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Smart element method II. An element based on
the finite Eshelby tensor
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SUMMARY

In this study, we apply the newly derived finite Eshelby tensor in a variational multiscale formulation to
construct a smart element through a more accurate homogenization procedure. The so-called Neumann–
Eshelby tensor for an inclusion in a finite domain is used in the fine scale feedback procedure to
take into account the interactions among different scales and elements.

Numerical experiments have been conducted to compare the performance and robustness of the
new element to earlier formulations. The results showed that the smart element constructed via the
Neumann–Eshelby tensor of a finite domain provides better numerical accuracy than that constructed
via the Eshelby tensor of an infinite domain. Moreover, it can relieve volumetric locking. Copyright
� 2005 John Wiley & Sons, Ltd.

KEY WORDS: eigenstrain method; Eshelby tensors; feedback finite element; homogenization; variational
multiscale method

1. INTRODUCTION

In Part I of this work [1], the authors constructed a so-called smart element based on the
variational eigenstrain multiscale method. The essential part of the smart element method is its
built-in numerical error feedback control algorithm, which enables the element to self-adjust
and self-adapt discretization errors, and hence achieve better computational accuracy in a coarse
scale computation by homogenizing the discretization error of a given mesh.

In Part I, a smart element is constructed for linear elasticity problems via Zienkiewicz–Zhu
posteriori estimate, which can automatically sense its own discretization error and adjust it.
A main feature of the smart element method is that it provides a systematic and analytical
procedure to construct the element Green’s function, or the related element Eshelby tensor, in
the variational multiscale method. Previously this could only be achieved numerically.
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However, the above proposed element has some limitations, one of which is that it assumes
the contribution of the disturbance field on the elemental boundary is small and negligible. This
assumption simplifies the formulation and allows the use of the Eshelby tensor of the infinite
space in the multiscale formulation. However, the approximation is only appropriate if the
size of an inclusion, or the size of an element, is infinitesimal relative to the size of the total
domain. It may be a bad approximation for a coarse mesh discretization, and it could undermine
the performance of the proposed method. The current study aims to reformulate variational
multiscale eigenstrain formulation without relying on such an approximation, rendering a more
accurate smart element method.

Such a refined multiscale formulation is made possible by exploiting the so-called finite
Eshelby tensors, recently derived by the authors [2, 3]. While the infinite Eshelby tensor fails
to take into account of the prescribed boundary conditions, the finite Eshelby tensor incorporates
these conditions.

The organization of the paper is as follows: Section 2 outlines the inclusion solution in a
finite domain and the recently derived Neumann–Eshelby tensor. In Section 3, we reformulate
the variational eigenstrain multiscale scheme by utilizing the finite Eshelby tensor to find the
fine scale solution. Detailed algorithm for the finite element implementation is also provided.
In Section 4, we discuss the performance of the proposed element in its ability to avoid
volumetric locking through modal analysis. A few numerical examples are demonstrated in
Section 5, followed by the conclusions in Section 6.

2. FINITE ESHELBY TENSOR FOR A CIRCULAR DOMAIN

As mentioned above, the essence of the so-called variational multiscale eigenstrain method
[1, 4] is to utilize micromechanics technique (e.g. Reference [5]) to construct the element
Eshelby tensor that links the coarse scale residual to the fine scale strain. This step is usually
accomplished by utilizing the so-called element Green’s function, which, in most cases, can
only be obtained numerically.

The finite Eshelby tensor can be approximately used as the element Eshelby tensor. The
detailed procedures on how to find the finite Eshelby tensor for a circular inclusion in a circular
RVE under prescribed Dirichlet and Neumann boundaries have been reported in References
[2, 3], respectively.

Consider a circular inclusion, �e, embedded at the centre of a circular representative volume
element (RVE), �c

e, as shown in Figure 1. As a source of inhomogeneity, stiffness contrast
between the inclusion and the matrix will cause a disturbance field inside the RVE. For
prescribed traction (Neumann) boundary, the following holds for the disturbance stress field �′

ij
on the boundary of the RVE:

�′
ij (x)nj (x) = 0 ∀x ∈ ��c

e (1)

where �′
ij is the disturbance stress field.

To account for the misfit of an inclusion, a piecewise constant eigenstrain field is introduced
inside the RVE such that the disturbance stress and strain fields are related as

�′
ij (x) = Cijk�(�

′
ij (x) − �∗ij (x)) ∀x ∈ �c

e (2)
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Figure 1. A circular representative element containing a circular inclusion.

where Cijk� is the elasticity tensor, and

�∗ij (x) =
{

�∗ij ∀x ∈ �e

0 ∀x ∈ �c
e/�e

(3)

The equilibrium equation, �′
ji, j (x) = 0, leads to the following boundary value problem:

Cijk�u
′
k,�j (x) − Cijk��

∗
k�, j (x) = 0 ∀x ∈ �c

e (4)

�′
ij (x)nj (x) = 0 ∀x ∈ ��c

e (5)

It is noted that the eigenstrain distribution is localized within the inclusion, and it is not present
on the RVE boundary.

Using Somigliana’s identity [6] and considering the prescribed traction boundary condition,
the disturbance displacement field may be written as a Fredholm type integral equation for the
disturbance displacement field u′, i.e.

u′
i (y) =

∮
��c

e

Cmnk�u
′
k(x)G∞

im,n(y − x)n�(x) dSx −
∫

�e

Cmnk�G
∞
im,n(y − x)�∗k�(x) d�x (6)

where G∞
mk(y − x) is so-called Green’s function solving the following Navier’s equation for an

infinite elastic domain in a two-dimensional space,

Cijk�G
∞
mk,�j (y − x) + �mi�(y − x) = 0 ∀x, y ∈ R2 (7)

and

G∞
ij (y − x) = 1

8��(1 − �)

{
(yi − xi)(yj − xj )

|y − x|2 − (3 − 4�)�ij ln |y − x|
}

(8)

where � is Poisson’s ratio, � is shear modulus.
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For an RVE of infinite size, boundary integration term in Equation (6) vanishes. Taking
derivative of the remaining domain integral leads to the well-known infinite space Eshelby
tensor S

I,∞
ijmn [7–9], which is a constant inside an elliptical inclusion

�′ij (y) = u′
(i, j)(y) = S

I,∞
ijmn�

∗
mn ∀y ∈ �e (9)

In general, the size of an RVE cannot be assumed infinite. Equation (6) needs to be evaluated
exactly to take into account the influence of boundary condition prescribed if the RVE is finite.
We aim to find the interior/exterior Neumann–Eshelby tensors (S

I,F
ijmn, S

E,F
ijmn) for a finite

domain, analogous to the Eshelby tensor for an infinite space, to characterize the disturbance
strain field in terms of the prescribed eigenstrain for a finite RVE under the Neumann boundary
condition, such that,

�′ij (y) = u′
(i, j)(y) =

⎧⎨
⎩

S
I,F
ijmn(y)�∗mn ∀y ∈ �e

S
E,F
ijmn(y)�∗mn ∀y ∈ �c

e/�e

(10)

For a circular inclusion embedded in a circular RVE under prescribed traction boundary
condition, Equation (6) can be solved analytically on the strength of symmetry and radial
isotropy. As derived in Reference [3], and also briefly outlined in Appendix A, the closed-
form expressions for the Neumann–Eshelby tensors for interior and exterior points are given
as follows:

