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Abstract

A micro-mechanics damage model is proposed based on homogenization of penny-shaped cohesive

micro-cracks (Barenblatt–Dugdale type) in a three dimensional representative volume element. By

assuming that macro-hydrostatic stress state has dominant effect on permanent crack opening, a class of

pressure sensitive yielding potentials and corresponding damage evolution laws have been derived. The
merits of this class of damage models are: (1) Its ability to model and predict material failure and degra-

dation due to cohesive micro-crack growth; (2) its ability to estimate the influence of Poisson�s ratio on

material�s damage.

One of the distinguished features of the new damage model is at macro-level the reversible part of

effective constitutive relation is characterized as a nonlinear elasticity, whereas the irreversible part of

effective constitutive relation is a form of pressure-sensitive plasticity, both of which are significantly dif-

ferent from material�s behaviors at micro-level before homogenization.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Micro-mechanics modeling of materials which contain distributed defects is an important
subject in reliability analysis. It has been extensively used to predict material failure and strength
degradation. The popular Gurson model [13,14,38,39] is such an example, in which material�s
failure mechanism at micro-level is postulated to be void growth, and at macro-level the effective
constitutive relation obtained from statistical averaging is a form of pressure sensitive plasticity,
which depends on a damage indicator––the volume fraction of the void in a representative volume
*
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element (RVE). The most distinguished feature of the Gurson model is that its effective consti-
tutive relation at macro-level differs from the constitutive relation at micro-level. This feature is
absent in the early micro-elasticity theory, in which on both micro-level and macro-level, con-
stitutive equations are the same, i.e., the linear elasticity––the generalized Hooke�s law prevails.
The motif of contemporary micro-mechanics is aimed at discovering unknown but vital effective
constitutive information by homogenizing simple but massive micro-mechanics objects.

Failure mechanism due to void growth is supported by many experimental observations on
failures of ductile materials (e.g. [9,11,32,35,41]). On the other hand, in most brittle, quasi-brittle
and even some ductile materials such as concrete, rocks, ceramics and some metals, material�s
failure mechanism may be attributed to nucleation and coalescence of micro-cracks as well.

Although several micro-crack based damage models have been proposed to describe elastic
damage processes (e.g. [5,10,20,23,29,34] and others), few micro-crack damage models are
available for inelastic damage processes. Ju and co-workers [24–26] have applied micro-mechanics
techniques to model effective elastoplastic behaviors of a composite with distributed inhomoge-
neities. In their study, qualitatively, the macro-constitutive relation of the composite is virtually
the same as the micro-constitutive relation of the matrix or that of inhomogeneity––the classical
elasto-plastic (J2) constitutive relation. The objective of the approach is only to find quantitatively
homogenized constitutive relations. Although the Gurson model is an exception, it is hardly a
micro-mechanics model in physical sense. A basic assumption of the Gurson model is that at
micro-level of an RVE the virgin material is a perfectly plastic continuum, which manifests its
phenomenological limitation.

Since Barenblatt [1,2] and Dugdale�s pioneer contribution [8], cohesive crack models have been
studied extensively. In applications, the assessment of overall damage effect due to cohesive defect
distribution is important for studying material damage at macro-level. Nevertheless, few effective
constitutive models based on cohesive crack distribution are available, if there is any.

In this paper, micro-mechanics techniques are applied to study effective constitutive behaviors
of a solid with randomly distributed cohesive cracks. A new cohesive damage model is derived,
which is based on homogenization of randomly distributed penny-shaped cohesive cracks
(Barenblatt–Dugdale type) in an elastic RVE. The cohesive damage model mimics realistic
interactions among atomistic bond forces at micro-level, hence it may capture the overall damage
effects due to atomistic bond break.

Before proceeding to the analysis, it may be expedient to elaborate some basic notions and
hypotheses used in this study. There are several premises made in our analysis. First, the term
damage used in this paper has specific meaning. In general, damage means material degradation
caused by defects or deformation. Damage may be defined as surface separations, permanent
lattice distortion, various irreversible effects due to endochronic dissipation etc. In the context of
this paper, the term damage is strictly referred to the material degradation due to a specific de-
fect––permanent crack opening, or volume fraction of permanent micro-crack opening, which
may be viewed as a second phase in a composite material. This definition of damage has been
extensively used in engineering literature. The definition of damage used in the Gurson model
belongs to this category as well, e.g. void growth. Second, in this study we define a material�s
cohesive strength under hydrostatic stress state as the onset value for crack opening and surface
separation. It can be related to material�s yield stress by the micro-yielding condition at a crack
tip.
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To distinguish the damage caused by deviatoric stress, such as dislocation, disclination, and
surface sliding, with the damage caused by hydrostatic stress, such as permanent crack opening,
may simplify constitutive modeling. Of course, in reality, material damage may be susceptible to
both hydrostatic and deviatoric stress states and it is sensitive to the combination of hydrostatic
and deviatoric stress states. However, it is a reasonable approximation to assume that the damage
due to permanent crack opening is only related to hydrostatic stress state, which renders the
tractable homogenization solution.

A main hypothesis or approximation of the proposed cohesive damage model is: the overall
damage due to the permanent crack opening is only associated with average hydrostatic stress
(spherical) state in an RVE, and the overall damage effect due to the average deviatoric stress can be

neglected.
Based on this hypothesis, the particular damage we are interested in is only susceptible to

macro-hydrostatic stress state and we neglect the damage effect due to shear deformation or
macro-deviatoric stress states. Based on this assumption and since modes II and III types of
remote loading will not contribute to crack opening volume, they are absent in our analysis of
material damage, though they definitely contribute surface separation and in general there are
cohesive shear forces between two sliding crack surfaces.

