D j
j

P P D D AR ARλ
=

= > >∑           (24) 

where D jP  is the occurrence probability for dis-
placement map j, and * *( & )P D D AR AR> >   is a bi-
nary function (equals 1 when ‘YES’ and 0 otherwise).  
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Figure 7. Displacement hazard curves for exceedance area ra-
tio *AR as 25% using (a) PGA model, and (b) (PGA, Ia) model 
 
 

Figure 7 shows the aggregated displacement haz-
ard curve using the scalar (PGA) model and the (PGA, 
Ia) model, by assuming that *AR is 25%. The spatial 
correlation of IMs are assumed to follow (1) zero cor-
relation (i.e., correlation range is zero), (2) predicted 
spatial correlation via Equations (14-15) and (3) per-
fect correlation (i.e., correlation range is infinite). The 
results demonstrate that, ignoring spatial correlation 
would yield an underestimated displacement hazard 
curve, especially for the rare cases. The case of per-
fect correlation, on the other hand, would overesti-
mate the displacement hazard. For instance, given an 

annual rate of exceedance of 4×10-4, the predicted 
displacement is 8.4 cm if the spatial correlation is 
zero; 21.7 cm if the predicted spatial correlation is 
considered and 47 cm for the perfectly-correlated case. 
In addition, the convolved analytical curve closely 
agrees with the perfectly-correlated case, indicating 
the sites are assumed to be perfectly correlated in this 
process. Hence, the convolved analytical solution will 
lead to overestimated risk estimate for spatially dis-
tributed slopes. Although only the scalar (PGA) mod-
el and the vector (PGA, Ia) model are used in Figure 7, 
similar conclusion can be drawn if other vector mod-
els are used.  

5.4 Influence of displacement prediction models 
The displacement hazard curves obtained using four 
different displacement prediction models are com-
pared. Figure 8 shows the displacement hazard 
curves for individual sites (A and B), as well as for a 
given area ratio *AR of 5% and 25%, respectively. 
The spatial correlation of vector IMs are computed 
using Equation (15). For all these cases, the dis-
placement hazard curves obtained from the scalar 
PGA model are significantly higher than these ob-
tained from vector models. The large discrepancy is 
not unexpected since a scalar displacement prediction 
model usually cannot satisfy the sufficiency require-
ment, e.g., the model exhibits systematic bias over 
earthquake magnitudes (Rathje and Saygili, 2008). 
On the other hand, rather consistent results are ob-
tained using three vector-IM models, since the suffi-
ciency requirement can be more easily satisfied us-
ing a vector model. The results clearly demonstrated 
the advantage of using vector IMs in displacement 
hazard analysis. 
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Figure 8. Displacement hazard curves using by different dis-
placement prediction models for (a) site A, (b) site B, (c) ex-
ceedance area ratio AR* as 5%, and (d) AR* as 25% 
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6 CONCLUSIONS 

This paper provided a computational efficient 
framework to conduct a fully probabilistic hazard 
analysis for spatially distributed slopes. The cross-
correlations between the vector IM [PGA, Ia, PGV] 
are developed based on geostatistical modeling of 
strong motion data from eleven recent earthquakes. 
The coregionalization matrices provide a positive 
definite covariance matrix that enables generation of 
random fields of the vector IM preserving their spa-
tial correlations.  

The developed covariance model for the vector 
IM [PGA, Ia, PGV] is then used to quantify the spa-
tial variability in a hypothetical region. The intensity 
maps and sliding displacement maps are generated 
by Monte Carlo method, and aleatory variability is 
incorporated in each step. To reduce the computa-
tional cost, several state-of-the-art data reduction 
techniques are also applied. The difference of hazard 
curves between ‘reduced set’ and ‘large set’ implies 
that results obtained from data reduction techniques 
can provide accurate results. The importance of spa-
tial correlation is also emphasized using the exam-
ple. Neglecting the spatial variability or using the 
convolved analytical solution would result in either 
underestimated or overestimated displacement haz-
ard curves. 

Finally, the displacement hazard curves computed 
by different predictive models (PGA model, (PGA, 
Ia) model, (PGA, PGV) model and (PGA, Ia, PGV) 
model) are compared. Except for the scaler (PGA) 
model, all vector models yield consistent displace-
ment hazard curves for individual sites as well as for 
the whole region. The vector models demonstrate 
significant advantages over the scalar model, and 
underline the importance of using spatially-
correlated vector IM in seismic hazard analysis of 
spatially distributed slopes.  
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