S
I,F
ijmn(y) = 1

8(1 − �)
{[(4� − 1)(1 − �2

0) − 3�2
0(1 − �2

0)(1 − 4�t2)]�ij�mn

+ [(3 − 4�) + �2
0 + 3�2

0(1 − �2
0)(1 − 2t2)](�im�jn + �in�jm)

+ [12(1 − 2�)�2
0(1 − �2

0)t
2]�ij rmrn} ∀y ∈ �e (11)

S
E,F
ijmn(y) = �2

0

8(1 − �)

{[
−2(1 + 2�)

(
1

t2 + 1

)
+ 12�t2 + �2

0

(
9

t4 + 3 − 12�t2
)]

�ij�mn

+
[

2

t2 + 4 − 6t2 − 3�2
0

(
1

t4 + 1 − 2t2
)]

(�im�jn + �in�jm)

+
[

4

(
1 + 2�

t2 + 3(1 − 2�)t2
)

− 12�2
0

(
1

t4 + (1 − 2�)t2
)]

�ij rmrn

+
[

4

t2

(
1−3�2

0

t2

)]
�mnrirj+

[
8

t2

(
3�2

0

t2 −2

)]
rirj rmrn

}
∀y ∈ �c

e/�e (12)

where ri = yi/|y| is the unit normal vector, t = |y|/H0 is the normalized radial position,
�0 = a/H0 is the ratio of the inclusion and RVE radius. The interior/exterior Neumann–Eshelby
tensor is position dependent and ‘radially isotropic’, in contrast to the well-known infinite space
Eshelby tensor which is constant and isotropic. As a mean of homogenization, we are prompted
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SMART ELEMENT METHOD II 1307

to average the interior Neumann–Eshelby tensor over the circular inclusion, and the average is
found being isotropic.

Using average operator 〈•〉�e
:= (1/�a2)

∫
�e

• d�, it is easy to evaluate

〈t2〉�e
= 1

2 �2
0, 〈t2nmnn〉�e

= 1
4�2

0�mn (13)

and the volume fraction of the inclusion in an RVE is defined as

f := �2
0 = a2

H 2
0

(14)

The average interior Neumann–Eshelby tensor from Equation (11) has the following form:

〈SI,F
ijmn〉�e

= sF
1 E

(1)
ijmn + sF

2 E
(2)
ijmn

= 1 + (1 − 2�)f

2(1 − �)
E

(1)
ijmn + (3 − 4�) + f (4 − f (6 − 3f ))

4(1 − �)
E

(2)
ijmn (15)

in which the tensorial bases E
(1)
ijmn and E

(2)
ijmn span an fourth-order isotropic tensor space, and

they are defined as

E
(1)
ijmn = 1

2 �ij�mn (16)

E
(2)
ijmn = 1

2 (�im�jn + �in�jm − �ij�mn) (17)

One may compare this result with the interior Eshelby tensor of an infinite space, which is
given as

S
I,∞
ijmn = s∞

1 E
(1)
ijmn + s∞

2 E
(2)
ijmn = 1

2(1 − �)
E

(1)
ijmn + 3 − 4�

4(1 − �)
E

(2)
ijmn (18)

Incorporating the prescribed boundary conditions, the (average) Neumann–Eshelby tensor is
enriched by taking into account of the volume fraction of the inclusion f , which serves as a
scalar indicator for the magnitude of inhomogeneity. Compared to the original Eshelby tensor,
the Neumann–Eshelby tensor greatly enhances the description of the disturbance fields. Note
that for the limiting case of dilute distribution (f = 0), the Neumann–Eshelby tensor degenerates
to the original Eshelby tensor (i.e. sF

1 = s∞
1 , and sF

2 = s∞
2 ). While for f = 1, sF

1 = 1 and sF
2 = 1.

Figure 2 plots against f the coefficients of Neumann–Eshelby tensor (sF
1 , sF

2 ) and the original
Eshelby tensor (s∞

1 , s∞
2 ) for � = 0.1. As indicated in the figure, the coefficients for the Es-

helby tensor in the unbounded space do not change as the volume fraction of the second phase
increases, whereas the coefficients of the Neumann–Eshelby tensor change with the volume frac-
tion of the second phase. At both ends (i.e. f = 0 and 1), the Neumann–Eshelby tensor provides
the exact solution. This is because that the Neumann–Eshelby tensor takes into account both
the boundary effect (image force effect) and the effect of the finite size of an RVE. Therefore,
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1308 G. WANG ET AL.

Figure 2. Comparison of SF and S∞: (a) sF
1 vs s∞

1 ; and (b) sF
2 vs s∞

2 .

the accuracy of the prediction based on using the eigenstrain method in terms of the Eshelby
tensor is greatly improved especially in the case of dense inclusion distribution.

3. VARIATIONAL MULTISCALE FORMULATION

3.1. Two-scale formulation

We now reformulate the variational eigenstrain multiscale formulation in the context of linear
elasticity theory.

Consider a simply connected domain, � ∈ Rd (d is the dimension of the physical space). De-
note the body force bi , prescribed displacement u0

i , ∀x ∈ �u, and prescribed traction t0
i , ∀x ∈ �t ,

where �u ∪�t = �� and �u ∩�t = ∅. The variational statement of the boundary value problem
of elastostatics is,

Find u ∈ S such that∫
�

w(i, j)Cijk�u(k,�) d� =
∫

�
wibi d� +

∫
�t

wi t
0
i dS ∀w = wiei ∈V (19)

where Cijk� is the elastic tensor. The generalized Hooke’s law �ij = Cijk��k� is implied for
Cauchy stress �ij and infinitesimal strain �ij = u(i, j). Without elaboration, the trial function
space S and the test function space V are defined here using standard notations in functional
analysis (e.g. References [10, 11]),

S= {u(x)|u(x) ∈ [H 1(�)]d, u = u0 ∀x ∈ �u} (20)

V= {w(x)|w(x) ∈ [H 1(�)]d, w = 0 ∀x ∈ �u} (21)

Define an abstract notation,

a(w, u) : V × S → R, a(w, u) :=
∫

�
(∇ ⊗ w) : C : (∇ ⊗ u) d� (22)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1303–1333



SMART ELEMENT METHOD II 1309

and two linear forms

(w, b)� :V × [H−1(�)]d → R, (w, b)� :=
∫

�
w · b d� (23)

(w, t)�t
:V × [H 1/2(�)]d → R, (w, t)�t

:=
∫

�t

w · t dS (24)

The weak form (19) can be written in the compact form

a(w, u) = (w, b)� + (w, t0)�t
∀w ∈ V (25)

Following Hughes et al. [12], we assume that the exact solution of the weak form (25) can
be decomposed into two solutions with different spatial resolutions, i.e.

u = ū + u′ (26)

w = w̄ + w′ (27)

where ū and u′ represent the coarse scale and fine scale solutions. w̄ and w′ represent coarse
scale and fine scale trial functions, respectively. Accordingly, the trial function space and test
function space can be additively decomposed into a coarse scale space and a fine scale space,
i.e. S= S̄⊕S′. V= V̄⊕V′. Since coarse scale spaces are to be solved numerically, S̄ and
V̄ are finite dimensional spaces. On the other hand, the fine scale is to be sought analytically
so S′ and V′ belong to infinite-dimensional function spaces.