From this perspective, different macro-stress states with the same hydrostatic stress tensor form
an equivalent class, because their propensity to the damage defined in this paper is the same.
Therefore, in order to evaluate damage evolution caused by cohesive micro-crack aggregation, for
each equivalent class, one may only need to evaluate damage in an RVE caused by a uniform
triaxial tension stress state, and uses it to represent the damage incurred in the RVE for all other
remote stress boundary conditions in the same equivalent class.

It should be noted that the damage caused by permanent mode I crack opening under remote
hydrostatic stress state may have influence on macro-yielding. Nevertheless, the objective of this
paper is not deriving macro-yielding behavior via homogenization of micro-yielding, but studying
the overall damage effect due to permanent micro-crack openings on macro-yielding.
2. Average theorem for a cohesive RVE

Since the cohesive crack is not a traction-free defect, we may need to reexamine traditional
micro-mechanics averaging theory for traction-free defects in a solid. An averaging theorem for
solids containing cohesive defects with constant cohesive traction would be useful for our pur-
pose. Define the macro-stress tensor, Rij as the volume average of micro-stress tensor in an RVE
(Fig. 1),
Rij :¼ hriji ¼
1

V

Z
V
rij dV ð2:1Þ
We first consider the average stress in a three-dimensional (3D) elastic representative volume
element with a single penny-shaped Barenblatt–Dugdale crack at the center of the RVE. We
adopt the assumption that body force has no effect on material properties. The equilibrium
equation inside an RVE takes the form,
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Fig. 1. Isotropic distribution of cracks with different orientations.
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rji;j ¼ 0; 8x 2 V ð2:2Þ
Assume that the prescribed tractions on the remote boundary of the RVE (oV1) are generated
by a constant stress tensor r1

ij . Let oVec denote traction free part of a cohesive crack surface, and
let oVpz denote the cohesive part of the crack surface where constant traction force tj is applied.
Using divergence theorem, it is straightforward to show that
hriji ¼
1

V

Z
V
rijdV ¼ 1

V

Z
V
ðrkjxiÞ;k dV

¼ 1

V

Z
V
r1
kj dik dV

(
�
Z
oVec

0 � xink dS �
Z
oVpz

rkjxink dS

)
¼ r1

ij � 1

V

Z
oVpz

rkjxink dS

¼ r1
ij � 1

V

Z
oVpz

tjxidS ð2:3Þ
where tj is the constant cohesive traction.
Note that oVpz ¼ oVpzþ [ oVpz� and joVpzþj ¼ joVpz�j ¼ 1

2
joVpzj, where subscript �+� and �)� are

used to denote upper and lower part of the crack surfaces. So the last term in (2.3) becomes
1

V

Z
oVpz

tjxidS ¼ 1

V

Z
oVpzþ

tþj xidS

 
þ
Z
oVpz�

t�j xidS

!
¼ 0 ð2:4Þ
where tþj ¼ �t�j are the cohesive tractions acting on oVpzþ and oVpz� respectively.
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Therefore, the average stress inside the RVE will equal to remote stress
Rij ¼ hriji ¼ r1
ij ð2:5Þ
Now consider a 3D RVE with N cohesive cracks randomly distributed inside (see Fig. 1). As
shown above,
hriji ¼ r1
ij � 1

V

XN
a¼1

Z
oVpza

tðaÞj xidS ¼ r1
ij ð2:6Þ
Hence, the following averaging theorem holds.

Theorem 2.1. Suppose

1. An elastic representative volume element contains N Barenblatt–Dugdale penny-shaped cracks
with cohesive tractions in the cohesive zones;

2. The tractions on the remote boundary of the RVE is generated by a constant stress tensor, i.e.,
t1i ¼ njr1

ji , and r1
ij ¼ const:

The macro-stress tensor of an RVE equals to the remote constant stress tensor, i.e.
Rij ¼ hriji ¼ r1
ij ð2:7Þ
Note that for hydrostatic remote loading,
r1
ij ¼ r1dij ð2:8Þ
By the averaging theorem, it is obvious that
Rm ¼ r1 ð2:9Þ
where Rm ¼ 1

3
Rii.
3. Penny-shaped crack under uniform triaxial tension

Before proceeding to homogenize three-dimensional (3D) cohesive crack, we first outline the
analytical solution of 3D penny-shaped crack in an RVE that is under uniform triaxial tension
(see Fig. 2).

Penny-shaped Dugdale crack problem has been studied by several authors. The early contri-
bution was made by Keer and Mura [21], who used the Tresca yield criterion to link the cohesive
strength to micro-yield stress. In their study, only uniaxial tension loading was considered. More
recently, Chen and Keer [6,7] re-examined the problem, and they obtained the general solutions



Fig. 2. A penny-shaped cohesive crack in representative volume element (the shaded region: cohesive zone-yielded

ring).

866 S. Li, G. Wang / International Journal of Engineering Science 42 (2004) 861–885
for a penny-shaped cohesive crack under mixed-mode loading. On the other hand, however, the
problem has not been thoroughly examined from micro-mechanics perspective. For example, the
connection among the onset value of cohesive strength, micro-yield stress in an RVE, and remote
macro-stress has not been made. By examining a cohesive penny-shaped crack model in an RVE,
the study provides a link among cohesive strength, micro-yield stress, and remote stresses on the
boundary of an RVE, which provides a foundation for ensuing homogenizations.
3.1. Three-dimensional penny-shaped crack problem

Consider a three-dimensional penny-shaped Dugdale crack of radius a with a ring-shaped
cohesive zone with width b� a in an RVE, which may be viewed as an infinite isotropic space by
‘‘a micro-observer’’ inside the RVE.