Under two-scale decomposition and consider w and u are independent, the weak form (25)
then becomes

a(w̄, ū) + a(w̄, u′) = (w̄, b)� + (w̄, t0)�t
∀w̄ ∈ V̄ (28)

a(w′, ū) + a(w′, u′) = (w′, b)� + (w′, t0)�t
∀w′ ∈V′ (29)

3.2. Fine scale solution

To obtain fine scale solution analytically, we examine the two scale relation at a typical local
domain, �c

e ⊂ � ∈ R2. The local domain is chosen as a circular shape (superscript ‘c’), and it
is the smallest circle that encompasses the element e (subscript ‘e’), as illustrated in Figure 3.
Within �c

e,

Cijk�u
′
k,�j (x) + Cijk�ūk, �j (x) + bi(x) = 0 ∀x ∈ �c

e (30)

Note that this is not a boundary value problem, because around the boundary of the local
domain, ��c

e, both displacement and traction are not prescribed.
To obtain the fine scale solution in the local domain, the above equilibrium equation is

written in weak form,∫
�c

e

(Cmnk�u
′
k,�n(x) + Cmnk�ūk,�n(x) + bm(x))G∞

im(y − x) d�x = 0 ∀x ∈ �c
e (31)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1303–1333
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Figure 3. Illustration of the concept of equivalent element domain �c
e.

which reduces to the Somigliana identity [6] to express the fine scale solution as the following
integral form:

u′
i (y) =

∫
�c

e

(Cmnk�ūk,�n(x) + bm(x))G∞
im(y − x) d�x

+
∫

��c
e

�′
mn(x)nn(x)G∞

im(y − x) dSx +
∫

��c
e

�
G∞

i

k� (y − x)n�(x)u′
k(x) dSx (32)

where u′
k(x) is the fine scale displacement, �′

mn(x) = Cmnklu
′
k,�(x) is the corresponding fine

scale stress component, G∞
im(y−x) is Green’s function of the Navier equation of linear elasticity

in an infinite domain, �
G∞

i

k� (y − x) = Cmnk�G
∞
im,n(y − x) is the stress of Green’s function, and

n�(x) is the out-normal of the surface ��c
e at position x. The subscript x in the term d�x and

dSx of the above equation denotes that the integral is evaluated with respect to the variable x.
The derivative G∞

im,n(y − x) = (�/�yn)G
∞
im(y − x) = − (�/�xn)G

∞
im(y − x).

In Part I of this work, it is assumed that all the boundary contributions from the fine scale
solution are small, and the following approximations are adopted:∫

��c
e

�′
ij (x)nj (x)G∞

im(y − x) dSx ≈ 0 (33)

∫
��c

e

�
G∞

m

k� (y − x)n�(x)u′
k(x) dSx ≈ 0 (34)

In general, neglecting the boundary contribution can lead to considerable error in numerical
computation. In this paper, we will proceed without such an approximation.

Integrating Equation (32) by parts yields

u′
i (y) =

∫
�c

e

Cmnk�ūk,�(x)G∞
im,n(y − x) d�x +

∫
�c

e

bm(x)G∞
im(y − x) d�x

+
∫

��c
e

�mn(x)nn(x)G∞
im(y − x) dSx +

∫
��c

e

�
G∞

i

k� (y − x)n�(x)u′
k(x) dSx (35)

Note that by definition, �mn(x) = �̄mn(x) + �′
mn(x).
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SMART ELEMENT METHOD II 1311

Consider the weak form of the equilibrium equation, �mn,n(x) + bm(x) = 0, ∀x ∈ �c
e,

∫
�c

e

(�mn,n(x) + bm(x))G∞
im(y − x) d�x = 0 (36)

Integrating Equation (36) by parts yields,

∫
��c

e

�mn(x)nn(x)G∞
im(y−x) dSx+

∫
�c

e

bm(x)G∞
im(y−x) d�x =−

∫
�c

e

�mn(x)G∞
im,n(y−x) d�x

(37)

Substituting Equation (37) into Equation (35), we have

u′
i (y) =

∫
�c

e

Cmnk�(ūk,�(x) − uk,�(x))G∞
im,n(y − x) d�x +

∫
��c

e

�
G∞

i

k� (y − x)n�(x)u′
k(x) dSx

(38)

Involving various approximations, similar expression is also derived in Part I with the term
of boundary integration in absence. We emphasize that Equation (38) is derived in an ex-
act way. While the real displacement gradient uk,�(x) is unknown, we may approximate it by
a posteriori estimate of the coarse scale computation. Here we choose the popular
Zienkiewicz–Zhu a posteriori estimator, i.e.

ū(k, �)(x) − u(k,�)(x) ≈ ū(k, �)(x) − uZ
(k,�)(x) (39)

In the above equation, uZ
(k,�) is the Zienkiewicz–Zhu recovery displacement gradient field,

which will be discussed later. The difference between the Z–Z recovery field and the coarse
scale field may be viewed as the residual due to discretization. Borrowing the terminology
from Micromechanics, (e.g. Reference [5]), we refer such residual strain as the eigenstrain, i.e.

�∗k�(x) := uZ
(k,�)(x) − ū(k, �)(x) (40)

Hence,

u′
i (y) = −

∫
�c

e

Cmnk�G
∞
im,n(y − x)�∗k�(x) d�x +

∫
��c

e

�
G∞

i

k� (y − x)n�(x)u′
k(x) dSx (41)

Equation (41) is identical to the statement of an inclusion embedded in a finite domain
under prescribed Neumann boundary condition, as Equation (6) in Section 2. Heuristically, we
take the finite Neumann–Eshelby tensors S

I,F
ijk� and S

E,F
ijk� for a circular inclusion in a circular

RVE, and rewrite the fine scale solution in a compact form as

�′ij (y) = S
I,F
ijk�(y)�∗k�(y) + ∑

x/∈�e

S
E,F
ijk� (y − x)�∗k�(x) for y ∈ �e (42)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1303–1333
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The above formulation separates the contribution to the fine scale strain into two parts: the
interior part and the exterior parts. Examining the expressions of the finite Neumann–Eshelby
tensors, we find S

E,F
ijk� is of order O(�2

0) and �0<1 for y /∈ �c
e. This clearly shows that the

exterior contribution is of second order which is much smaller than the interior contribution
and decays fast when y is away from �c

e. Based on this fact, we make a further approximation
by neglecting the exterior parts of the fine scale strain, which represents the interaction of
discretization error among different elements.

That leads to the expression:

�′ij (y) = S
I,F
ijk�(y)�∗k�(y) for y ∈ �e (43)

Since no exterior Eshelby tensor is present in the fine scale solution, we simplify the notation
S

I,F
ijk� to Sijk� without causing any confusion. A simplified fine scale solution may be expressed

as follows:

�′ij (y) =
nel∑
e=1

{Sijk�(y)(uZ
(k,�)(y) − ūe

(k, �)(y))�(�e)} (44)

where �(�e) is the characteristic function of the element �e,

�(�e) =
{

1 y ∈ �e

0 y ∈ �c
e/�e

(45)

It worths pointing out that the above formulation has exactly the same format as that in
Part I, with only Sijk� here representing interior Neumann–Eshelby tensor instead of infinite
Eshelby tensor.

3.3. Zienkiewicz–Zhu estimate

C0 continuity of the trial function space results in a discontinuous approximation of the coarse
scale displacement gradient field across elements. More accurate displacement gradient field
can be recovered from the coarse scale solution by various techniques. Following the procedure
outlined in References [13, 14], the recovered displacement gradient field can be interpolated as

uZ
(k,�)(x) =

ned∑
n=1

Nn(x)ũ
Z,n
(k,�) (46)

where ned is the number of nodes in an element; Nn(x) is the same shape function used
for the interpolation of displacements; ũ

Z,n
(k,�) is the nodal value of the displacement gradient.

Superscript n is used here to denote a particular node.
It is further assumed that the nodal displacement gradient ũ

Z,n
(k,�) belongs to a polynomial

expansion of the same order as that in the shape function over the element cluster �E
(n)
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SMART ELEMENT METHOD II 1313

surrounding the node n under consideration,

ũ
p

(k,�)(x) = P(x)a (47)

where a is an unknown vector for the (k, �) component of the strain. For a two-dimensional
triangle element mesh, we may choose the polynomial basis P(x) = [1, x, y], and for two-
dimensional quadrilateral element mesh, we choose P(x) = [1, x, y, xy].

The unknown vector a is determined by minimizing the functional E(a) defined on the
element cluster �(n)

E surrounding the node n under consideration

E(a) =
∫

�(n)
E

(ũ
p

(k, l)(x) − ū(k, l)(x))2 d� =
∫

�(n)
E

(P(x)a − ū(k, l)(x))2 d� (48)

The minimization can be solved in matrix form as

a = A−1b (49)

where

A =
∫

�E
(n)

PTP d� and b =
∫

�(n)
E

PTū(k, l) d� (50)

The nodal displacement gradients are then obtained by substituting appropriate co-ordinates
xn of the node n into the polynomial expansion

ũ
Z,n
(k,�) = ũ

p

(k,�)(x
n) = P(xn)a = Pna (51)

where Pn = P(xn).
Therefore the recovered nodal displacement gradient is

ũ
Z,n
(k, l) = PnA−1

∫
�(n)

E

PTū(k, l) d� =
∫

�(n)
E

PnA−1PTū(k, l) d� (52)

Note that PnA−1PT is a scalar quantity, so the above equation states that the recovered
nodal displacement gradient at a node n is a weighted average of the coarse scale displacement
gradient over the element cluster �(n)

E surrounding node n. One may also observe the non-
local nature of the recovery. Zienkiewicz and Zhu [13, 14] reported superconvergence of the
recovered displacement gradient field for linear elasticity problems, i.e. an O(h2) convergence
for both linear triangle and bilinear quadrilateral elements. So we can approximate the exact
displacement gradient in Equation (38) by the recovered field, since the latter is indeed accurate.

Substituting the above result into Equations (46) and (44), the fine scale solution over element
�e can be expressed analytically in terms of the coarse scale solution as

�′ij (x) = Sijk�(x)

{
ned∑
n=1

Nn(x)

[∫
�(n)

E

PnA−1PTū(k, l) d�

]
− ū(k, �)(x)

}
∀x ∈ �e (53)
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3.4. Modified smart element solution

With the fine scale solution obtained, the coarse scale weak formulation,

a(w̄, ū) + a(w̄, u′) = (w̄, f)� + (w̄, t0)�t
(54)

can be solved. Substituting Equation (53) into Equation (54), we obtained

nel

A
e=1

∫
�e

w̄e
(i, j)Cijkl

{
ūe

(k, �)+Sk�mn

[
ned∑
n=1

Nn(x)

(∫
�(n)

E

PnA−1PTū
ej

(m,n) d�x

)
−ūe

(m,n)(x)

]}
d�x

= nel

A
e=1

{∫
�e

w̄e
i bi d�x +

∫
�t∩��e

w̄e
i t

0
i dSx

}
(55)

Using finite element spatial discretization, we can write (55) in a matrix form:

[K][d] = [R] (56)

The global force vector [R] is the same as that in conventional finite element methods,

[R] = nel

A
e=1

{∫
�e

[N]T
e [b]e d�x +

∫
��e∩�t

[N]T
e [t0]e dSx

}
(57)

where the symbol A is the so-called element assembly operator (see Reference [15]). [N]e and
[B]e are the element shape function matrix and shape function gradient matrix, respectively.
[b]e is the element body force vector and [t0]e is the element traction vector.

Because of non-local nature of the Zeinkiewicz–Zhu recovery procedure, elemental DOFs
in forming the stiffness matrix [K] are coupled through element clusters. With slightly abuse
of notations, the self-adaptive stiffness matrix [K] can be constructed by the following nested
submatrix assemblage procedure:

[K] = ∑
r, s∈�e

∫
�e

[Br ]T[C]
⎧⎨
⎩[Bs] + [S]

⎛
⎝ ∑

t∈�(s)
E

[Ns][B̃st ] − [Bs]
⎞
⎠
⎫⎬
⎭ d�x (58)

where r, s and t are nodal numbers in an element or in a cluster, and [C] and [S] are the matrix
form of the elasticity tensor and the finite Eshelby tensor. [Br ] is the shape function gradient
submatrix for node r . The

∑
in Equation (58) should be understood as assembling the nodal

submatrix (2 × 2 for 2D) to the corresponding global DOFs. Equation (58) represents a nested
assemblage procedure: [B̃st ], the weighted nodal gradient submatrix at node s, is assembled
from each node t in the element cluster �(s)

E surrounding s. [B̃st ] is then interpolated using
shape function matrix [Ns] of s to form the recovery solution inside �e. The difference of
recovery strain and coarse strain is then filtered by the finite Eshelby matrix [S] to form the
fine scale solution. Finally, nodal DOF for nodes r, s are assembled. Algorithm 1 listed the
nested assembling procedure in details. All the matrices in Equation (58) are formed explicitly
for 2D plane strain formulation. Extension of these expressions to 3D formulation is obvious.
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Algorithm 1. Self-adaptive stiffness matrix assemblage

1. Loop each element �e ⊂ �
2. Loop each node r ∈ �e

3. Loop each node s ∈ �e

4. Assemble∫
�e

[Br ]T[C]([ I ] − [S])[Bs] d�x → K(2r − 1 : 2r, 2s − 1 : 2s) (59)

5. Loop each element ej ⊂ �(s)
E (element cluster of node s)

6. Loop each node t ∈ ej

7. Assemble∫
�e

[Br ]T[C][S][Ns][B̃st ] d�x → K(2r − 1 : 2r, 2t − 1 : 2t) (60)

where for plane strain formulation

[Bs] =

⎡
⎢⎢⎣

Ns
,1 0

0 Ns
,2

Ns
,2 Ns

,1

⎤
⎥⎥⎦ , [Ns] =

⎡
⎢⎣

Ns 0 0

0 Ns 0

0 0 Ns

⎤
⎥⎦ , [ I ] =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

Ns is shape function for node s.

[B̃st ] =
∫

�(s)
E

⎡
⎢⎣

	s 0 0

0 	s 0

0 0 	s

⎤
⎥⎦ [Bt ] d�, 	s = P(xs)

[∫
�(s)

E

PTP d�

]−1

PT

P = [1, x, y] for triangle element, P = [1, x, y, xy] for quadrilateral element.

[C] =
⎡
⎢⎣


 + 2G 
 0


 
 + 2G 0

0 0 G

⎤
⎥⎦ , 
 = �E

(1 + �)(1 − 2�)
, G = E

2(1 + �)

[S] = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sF
1 + sF

2 sF
1 − sF

2 0

sF
1 − sF

2 sF
1 + sF

2 0

0 0 sF
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; sF
1 , sF

2 refer to Equation(15).