Let the outward normal to crack surface parallel to Z (X3) axis (see Fig. 2) and a uniform
triaxial tension stress is applied at the remote boundary of the RVE, r1

ij ¼ r1dij and r1 ¼ Rm

based on average theorem shown above. In cylindrical coordinate, the traction conditions on the
remote boundary oV1 and symmetric displacement boundary condition are expressed as
rzzjoV1 ¼ Rm ð3:1Þ

rrrjoV1 ¼ Rm ð3:2Þ

rhhjoV1 ¼ Rm ð3:3Þ

uzðr; h; 0Þ ¼ 0; b6 r; 06 h6 2p ð3:4Þ
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The stress distribution on the crack surface and cohesive zone is
rzzðr; h; 0Þ ¼ r0Hðr � aÞ; 06 r6 b; 06 h6 2p ð3:5Þ
where Rm is the remote stress, Hðr � aÞ is the Heaviside function, and r0 is the material�s cohesive
strength, the onset value for crack opening, and it is different from the micro-yielding stress. The
problem can be solved via superposition of two sub-problems: a trivial problem––an intact RVE
in uniform triaxial tension state, i.e. 8x 2 V ,
rð0Þ
zz ¼ Rm ð3:6Þ

rð0Þ
rr ¼ Rm ð3:7Þ

rð0Þ
hh ¼ Rm ð3:8Þ

rð0Þ
rz ¼ rð0Þ

rh ¼ rð0Þ
zh ¼ 0 ð3:9Þ
and a crack problem––an RVE with a center crack that is subjected to the following boundary
conditions (see Fig. 3).
rðcÞ
zz

��
oV1

¼ 0 ð3:10Þ

rðcÞ
rr

��
oV1

¼ 0 ð3:11Þ

rðcÞ
hh

���
oV1

¼ 0 ð3:12Þ

rðcÞ
zz ðr; h; 0Þ ¼ �Rm þ r0Hðr � aÞ; 0 < r < b; 06 h6 2p ð3:13Þ

uðcÞz ðr; h; 0Þ ¼ 0; b6 r; 06 h6 2p ð3:14Þ
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Fig. 3. Illustration of decomposition of cohesive crack problem.
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The second problem may be solved by introducing Papkovitch–Neuber displacement potential
(see [12,27]). If body force is absent, the displacement fields can be expressed as follows
2l�uðcÞr ¼ �ð1� 2m�Þ oU
or

� z
o2U
oroz

ð3:15Þ

2l�uðcÞh ¼ �ð1� 2m�Þ 1
r
oU
oh

� z
r
o2U
ohoz

ð3:16Þ

2l�uðcÞz ¼ 2ð1� m�Þ oU
oz

� z
o2U
oz2

ð3:17Þ
where the potential function is harmonic, i.e. r2U ¼ 0; the material constants, shear modulus l�,
and Poisson�s ratio m�, are unspecified at the moment, which may depend on the later homoge-
nization procedures. By using kinematic relations and elastic constitutive laws, the stress com-
ponents can be expressed as
rðcÞ
rr ¼ 2m�

o2U
oz2

� ð1� 2m�Þ o
2U
or2

� z
o3U
or2oz

ð3:18Þ

rðcÞ
hh ¼ � 2m�

o2U
or2

�
þ 1

r
oU
or

þ 1

r2
o2U

oh2
þ z
r
o2U
oroz

þ z
r2

o3U

oh2oz

�
ð3:19Þ

rðcÞ
zz ¼ o2U

oz2
� z

o3U
oz3

ð3:20Þ

rðcÞ
zr ¼ �z

o3U
oroz2

ð3:21Þ

rðcÞ
zh ¼ � z

r
o3U
ohoz2

ð3:22Þ

rðcÞ
rh ¼ 1

r
ð1
�

� 2m�Þ 1

r
oU
oh

�
� o2U
ohor

�
þ z

1

r
o2U
ohoz

�
� o3U
ohoroz

��
ð3:23Þ
The solution of the harmonic potential function, U can be sought by using Hankel transforma-
tion. Define the symmetric mode (zero-order) Hankel transform,
�Uðn; zÞ :¼
R1
0

rUðr; zÞJ0ðnrÞdr
Uðr; zÞ :¼

R1
0

n�Uðn; zÞJ0ðnrÞdn

(
ð3:24Þ
where J0ðnzÞ is zero-order Bessel function. The Laplace equation can be reduced to an ordinary
differential equation
r2U ¼ 0 ) o2 �U
oz2

� n2 �U ¼ 0 ð3:25Þ



S. Li, G. Wang / International Journal of Engineering Science 42 (2004) 861–885 869
By considering the remote boundary condition, �Uðn; zÞ ! 0 as z ! 0, and the solution of (3.25)
is
�Uðn; zÞ ¼ AðnÞ expð�nzÞ ð3:26Þ
Substitute (3.26) into (3.24)2. The displacement potential may be expressed as
Uðr; zÞ ¼ �
Z 1

0

n�1AðnÞ expð�nzÞJ0ðnrÞdn ð3:27Þ
where AðnÞ ¼ �AðnÞn2, which is an unknown function to be determined. The boundary condi-
tions (3.13) and (3.14) render the following dual integral equations
R1