8. End loop 6.
9. End loop 5.

10. End loop 3.
11. End loop 2.

12. End loop 1.
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4. MODAL ANALYSIS OF THE MODIFIED SMART ELEMENT

In this section, we perform a modal analysis of the modified smart element to examine its
intrinsic property to avoid volumetric locking at the incompressible limit. For the sake of
simplicity, we choose a single square element, and the result will be compared to that of the
standard four-node quadrilateral (Q1) element.

Following the procedures listed in References [16, 17], the eigenvalues and eigenvectors of
the element stiffness matrix are computed for the standard Q1 element and the modified smart
element, respectively. Please note that in the single element case, the element cluster at each
node only includes the featured element itself. There will still be homogenization effect. This
can be seen from Equation (58): in this case, the element cluster, �(s)

E , only contains one
element, nonetheless, the overall stiffness matrix is modified. Both of the stiffness matrices
of the Q1 and the modified smart element are 8 × 8 for a quadrilateral setting. The eight
eigenvectors of the stiffness matrices correspond to eight modes—three rigid body modes
(Figure 4) for translations and rotation, three constant strain modes for the volumetric, stretch
and shear modes (Figure 5), and two hourglass modes (Figure 6) representing element bending.

To study the locking effect, the eigenvalues are plotted against different Poisson’s ratio �.
As shown in Figure 7, the eigenvalues of Q1 element and modified smart element matrices
appear to be very similar for the constant strain modes. Specifically, the eigenvalues associated
with the stretch mode and the shear mode stay finite as � → 0.5, so no volumetric locking
will occur for this two modes. On the other hand, the eigenvalues associated with the

Figure 4. Rigid body modes: (a) x-direction translation; (b) y-direction translation; and (c) rotation.

Figure 5. Constant strain modes: (a) volumetric; (b) stretch; and (c) shear.
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Figure 6. Hourglass modes: (a) bending I; and (b) bending II.

Figure 7. Comparison of constant strain eigenvalues: (a) volumetric mode;
(b) stretch mode; and (c) shear mode.

Figure 8. Comparison of the hourglass eigenvalues: (a) bending I; (b) bending II.

volumetric mode both go to infinity as � → 0.5, which means at the incompressible limit, an
infinitely large force is needed to induce the displacements of this mode. This phenomenon
is expected for the volumetric mode to preserve volume at the incompressible limit and is
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refereed as physical locking. So no volumetric locking occurs in the constant strain modes for
both elements.

Shown in Figure 8 are the eigenvalues of the two hourglass modes against �. When � →
0.5, the hourglass eigenvalues of Q1 element tend to infinity, which is referred as non-physical
locking and is the reason for its volumetric locking phenomenon at the incompressible limit.
On the other hand, the hourglass eigenvalues of smart element stay finite as � → 0.5. So
with the smart element approximation, bending can occur at the incompressible limit, i.e. the
modified smart element is free of volumetric locking.

5. NUMERICAL EXAMPLES

To demonstrate the improved performance of the modified smart element, three numerical
examples have been carried out by using the modified formulation: the cantilever beam problem,
the problem of a plate with a hole, and the L-shaped plate problem. Numerical solutions from
the conventional FEM method, the original smart element and the modified smart element
method are compared in each example.

To quantify the accuracy of the numerical solutions and the rate of convergence, we used
the error L2 norm as defined in Reference [18],

�L2
= ‖e‖L2

‖u‖L2

(61)

where

‖e‖L2
=
[∫

�
(u − uh)T(u − uh) d�

]1/2

(62)

‖u‖L2 =
[∫

�
uTu d�

]1/2

(63)

with u the exact solution and uh the numerical solution.

5.1. Cantilever beam

The exact solution for the bending problem of a cantilever beam subjected to end loading
(Figure 9) is given by Timoshenko and Goodier [19],

ux = − Py

6ĒI

(
y − D

2

)
[3x(2L − x) + (2 + �̄)y(y − D)] (64)

uy = P

6ĒI

[
x2(3L − x) + 3�̄(L − x)

(
y − D

2

)2
+ 4 + 5�̄

4
D2x

]
(65)

where

I = D3

12
(66)
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Figure 9. A cantilever beam with: (a) quadrilateral mesh; and (b) triangle mesh.

Ē =
{

E for plane stress

E/(1 − �2) for plane strain
(67)

�̄ =
{

� for plane stress

�/(1 − �) for plane strain
(68)

The corresponding stress field is

�xx(x, y) = −P

I
(L − x)

(
y − D

2

)
(69)

�yy(x, y) = 0 (70)

�xy(x, y) = Py

2I
(y − D) (71)

The problem has been solved at the nearly-incompressible limit for plane strain case, with
Young’s modulus E = 1000, Poisson’s ratio � = 0.499, and zero body force, i.e. bm = 0.0. The
dimensions of the beam are: L = 8.0 and D = 1.0. Figure 9 shows examples of structured
quadrilateral and triangular meshes used in the analysis. In the computation, exact displacement
solution is prescribed on x = 0 beam edge, while exact traction solution is applied along the
edge x = L. The rest of the boundary is traction free.

The numerical results obtained via modified smart element method are compared to the
exact solution, the conventional finite element solution and original smart element solution in
Figure 10. At the incompressible limit, conventional FEM solution locks as expected. While
both smart elements show point-wise improvement, and the modified formulation has improved
accuracy over the original scheme. In term of the overall error L2 norm, Figures 10(c) and (d)
show that the convergence rate of the modified smart element is faster than the original
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Figure 10. Comparison of modified smart element results to conventional FEM solution, smart element
solution and the exact solution: (a) vertical displacement along centre line y = 0, quadrilateral element
mesh; (b) vertical displacement along centre line y = 0, triangle element mesh; (c) log–log convergence
plot in term of the L2 norm of the error, quadrilateral element; and (d) log–log convergence plot in

term of the L2 norm of the error, triangle element.

formulation, and the rate of convergence is comparable with the selective reduced integration
scheme.

For this problem, we have compared the computational cost of the proposed method with
the enhanced strain method [20], which has been proven to handle incompressibility well. Both
codes are written in MATLAB and run in a PC with a Pentium-III processor. The results are
summarized in Table I. We can see the proposed method is computationally more expensive
than the enhanced strain method.
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Table I. Comparison of computational cost, with
quadrilateral elements.

CPU time (s) CPU time (s)
Method (14 elements) (60 elements)

Smart element 1.3180 7.9070
Enhanced strain 0.3810 2.4030

5.2. A plate with a hole

A finite square plate with a hole at the centre is subjected to a unit uniaxial tension along
x-direction. The exact displacement solution is given as

u1(r, �) = a

8�

[
r

a
( + 1) cos � + 2

a

r
((1 + ) cos � + cos 3�) − 2

a3

r3 cos 3�

]
(72)

u2(r, �) = a

8�

[
r

a
( − 3) sin � + 2

a

r
((1 − ) sin � + sin 3�) − 2

a3

r3 sin 3�

]
(73)

where � is the shear modulus and  (the Kolosov constant) is defined as

 =

⎧⎪⎨
⎪⎩

3 − 4� for plane strain

3 − �

1 + �
for plane stress

(74)

The corresponding stress field is

�11(r, �) = 1 − a2

r2

(
3

2
cos 2� + cos 4�

)
+ 3

2

a4

r4 cos 4� (75)

�22(r, �) = −a2

r2

(
1

2
cos 2� − cos 4�

)
− 3

2

a4

r4 cos 4� (76)

�12(r, �) = −a2

r2

(
1

2
sin 2� + sin 4�

)
+ 3

2

a4

r4 sin 4� (77)

We solve the problem for the plane strain case with Young’s modulus E = 1, Poisson’s ratio
� = 0.499, and zero body force, i.e. bm = 0.0. Due to symmetry only one quadrant of the
plate is considered for the analysis. The dimensions of one quarter of the plate and prescribed
traction/displacement boundary conditions are illustrated in Figure 11(a). Note that the traction
boundary condition is imposed along x = (a + D) and y = (a + D) by using the exact solution
(75)–(77). The rest of the boundary is traction free. Figures 11(b) and (c) show two sample
meshes used in computations.
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Figure 11. A plate with a hole: (a) model dimension and boundary
conditions; (b) and (c) mesh examples.