0
nAðnÞJ0ðnrÞdn ¼ Rm � r0Hðr � aÞ; 0 < r < bR1

0
AðnÞJ0ðnrÞdn ¼ 0; rP b

(
ð3:28Þ
Choose AðnÞ the following form
AðnÞ ¼
Z b

0

/ðtÞ sin ntdt ð3:29Þ
One may verify that (3.28)2 is automatically satisfied.
Solving the first equation of (3.28)1, one may find that
/ðtÞ ¼

2

p
Rmt t < a

2

p
ðRmt � r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

p
Þ a < t < b

8>><>>: ð3:30Þ
and hence AðnÞ and Wðr; zÞ.
With the solution of potential function W at hand, stress components (3.18)–(3.23) can be

determined. After lengthy calculation, one may find that in the yield ring (z ¼ 0 and a < r < b) the
stress distributions are
rðcÞ
zz ¼ r0 � Rm ð3:31Þ

rðcÞ
rr ¼ � 1þ 2m�

2
Rm þ 1� 2m�

2
1

��
þ a2

r2

�
þ 2m�

�
r0 ð3:32Þ

rðcÞ
hh ¼ � 1þ 2m�

2
Rm þ 1� 2m�

2
1

��
� a2

r2

�
þ 2m�

�
r0 ð3:33Þ

rðcÞ
rz ¼ rðcÞ

rh ¼ rðcÞ
zh ¼ 0 ð3:34Þ
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To ensure the stresses at crack tip to be finite, the size of the cohesive zone, a=b, remote stress Rm,
and the cohesive stress, r0 are related through the following expression,
a
b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðRmÞ2

ðr0Þ2

s
or

Rm

r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

b2

r
ð3:35Þ
If we are mainly interested in inelastic deformation of quasi-brittle materials, we may assume
that micro-scale yielding due to hydrostatic stress state is small-scale yielding: a2

b2 � 1. Therefore,
(a

2

r2 � 1), for a6 r6 b. The total stress distribution within the cohesive zone (3.31)–(3.34) may be
approximated as
rðtÞ
zz ¼ rð0Þ

zz þ rðcÞ
zz ¼ r0 ð3:36Þ

rðtÞ
rr ¼ rð0Þ

rr þ rðcÞ
rr ¼ 1� 2m�

2
Rm þ r0 ð3:37Þ

rðtÞ
hh ¼ rð0Þ

hh þ rðcÞ
hh ¼ 1� 2m�

2
Rm þ 2m�r0 ð3:38Þ

rðtÞ
rz ¼ rðtÞ

rh ¼ rðtÞ
zh ¼ 0 ð3:39Þ
It is assumed that inside the cohesive zone micro-plastic yielding is controlled by the Huber–
von Mises criterion. Therefore, we can link the cohesive strength, r0, with the yield stress of the
virgin material, rY, by
1

2
rðtÞ
rr

��
� rðtÞ

zz

�2
þ rðtÞ

hh

�
� rðtÞ

zz

�2
þ rðtÞ

rr

�
� rðtÞ

hh

�2�
¼ r2

Y ð3:40Þ
Substitute Eqs. (3.36)–(3.38) into (3.40) and solve for r0. The following quadratic equation may be
obtained
4
r0

Rm

� �2

� 2
r0

Rm

� �
þ 1� 2

1� 2m�
rY

Rm

� �2

¼ 0 ð3:41Þ
which has two roots. The positive root is chosen to link the cohesive stress r0 with the yield stress
in uniaxial tension rY,
r0

R
¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
1�2m�

rY
Rm

� �2
� 3

r
4

ð3:42Þ

m
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3.2. Crack opening displacement

Consider the displacement at crack surface (Eq. (3.17) (z ¼ 0)),
uzðrÞ ¼
ð1� m�Þ

l�
oU
oz

¼ 1� m�

l�

Z b

r

/ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p dt

¼

2

p
1� m�

l�

� �
Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

p
� r0

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p dt

 !
0 < r < a

2

p
1� m�

l�

� �
Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

p
� r0

Z b

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p dt

 !
a < r < b

8>>>><>>>>: ð3:43Þ
Denote the traction-free crack surface as oVec ¼ oVecþ [ oVec� and its projection onto X1X2 plane
as X1. Denote the surface of the cohesive zone (ring shape) as oVpz ¼ oVpzþ [ oVpz� and its pro-
jection onto X1X2 plane as X2. Hence, X ¼ X1 [ X2 (see Fig. 4).

Define displacement jump,
½uz� ¼ uþz � u�z ¼ 2uz ð3:44Þ
The volume of crack opening over X1 is
Z
X1

½uz�dA ¼ 8ð1� m�Þ
l� Rm

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

p
rdr

 
� r0

Z a

0

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p rdtdr

!

¼ 8ð1� m�Þ
3l� Rm b3

hn
� ðb2 � a2Þ

3
2

i
� r0 b2

	h
� a2


3
2 � ðb3 � 3a2bþ 2a3Þ

io
ð3:45Þ
Fig. 4. Projection domain of crack surface and cohesive zone.
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The volume of crack opening over the yielding ring X2ða < r < bÞ is
Z
X2

½uz�dA ¼ 8ð1� m�Þ
l� Rm

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

p
rdr

"
� r0

Z b

a

Z b

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p rdtdr

#

¼ 8ð1� m�Þ
3l� Rmðb2

h
� a2Þ

3
2 � r0ðb3 � 3a2bþ 2a3Þ

i
ð3:46Þ
The total volume of crack opening by a single cohesive crack is the integration of crack opening
displacement over the entire projection area, X ¼ X1 [ X2. With the aid of (3.45), (3.46), and
(3.35), it is readily to show that
Vc ¼
Z
X
½uz�dA ¼

Z
X1

½uz�dAþ
Z
X2

½uz�dA ¼ 8ð1� m�Þ
3l� b3 Rm

"
� r0 1

�
� a

b

� �2�3
2

#

¼ 8ð1� m�Þa3
3l�

Rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2r ð3:47Þ
4. Effective elastic material properties of an RVE

Define the macro-strain tensor
Eij :¼
o �Wc

oRij
¼: �Dijk‘Rk‘ ¼ �Dijk‘r

1
k‘ ð4:1Þ
where �Wc is the overall complementary energy density of an RVE. Rij :¼ hriji is the macro-stress
tensor defined previously, and �Dijk‘ is the effective compliance moduli.

Note that the macro-strain in an RVE may not be the volume average strain in an RVE, that is
Eij 6¼ h�iji. Furthermore Eq. (4.1) may not be a linear relationship, because �Dijk‘ depend on Rij in
general.

A common strategy for homogenization of randomly distributed defects is to find a so-called
additional strain tensor, �ðaddÞ (e.g. [30,31,34]), such that
Eij ¼ �
ð0Þ
ij þ �

ðaddÞ
ij ð4:2Þ
where �
ð0Þ
ij ¼ Dijk‘Rk‘ and Dijk‘ is the elastic compliance of the corresponding virgin material.

If the relationship between additional strain and macro-stress can be found, �
ðaddÞ
ij ¼ Hijk‘Rk‘,

where Hijk‘ is the added compliance due to micro-cracks, subsequently the effective elastic com-
pliance moduli, �D, can be deduced.

For an elastic solid containing a traction-free crack, the additional strain can be calculated by
using Hill�s formula [16,19]
�ðaddÞ ¼ 1

2V

Z
X
ðn� ½u� þ ½u� � nÞdS ð4:3Þ
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However, Hill�s formula may not be applicable in homogenizations of cohesive cracks, because of
the presence of nonzero tractions in the cohesive zone.

To find an additional strain formula for cohesive cracks, we resort to energy methods. The
essence of energy methods is to find the energy release in a cohesive fracture process and hence to
find the equivalent reduction of material properties. Nonetheless, the energy dissipation process in
cohesive fracture is much more complicated than a purely elastic fracture process. It includes
energy dissipation from both surface separation and plastic dissipation. We first study the average
energy release rate of an RVE with distributed cohesive micro-cracks subjected to uniform triaxial
loading r1

ij ¼ Rmdij.

4.1. Average energy release rate

To estimate energy loss during a damage process requires an in-depth understanding of the
physical process involved. However, sensible estimates may be made based on simplified
assumptions.

In the first estimate, we assume that the energy release during a cohesive damage process comes
solely from traction-free surface separation, which may be estimated by using J -integral [36]. The
J -integral of a Dugdale crack has been calculated by Rice [36,37],
J ¼ r0dt ð4:4Þ
where dt is the so-called crack tip opening displacement (CTOD). The 3D penny shape Dugdale
crack tip opening displacement is also given by Rice [37],
dt ¼
4

p
1� m�

l�

� �
ar0 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1A ð4:5Þ
which can be also verified through Eq. (3.43). Hence
J ¼ r0dt ¼
4

p
1� m�

l�

� �
ar2

0 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1A ð4:6Þ
In order to link the J -integral (energy release rate) to the energy release due surface separation, the
energy release due to crack growth, R1, can be first related with the so-called M-integral (see:
[4,5]),
M ¼
Z Z

S
W x � n
�

� ½ðx � rÞu� � t� 1

2
t � u
�
dS ð4:7Þ
where x is the position vector, u is the displacement, n is the unit outward normal to S, W is the
strain energy density, and r is the gradient operator. Note that the surface S completely encloses
the crack (see Fig. 5), and it consists of two planes coincident with the traction-free surfaces and a
tunnel that surrounds the crack front C.
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Fig. 5. Surface S surrounding a penny-shaped crack front C.
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Since x � n ¼ 0 and t ¼ 0 on the traction-free surface, the expression for M-integral becomes
M ¼
I
c
qðsÞ lim

d!0

I
‘

Wnr

�
� r � ou

or

�
d‘dS �

Z Z
S

1

2
t � ndS ¼

I
c
qJ dS ð4:8Þ
where nr is the rth component of unit outnormal vector n.
The term 1

2

R R
S t � ndS ¼ 0 in (4.8) vanishes as d ! 0. The integrand inside the outer integral of

(4.8) becomes the familiar J -integral. Budiansky and Rice [4] interpreted the M-integral of (4.8) as
the energy release rate associated with self-similar growth of a crack, in which each point of C
recedes radially from the origin at a rate proportional to its distance therefrom. For penny-shaped
cracks, one may choose q ¼ a and dS ¼ adh (see Fig. 5), and it therefore yields the following
expression,
M ¼ a
oR1

oa
¼
I
c
qJ dS ¼

Z 2p

0

4

p
1� m�

l�

� �
a3r2

0 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1Adh

¼ 8ð1� m�Þ
l� r2

0 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1Aa3 ð4:9Þ
The energy release due to traction-free surface separation is then,
R1 ¼
8ð1� m�Þ

3l� r2
0a

3 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1A ð4:10Þ
Remark 4.1
1. In the procedure of deriving the energy release from M-integral, we assume the ratio of b=a, or

the ratio of Rm=r0, is kept constant during crack extension;
2. For cohesive cracks, the total energy release due to the total crack surface separation or damage

consumption is a complicated issue. For solids containing cohesive defects, J integral may not
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be interpreted as the total energy release rate, since the involvement of plastic dissipation in the
cohesive zone. A related discussion can be also found in [28,33,42]. However, under the assump-
tion of small scale yielding, the above approximation may be accepted as ‘‘the conventional wis-
dom’’. The energy release due to traction-free surface separation provides a lower bound for
estimation of energy consumption in the damage process.