Figure 12. Convergence plots for the plate with a hole problem: (a) quadrilateral
element; and (b) triangle element.

We use the smart element formulation to solve the problem under the nearly incompressible
condition (� → 0.5). It is well-known that the incompressibility will lead to volumetric locking
in conventional FEM solution. We are interested in examining the performance of the smart
element method under such condition, and carried out the calculations using � = 0.499.

Figures 12(a) and (b) show the convergence results. The volumetric locking in conventional
FEM solution is clearly evident. The smart element solution, however, seems to be relatively
unaffected by the incompressibility restriction, as the results show good overall convergence
rate.
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Figure 13. An L-shaped plate: (a) quadrilateral mesh; and (b) deformed meshes.

5.3. L-shaped plate

The stress field in an L-shaped plane-elastic body loaded by mode I symmetric loading is
singular in the corner (e.g. Reference [21]). Convergence study of this example via p- and
h-refinement of conventional finite element has been presented in Reference [22]. Here we will
compare the performances of bilinear quadrilateral element and smart elements.

As shown in Figure 13(a), traction is prescribed along the exterior edges A-B-C-D-E of the
plate according to the following exact stress solution:

�x = A1
1r

1−1[(2 − Q1(
1 + 1)) cos(
1 − 1)� − (
1 − 1) cos(
1 − 3)�] (78)

�y = A1
1r

1−1[(2 + Q1(
1 + 1)) cos(
1 − 1)� + (
1 − 1) cos(
1 − 3)�] (79)

�xy = A1
1r

1−1[(
1 − 1) sin(
1 − 3)� + Q1(
1 + 1) sin(
1 − 1)�] (80)

where A1 is a generalized stress-intensity factor (an arbitrary number), 
1 = 0.544483737,
Q1 = 0.543075579. r and � serve as polar co-ordinates. It is obvious that stresses are singular
as r → 0.

Exact solution of corresponding displacement field is known as

ux = A1

2�
r
1[( − Q1(
1 + 1)) cos 
� − 
1 cos(
1 − 2)�] (81)

uy = A1

2�
r
1[( + Q1(
1 + 1)) sin 
� + 
1 sin(
1 − 2)�] (82)
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Figure 14. L-shaped plate: (a) element-wise comparison of L2 norm of the error; and (b) log–log
convergence plot in terms of the L2 norm of the error.

where � = E/2(1+�) is the shear modulus,  = 3−4�, � is Poisson’s ratio. We choose � = 0.3,
A1 = 1, a = 1, E = 10 is the example.

Figure 13(b) shows the deformed meshes computed by conventional finite element and
modified smart element against the exact displacement field. Element-wise L2 error distributions
are compared among conventional finite element, original smart element, and modified smart
element in Figure 14(a), where element numbers are illustrated in Figure 13(a). One may find
that there is obvious improvement in element-wise errors, if the smart element is used. In
particular, the modified solution tends to smooth the error distribution further with fine scale
boundary condition properly integrated. Uniformly refining the mesh, convergence rates for all
these methods are shown in Figure 14(b). Again, modified smart element shows improved rate
of convergence.

It is worth noticing the deformed mesh of modified smart element is slightly zigzagged along
edge O-A in Figure 13(b). This might arise from the fact that the fine scale is under-integrated
using 2 × 2 Gaussian integration. While not directly addressed here, it appears that special
treatment may be needed for elements at the solid boundary.

6. CONCLUDING REMARKS

In this work, the variational eigenstrain multiscale formulation is revised to incorporate fine
scale contribution on the element boundary. By combining Hughes’ variational multiscale de-
composition, the Neumann–Eshelby tensor for a finite domain, and a simple posteriori error
estimator, a self-adaptive feedback mechanism is proposed to control the errors in a Galerkin
weak formulation. The resulting element formulation produced a significant improvement in the
accuracy of a coarse scale numerical solution. The modified smart element shows consistent
improvement over the original smart element formulation as well as conventional finite element
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methods for all the numerical examples performed. Particularly, the numerical pathologies ex-
isting in traditional finite element methods, such as volumetric locking, have been overcome
by using smart elements. This superior property is explained by the modal analysis.

The smart elements reported in this paper and in Part I of this work are only formulated
for linear elasticity problems. Recently, Liu and Li [23] has successfully extended the method
to the Stokes flow problem. We believe that the method presented here can also be extended
to solve elasto-plastic problems by applying the procedures to the rate formulation, or each
linearized incremental step of an updated Lagrangian formualation.

APPENDIX A: DERIVATION OF NEUMANN–ESHELBY TENSOR

In this appendix, we find the fine scale displacement field u′ by solving the following Fredholm
type integral equation:

u′
m(y) =

∮
��

Cijk�u
′
k(x)G∞

im,j (y − x)n�(x) dSx − �∗k�

∫
�e

Cijk�G
∞
im,j (y − x) d�x (A1)

which will eventually lead to the finding of Neumann–Eshelby tensor for the finite RVE.
Green’s function for two-dimensional elasto-static problem is

G∞
ij (y − x) = 1

8��(1 − �)
{�i�j − (3 − 4�)�ij ln R} (A2)

where � is Poisson’s ratio, � is the shear modulus, and �i = (yi − xi)/R, and R = |y − x|.
As depicted in Figure 1, the circular RVE has radius H0, with a circular inclusion of

radius a in the centre. The ratio of inclusion and RVE is characterized by the dimensionless
parameter �0 = a/H0. The normalized radial position for an arbitrary vector y ∈ �c

e is denoted
as t = |y|/H0, and its circumference variation is characterized by a unit normal vector r defined
as r(y) =: y/|y|. For clarity, we reserve the symbol n(x) =: x/|x| if x ∈ ��c

e to emphasis its
position on the RVE boundary. The argument x or y may be dropped in the following if no
confusion would occur.