Since the energy release due to traction-free surface separation, R1, is only part of the total
energy release, in the second estimate, an upper bound solution is sought to evaluate energy re-
lease contribution to damage process. In the second estimate, we assume that the total energy
release of a cohesive crack is completely consumed in surface separation, which may or may not
be true in cohesive fracture, because of plastic dissipation in the cohesive zone.

The total energy release of a 3D penny-shaped crack can be calculated as
R2 ¼
Z
X
Rm½uz�dS �

Z
X2

r0½uz�dS ¼ 16ð1� m�Þ
3l� r2

0a
3 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1A ð4:11Þ
Interestingly, one may find that R2 ¼ 2R1. We then can express the two estimates in a unified
fashion,
Rx ¼ 8xð1� m�Þ
3l� r2

0a
3 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1A; x ¼ 1; 2 ð4:12Þ
Consider that there are N penny-shaped cracks inside the RVE, and define the crack opening
volume fraction as
f :¼
XN
a¼1

4pa3a
3V

b; ð4:13Þ
where aa is the radius of the ath crack, and 4pa3a=3 is the volume of a sphere with radius aa, and b
is the ratio between the volume of permanent crack opening and the volume of total crack
opening of a cohesive crack. For simplicity, we assume that this ratio is fixed for every crack inside
an RVE. Obviously, 06 b6 1.

Utilizing (4.12) and (4.13), the density of energy release estimate can be written as
Rx

V
¼ 8xð1� m�Þ

3l�b
r2
0

XN
a¼1

4pa3a
3V

b

� �
3

4p
1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1A

¼ 2xð1� m�Þ
bpl� r2

0f 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1A; x ¼ 1; 2 ð4:14Þ
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The overall complementary energy density may then be expressed as the sum of complementary
energy density of corresponding virgin material and the density of energy release due to micro-
crack distribution,
�W c ¼ W c þRx

V
¼ 1

2
Dijk‘r

1
ij r

1
k‘ þ

2xð1� m�Þ
bpl� r2

0f 1

0@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2
s 1A; x ¼ 1; 2 ð4:15Þ
Based on definition (4.1) and the averaging Theorem 2.1, for a given crack opening volume
fraction, f , the macro-strain tensor can be obtained as
Eij ¼
o �W c

oRij
¼ o �W c

or1
ij
¼ Dijk‘r

1
k‘ þ

oðRx=V Þ
oRm

oRm

or1
ij
¼ Dijk‘r

1
k‘ þ

2xð1� m�Þ
3bpl� f

Rmdijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2r ð4:16Þ
It may be noted that Eq. (4.16) is only valid when the RVE is under hydrostatic stress state, i.e.,
r1
ij ¼ Rmdij. From (4.16), one can find an expression for additional strain
�
ðaddÞ
ij ¼ 2xð1� m�Þ

3bpl� f
Rmdijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Rm

r0

� �2r ; x ¼ 1; 2 ð4:17Þ
4.2. Self-consistent homogenization

A bona fide self-consistent scheme should take into account micro-crack interaction (see
[5,17,18]). Since the micro-crack distribution is isotropic, the damaged RVE should also be
considered as isotropic at micro-level. The micro-crack interaction effect could be captured by
taking l� ¼ �l and m� ¼ �m in all above derivations, where �l and �m are effective shear modulus and
effective Poisson�s ratio in an RVE. Recast Eq. (4.17) into a more general form,
�ðaddÞ ¼ H : R; ð4:18Þ
so
E ¼ �D : R ¼ ðDþHÞ : R; where �D ¼ DþH ð4:19Þ
where H is an isotropic tensor, which may be written as
H ¼ h1
3
1ð2Þ � 1ð2Þ þ h21

ð4sÞ ð4:20Þ
where 1ð2Þ ¼ dijei � ej, and 1ð4sÞ ¼ 1
2
ðdikdj‘ þ di‘djkÞei � ej � ek � e‘, and parameters h1, h2 are yet to

be determined.
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Decompose
D ¼ 1

3K
E1 þ 1

2l
E2 ð4:21Þ
�D ¼ 1

3�K
E1 þ 1

2�l
E2 ð4:22Þ
H ¼ ðh1 þ h2ÞE1 þ h2E
2 ð4:23Þ
where E1 :¼ 1
3
1ð2Þ � 1ð2Þ, Eð2Þ :¼ � 1

3
1ð2Þ � 1ð2Þ þ 1ð4sÞ and consider
1

3K
¼ ð1� 2mÞ

E
and

1

3�K
¼ ð1� 2�mÞ

�E
ð4:24Þ
1

2l
¼ ð1þ mÞ

E
and

1

2�l
¼ ð1þ �mÞ

�E
ð4:25Þ
The H tensor in Eq. (4.20) can not be uniquely determined, since on the remote boundary of the
RVE, the traction stress state is hydrostatic, R ¼ Rmdijei � ej. Hence the information carried in
(4.19) only admits one scalar equation,
�D : ðRmdijei � ejÞ ¼ ðDþHÞ : ðRmdijei � ejÞ ð4:26Þ
Consider Eij ¼ �
ð0Þ
ij þ �

ðaddÞ
ij and identities, E1 : 1ð2Þ ¼ 1ð2Þ and E2 : 1ð2Þ ¼ 0, and by virtue of (4.17)

and (4.26), it can be shown that
1

3�K
¼ 1

3K
þ ðh1 þ h2Þ ¼

1

3K
þ 2xð1� �mÞ

3bp�l
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Rm

r0

� �2r ð4:27Þ
There are two unknowns, �K and �l, or equivalently h1 and h2 in Eq. (4.27). Additional condition
is needed to uniquely determine �D or H. Impose a restriction
�K
K

¼ �l
l

ð4:28Þ
This restriction guarantees the positive definiteness of the overall strain energy. It also implies that
the relative reduction of the shear modulus is the same as that of the bulk modulus.
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Consider (4.24) and (4.25). A direct consequence of (4.28) is �m ¼ m, which leads
1

3�K
¼ 1

2�l
1� 2�m
1þ �m

 !
¼ 1

2�l
1� 2m
1þ m

� �
1

3�K
¼ 1

2�l
1� 2m
1þ m

� �

which, when substituted into (4.27), leads to the estimates of effective elastic moduli
�K
K

¼ �l
l
¼ 1� 4xð1� m2Þ

3bpð1� 2mÞ
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Rm

r0

� �2r ; x ¼ 1; 2 ð4:29Þ
5. Micro-cohesive crack damage models

Before proceeding to construct cohesive damage model, a few definitions are in order. Define
the macro-deviatoric stress tensor and its second invariant as
R0
ij ¼ Rij � 1

3
Rkkdij ð5:1Þ

J2 ¼ 1
2
R0

ijR
0
ij ð5:2Þ
Define macro-deviatoric elastic strain tensor, and its second invariant as
E0
ij ¼

1

2�l
R0

ij ð5:3Þ

I2 ¼
1

2
E0

ijE
0
ij: ð5:4Þ
Homogenization of nonlinear problems is often difficult. Without proper statistical closure,
averaging along may not be sufficient to provide sensible results. In this paper, we postulate that
there is a limit for the amount of distortional energy that a given material ensemble can store. This
reflects in the following hypothesis on the condition of macro-yielding:

Hypothesis 5.1. The macroscopic yielding of an RVE begins when the distortional strain energy
density of an RVE
Ud :¼
Z E0

ij

0

eR 0
ijd
eE0

ij ð5:5Þ
reaches to a threshold. In other words, the maximum elastic distortional energy of an RVE is a
material constant,
Ud 6U ðcrÞ
d : ð5:6Þ
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Remark 5.1
1. The postulate is an assumed statistical closure, and it is not based on either micro-mechanics

principles, nor experimental results. In other words, the premised condition is a pre-requisite
property assigned to all the RVEs in the material that is under investigation.

2. When we study effective elastic material properties, only hydrostatic stress state is applied on
the remote boundary of an RVE. Nevertheless, most remote stress states in an equivalent class
have nontrivial average deviatoric stress state, i.e. J2 6¼ 0.

3. From Eqs. (5.2)–(5.4), one can easily show that
ffiffiffiffi
J2

p
¼ 2�l

ffiffiffiffiffiffi
I2

p
ð5:7Þ

Since the relationship (4.1) and (5.7) are nonlinear in general,

Ud 6¼
1

2�l
J2 ð5:8Þ

Interestingly, if the effective shear modulus only depends on the ratio Rm=r0, i.e. �l ¼ �lðRm=r0Þ,
and the ratio Rm=r0 is independent from I2, it can be shown that

Ud ¼
Z E0

ij

0

eR 0
ijd
eE0

ij ¼
Z E0

ij

0

2�lðRm=r0ÞeE 0
ijd
eE 0

ij ¼
Z I2

0

2�lðRm=r0ÞdI2

¼ 2�lðRm=r0ÞI2 ¼
1

2�l
J2 ð5:9Þ

4. Eq. (5.6) is a reminiscence of the Hencky�s maximum distortional energy principle in traditional
infinitesimal plasticity. According to Hencky�s maximum distortional energy theory [15], the
threshold of yielding for a material point can be measured by its ability to absorb certain
amount of elastic distortional energy density. However, the elastic distortional energy density
of an RVE does not equal to the average elastic distortional energy density, i.e.
Ud ¼
Z E0

ij

0

eR 0
ijd
eE0

ij 6¼
1

V

Z
V

Z �0ij

0

~r0
ij d~�

0
ijdV ð5:10Þ
In other words
Z E0
ij

0

hriji0 dh�eiji
0 6¼ 1

2
hr0

ij�
0
iji ð5:11Þ
5. The criterion can be calibrated in an uniaxial tension test of the virgin material
U ðcrÞ
d ¼ 1

6l
r2
Y ð5:12Þ
In a real damage evolution process, the above criteria take the following form
Ud ¼
R2

eq

6�l
6U ðcrÞ

d ; where Req :¼
ffiffiffiffiffiffiffi
3J2

p
ð5:13Þ
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Then the criterion of the maximum distortional energy density of an RVE becomes
R2
eq

r2
Y

¼ �l
l

ð5:14Þ
Consider self-consistent method. Using (4.29), one may derived the following effective yielding
potential,
WðReq;Rm; qÞ ¼
R2

eq

r2
Y

þ 4xð1� m2Þ
3bpð1� 2mÞ

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rm

r0

� �2r � 1 ¼ 0 ð5:15Þ
where Req and Rm are defined as the macro-equivalent stress and mean stress, and q represents the
other internal variables, which may be implicitly embedded in rY.