A new third-order tensor, U
•,F
imn(x), is introduced to characterize the disturbance displacement

field in terms of the prescribed eigenstrain

u′
i (y) =

⎧⎨
⎩

U
I,F
imn(y) �∗mn ∀y ∈ �e

U
E,F
imn (y) �∗mn ∀y ∈ �c

e/�e

(A3)

such that the expected strain field solution can be obtained via differentiation,

�′ij (y) = 1
2 (u′

i, j (y) + u′
j, i(y))

=
⎧⎨
⎩

1
2 (U

I,F
imn,j (y) + U

I,F
jmn, i(y))�∗mn = S

I,F
ijmn(y) �∗mn ∀y ∈ �e

1
2 (U

E,F
imn,j (y) + U

E,F
jmn, i(y))�∗mn = S

E,F
ijmn(y)�∗mn ∀y ∈ �c

e/�e

(A4)

Based on the observation that the Eshelby tensors for a circular inclusion in a circular RVE
are ‘radial isotropic fourth-order tensors’, i.e. they can be decomposed into a radial basis
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and a circumference basis. Using the matrix product of two one-dimensional (1D) arrays, we
may express the components of the fourth-order interior and exterior Eshelby tensors in the
following compact form:

S
I,F
ijmn(y) = �T

ijmn(r)S
I,F (t) (A5)

S
E,F
ijmn(y) = �T

ijmn(r)S
E,F (t) (A6)

where the 1D coefficient arrays, SI,F (t), SE,F (t), and the circumference basis �ijmn(r) are
specified as

SI,F (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S
I,F
1 (t)

S
I,F
2 (t)

S
I,F
3 (t)

S
I,F
4 (t)

S
I,F
5 (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, SE,F (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S
E,F
1 (t)

S
E,F
2 (t)

S
E,F
3 (t)

S
E,F
4 (t)

S
E,F
5 (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �ijmn(r) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ij�mn

�im�jn + �in�jm

�ij rmrn

rirj�mn

rirj rmrn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

Similarly, the tensor U
•,F
imn(x) is a ‘third-order radial isotropic tensor’, and it can only admit

the following form, which may be represented by the inner product of two 1D arrays,

U
I,F
imn(x) = �T

imn(r)U
I,F (t) ∀x ∈ �e (A8)

U
E,F
imn (x) = �T

imn(r)U
E,F (t) ∀x ∈ �c

e/�e (A9)

where the 1D arrays are defined as

UI,F (t) =

⎡
⎢⎢⎢⎢⎣

U
I,F
1 (t)

U
I,F
2 (t)

U
I,F
3 (t)

⎤
⎥⎥⎥⎥⎦ , UE,F (t) =

⎡
⎢⎢⎢⎢⎣

U
E,F
1 (t)

U
E,F
2 (t)

U
E,F
3 (t)

⎤
⎥⎥⎥⎥⎦ and �imn(r) =

⎡
⎢⎢⎢⎣

ri�mn

rm�in + rn�im

rirmrn

⎤
⎥⎥⎥⎦
(A10)

So the disturbance displacement field decomposes into a radial and circumference basis:

u′
i (y) = u′

i (t, r) = �∗mn�
T
imn(r)U

I,F (t) ∀y ∈ �e (A11)

u′
i (y) = u′

i (t, r) = �∗mn�
T
imn(r)U

E,F (t) ∀y ∈ �c
e/�e (A12)

Further, kinematic relation (A4) yields the following differential mapping that uniquely deter-
mines the radialbasis for the strain and the displacement fields via

SI,F (t) =D(t)UI,F (t) and SE,F (t) =D(t)UE,F (t) (A13)
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where D(t) is a differential operator defined in matrix form as

D(t) = 1

H0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

t

1

t
− d

dt
−1

t

0
1

2

(
1

t
+ d

dt

)
1

2t

0 −1

t
+ d

dt

2

t

−1

t
+ d

dt
−1

t
+ d

dt

1

t

0 0 −3

t
+ d

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3×5

(A14)

To solve the Fredholm integral equation (A1) in the form of (A11) and (A12), we substitute

u′
k(y) = �∗mn�

T
kmn(nx)UE,F (1) ∀y ∈ ��c

e (A15)

into (A1), which yields

u′
i (y) = −�∗mn

∫
�e

CpqmnG
∞
pi,q(y − x) d�x

+ �∗mn

∮
��

Cpqk�G
∞
pi,q(y − x)�T

kmn(nx)UE,F (1)n�(x) dSx (A16)

Depending on whether y is inside or outside the inclusion, the domain integral in (A16) has
two different solutions. Denote the domain integral

�∗mn�
T
imn(r)U

I,∞(t) = −�∗mn

∫
�e

CpqmnG
∞
pi,q(y − x) d�x ∀y ∈ �e (A17)

�∗mn�
T
imn(r)U

E,∞(t) = −�∗mn

∫
�e

CpqmnG
∞
pi,q(y − x) d�x ∀y ∈ �c

e/�e (A18)

and the boundary integral

�∗mn�
T
imn(r)U

B(t) = �∗mn

∮
��c

e

Cpqk�G
∞
pi,q(y − x)�T

kmn(nx)UE,F (1)n�(x) dSx ∀y ∈ �c
e (A19)

Substituting (A17)–(A19) into (A16) and eliminating the circumference basis, one can find the
following pair of algebraic equations for the radial coefficients,

UI,F (t) = UI,∞(t) + UB(t), 0 � t � a/H0 (A20)

UE,F (t) = UE,∞(t) + UB(t), a/H0 � t � 1 (A21)
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Closed form expressions for UI,∞(t) and UE,∞(t) can be obtained by directly evaluating the
domain integrals (A17) and (A18). UI,∞(t) and UE,∞(t) are obtained as followings:

UI,∞(t) = H0

8(1 − �)

⎡
⎢⎢⎢⎣

(4� − 1)t

(3 − 4�)t

0

⎤
⎥⎥⎥⎦ , UE,∞(t) = �2

0H0

8(1 − �)t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4� − 2 + �2
0

t2

2 − 4� + �2
0

t2

4

(
1 − �2

0

t2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A22)

It is noted that, when subjected to the differential operator (A14), the Eshelby tensor for an
infinite RVE is recovered. i.e.

SI,∞(t) =D(t)UI,∞(t) and SE,∞(t) =D(t)UE,∞(t) (A23)

Boundary contribution UB(t) can be evaluated directly from (A19) as

�∗mn�
T
imn(r)U

B(t) = �∗mn

∮
��

Himn(x, y) dSx (A24)

where

Himn = Cpqk�G
∞
pi,q(y − x)�T

kmn(nx)UE,F (1)n�(x)

= 1

4�(1 − �)R
{UE,F

1 (1)[(1 − 2�)(2ninp�p�mn − �i�mn) + 2�inp�pnq�q�mn]

+ U
E,F
2 (1)[(1 − 2�)(nmnp�p�in + nnnp�p�im + ninm�n + ninn�m

− 2nmnn�i) + 2nm�i�nnp�p + 2nn�i�mnp�p]

+ U
E,F
3 (1)[(1 − 2�)(2ninmnn�pnp − nmnn�i) + 2nmnn�inp�pnq�q ]} (A25)

Integral (A24) can be integrated exactly. After some algebraic manipulation, the final result
is expressed in compact matrix form as

UB(t) = K(t) UE,F (1) (A26)

where

K(t) = 1

4(1 − �)

⎡
⎢⎢⎢⎢⎣

2(1 − 2�)t (1 − 4�)t −2�t + �t3

0 t t + 2� − 3

2
t3

0 0 (3 − 4�)t3

⎤
⎥⎥⎥⎥⎦ (A27)
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The term, UB(t), represents the boundary correction due to a finite RVE in the disturbance
displacement field. This reduces the system of Equations (A20) and (A21) to

UI,F (t) = UI,∞(t) + K(t)UE,F (1), 0 � t � a/H0 (A28)

UE,F (t) = UE,∞(t) + K(t)UE,F (1), a/H0 � t < 1 (A29)

Assume that UI,F (t) and UE,F (t) depend on t continuously. Let t → 1. One can solve for
UE,F (1) by letting t = 1 in (A29), i.e.