In terms of the ratio Rm=rY, the effective yielding potential function of plastic flow W can be
finally recast as follows,
WðReq;Rm; qÞ ¼
R2

eq

r2
Y

þ 4xð1� m2Þf
3bpð1� 2mÞ

1þ 4rY
ð1�2mÞRm

� �2
� 3

� �1=2

1þ 4rY
ð1�2mÞRm

� �2
� 3

� �1=2 !2

� 16

24 351=2

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
� 1 ¼ 0

ð5:16Þ

The damage evolution equation may be derived in a similar fashion as the derivation of Gurson

model (e.g. [14,40]).
6. Concluding remarks

The most distinguishing features of the present cohesive crack damage model are:

1. The homogenized macro-constitutive relations are different from the micro-constitutive relations:
the reversible part of macro-constitutive relation is nonlinear elastic versus the linear elastic
behaviors at micro-level; the irreversible part of macro-constitutive relation is a form of pressure
sensitive plasticity versus the Huber–von Mises plasticity or cohesive laws at micro-level.

2. When the ratio of macro-hydrostatic stress and the true yield stress reaches a finite value, i.e.
Rm

r0

! 1 ) Rm

rY

! 4ffiffiffiffiffi
12

p
ð1� 2mÞ

ð6:1Þ
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the cohesive damage model will predict a complete failure of material even if the amount of
damage is infinitesimal. This fact is characterized by the vertical asymptote in Fig. 7(c). whereas
in the [13,14], when the amount of damage is infinitesimal the material will not completely fail
unless the hydrostatic stress becomes infinite. This fact is characterized by the horizontal
asymptote in Fig. 7(d). Obviously, the Gurson model is not realistic, because it fails to predict
material failure at its theoretical strength. In reality, no material can sustain infinite hydrostatic
stress, and any material will fail if hydrostatic stress reaches to its theoretical strength, no
matter there is crack or not. The newly proposed cohesive damage model is capable to predict
this physical phenomenon.

3. In the cohesive damage model, the effective yield surfaces as well as damage evolution equations
depend on materials Poisson�s ratio; whereas in the Gurson model, no such dependence can be
predicted, because of the assumption of incompressible RVE.

4. The rate of damage accumulation may depend on the rate of elastic deformation.
Fig. 6. Cohesive micro-crack damage model, WðReq;Rm; qÞ, with different Poisson�s ratios (b ¼ 1=3): (a) m ¼ 0:10;
(b) m ¼ 0:2; (c) m ¼ 0:25; (d) m ¼ 0:3.
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The damage model, i.e. the newly derived pressure-sensitive yielding function W, is displayed in
Fig. 6 with different Poisson�s ratios. In Fig. 7, the cohesive damage model is juxtaposed with the
Gurson model for comparison.

It should be mentioned that the self-consistent scheme based damage model W will fails at
m ¼ 0:5, since for incompressible elastic materials, uniform triaxial tension load will not be able to
produce dilatational strain energy.

The key step in the energy method is how to accurately determine the energy release contribution
to the material damage process. The energy release in nonlinear fracture mechanical process is
consumed in several different dissipation processes, e.g. surface separation, dislocation movement
and hence plastic dissipation, heat conduction, and may be even phase transformation, etc.
Usually, the energy release contribution to damage process is only referred to the surface sepa-
Fig. 7. Comparison between the cohesive damage model and the Gurson model. (a) The cohesive model Wðm ¼ 0:1Þ;
(b) the Gurson model; (c) the cohesive model Wðm ¼ 0:1Þ; (d) the Gurson model.
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ration energy release. In fact, both [28,42] have studied energy release caused by the extension of
Dugdale-BCS cracks in a two-dimensional space. To incorporate those available results into the
current formulation, an in-depth study may be needed to refine the damage model proposed here.

It is speculated that by considering interaction induced coalescence among cohesive cracks, one
may be able to find a critical micro-crack opening volume, fc based on analytical solutions, e.g.
Dugdale-BCS cracks, the solution of periodically distributed cohesive crack [3].

Finally, one may notice that Eq. (3.42) provides a relationship between physical cohesive
strength, r0, and the true (micro) yield stress, rY,
Rm

r0

¼ 4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
1�2m

rY
Rm

� �2
� 3

r ð6:2Þ
It gave an impression that the relationship between the two parameters depends on the macro-
hydrostatic stress state, Rm.

To gain the insight of this relationship, Eq. (6.2) is plotted with different Poisson�s ratio in Fig.
8. One may find that when 0 < Rm=r0 < 1, the cohesive stress is almost proportional to the ini-
tial yield stress (see curves O–Ai, i ¼ 1; 2; 3 in Fig. 8). This linear relationship can be approximated
as
r0 �
4ffiffiffiffiffi

12
p

ð1� 2mÞ
rY ð6:3Þ
Therefore for all practical purposes, the assumption of a constant cohesive stress inside cohesive
zone is consistent with the concept of constant yield stress.

Finally, it should be commented that the proposed damage model is only valid under the
assumption that the density of the cohesive micro-crack distribution is small. As the density of
Fig. 8. Relationship between physical cohesion and true yield stress.
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micro-crack distribution increases, it may lead to micro-crack coalescence or a drastic growth of
an individual crack. Then the damaged material may become anisotropic in a local region, and it
may soon lead to catastrophic failure. Therefore, the cohesive damage model proposed in this
paper may not be able to describe the overall constitutive behaviors of the damaged materials at
the later stage (see: [22]).
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