UE,F (1) = [1 − K(1)]−1UE,∞(1) (A30)

which gives

UE,F (1) = H0

⎡
⎢⎢⎢⎣

1
2�2

0(�
2
0 − 1)

1
2�4

0

2�2
0(1 − �2

0)

⎤
⎥⎥⎥⎦ (A31)

Substituting (A31) back into (A28) and (A29), one can first find,

UB(t) = �2
0H0

8(1 − �)

⎡
⎢⎢⎢⎣

(3�2
0 − 4� − 2)t + 4�(1 − �2

0)t
3

(4 − 3�2
0)t + 2(2� − 3)(1 − �2

0)t
3

4(3 − 4�)(1 − �2
0)t

3

⎤
⎥⎥⎥⎦ (A32)

and subsequently one can solve for both UI,F (t) and UE,F (t), which are the radial basis for
the interior and exterior disturbance displacement fields in a finite domain,

UI,F (t) = H0

8(1 − �)

⎡
⎢⎢⎣

(4� − 1)t

(3 − 4�)t

0

⎤
⎥⎥⎦

+ �2
0H0

8(1 − �)

⎡
⎢⎢⎢⎢⎣

(3�2
0 − 4� − 2)t + 4�(1 − �2

0)t
3

(4 − 3�2
0)t + 2(2� − 3)(1 − �2

0)t
3

4(3 − 4�)(1 − �2
0)t

3

⎤
⎥⎥⎥⎥⎦ 0 �t � a/H0 (A33)

UE,F (t) = �2
0H0

8(1 − �)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4� − 2

t
+ �2

0

t3

2 − 4�

t
+ �2

0

t3

4

t
− 4

�2
0

t3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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+ �2
0H0

8(1 − �)

⎡
⎢⎢⎢⎣

(3�2
0 − 4� − 2)t + 4�(1 − �2

0)t
3

(4 − 3�2
0)t + 2(2� − 3)(1 − �2

0)t
3

4(3 − 4�)(1 − �2
0)t

3

⎤
⎥⎥⎥⎦ a/H0 � t � 1 (A34)

The radial coefficients for the Eshelby tensor can be obtained by applying differentiation
operator (A14) to Equations (A33) and (A34),

SI,F (t) =D(t)UI,F (t) = 1

8(1 − �)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4� − 1

3 − 4�

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ �2
0

8(1 − �)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(1 + 2�) + 3�2
0 + 12(1 − �2

0)�t
2

4 − 3�2
0 − 6(1 − �2

0)t
2

12(1 − 2�)(1 − �2
0)t

2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A35)

SE,F (t) =D(t)UE,F (t)

= �2
0

8(1 − �)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(1 + 2�)

t2 + 9�2
0

t4

2

t2 − 3�2
0

t4

4(1 + 2�)

t2 − 12�2
0

t4

4

t2 − 12�2
0

t4

−16

t2 + 24�2
0

t4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ �2
0

8(1 − �)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(1 + 2�) + 3�2
0 + 12(1 − �2

0)�t
2

4 − 3�2
0 − 6(1 − �2

0)t
2

12(1 − 2�)(1 − �2
0)t

2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A36)

The exact expressions for the Eshelby tensors for a circular inclusion embedded in a circular
RVE under prescribed traction boundary condition are given as follows:

S
I,F
ijmn(y) = 1

8(1 − �)
{[(4� − 1)(1 − �2

0) − 3�2
0(1 − �2

0)(1 − 4�t2)]�ij�mn

+ [(3 − 4�) + �2
0 + 3�2

0(1 − �2
0)(1 − 2t2)](�im�jn + �in�jm)

+ [12(1 − 2�)�2
0(1 − �2

0)t
2]�ij rmrn} ∀y ∈ �e (A37)
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S
E,F
ijmn(y) = �2

0

8(1 − �)

{[
−2(1 + 2�)

(
1

t2 + 1

)
+ 12�t2 + �2

0

(
9

t4 + 3 − 12�t2
)]

�ij�mn

+
[

2

t2 + 4 − 6t2 − 3�2
0

(
1

t4 + 1 − 2t2
)]

(�im�jn + �in�jm)

+
[

4

(
1 + 2�

t2 + 3(1 − 2�)t2
)

− 12�2
0

(
1

t4 + (1 − 2�)t2
)]

�ij rmrn

+
[

4

t2

(
1 − 3�2

0

t2

)]
�mnrirj

+
[

8

t2

(
3�2

0

t2 − 2

)]
rirj rmrn

}
∀y ∈ �c

e/�e (A38)

Expressions (A33), (A34), (A37), and (A38) can be re-cast into a unified form,

SF (t) = S∞(t) + SB(t), 0 � t � 1 (A39)

UF (t) = U∞(t) + UB(t), 0 � t � 1 (A40)

We emphasize that the solution in a finite RVE is essentially composed of the infinite domain
solution and the boundary correction.

The induced disturbance traction field on a set of successive concentric circular surfaces can
be determined using

t ′i (y) = �′
ji(y) rj (y) (A41)

In view of Eshelby tensors (A37)–(A38), the disturbance traction field can be specified as

t ′i (y) =
⎧⎨
⎩

rj (y)Cijk�(S
I,F
k�mn(y) − I

(4s)
k�mn)�

∗
mn ∀y ∈ �e

rj (y)Cijk�S
E,F
k�mn(x)�∗mn ∀y ∈ �c

e/�e

(A42)

where I
(4s)
k�mn is the fourth-order symmetric identity tensor. It is noted that it also falls into our

new category of a fourth-order radial isotropic tensor.
Simple calculation reveals that t ′i (y) can also be characterized using a third-order radial

isotropic tensor Timn(y), which can be further decomposed into a radial and circumference
basis such that

t ′i (y) =
⎧⎨
⎩

T
I,F
imn(r)�

∗
mn = �T

imn(r)T
I,F (t)�∗mn ∀y ∈ �e

T
E,F
imn (r)�∗mn = �T

imn(n)TE,F (t)�∗mn ∀y ∈ �c
e/�e

(A43)
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with the radial basis being determined by

TI,F (t) = �

1 − 2�

⎡
⎢⎢⎢⎣

2S
I,F
1 (t) + 4�SI,F

2 (t) + 2(1 − �)SI,F
4 (t) − 2�

2(1 − 2�)SI,F
2 (t) − (1 − 2�)

2S
I,F
3 (t) + 2(1 − �)SI,F

5 (t)

⎤
⎥⎥⎥⎦ 0 � t � a/H0 (A44)

TE,F (t) = �

1 − 2�

⎡
⎢⎢⎢⎣

2S
E,F
1 (t) + 4�SE,F

2 (t) + 2(1 − �)SE,F
4 (t)

2(1 − 2�)SE,F
2 (t)

2S
E,F
3 (t) + 2(1 − �)SE,F

5 (t)

⎤
⎥⎥⎥⎦ a/H0 � t � 1 (A45)

It is readily verified that when t = 1,

TE,F (1) =

⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦ (A46)

This means that the traction vector vanishes at the boundary of the RVE, i.e. t ′i (y) ≡ 0 for
∀y ∈ ��c

e. This verifies that the prescribed Neumann boundary condition is exactly satisfied by
the Neumann–Eshelby solution obtained.
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