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Abstract
Purpose – This study aims to develop an efficient algorithm for generation of conforming mesh for seepage
analysis through 3D discrete fracture networks (DFN).
Design/methodology/approach – The algorithm is developed based on a refined conforming Delaunay
triangulation scheme, which is then validated using analytical solutions. The algorithm is well able to meet
the challenge of meshing complex geometry of DFNs.
Findings – A series of sensitivity analysis have been performed to evaluate the effect of meshing
parameters on steady state solution of Darcy flow using a finite element scheme. The results show that an
optimized minimum internal angle of meshing elements should be predetermined to guarantee termination of
the algorithm.
Originality/value – The developed algorithm is computationally efficient, fast and is of low cost.
Furthermore, it never changes the geometrical structure and connectivity pattern of the DFN.

Keywords FEM, Triangulation, Conforming mesh, Delaunay, DFN, Meshing

Paper type Research paper

1. Introduction
Numerical simulation of fluid flow through fractured rocks plays a vital role in many
applications in energy industry, such as hydrocarbon reservoirs, geothermal resources,
underground fluid storage, groundwater aquifers, nuclear waste disposal and clearance of
contaminated areas in the fractured rocks (Wang et al., 2001; Ren et al., 2017; Xue, 2017).
Generally, numerical models of the fluid flow through fractured rocks can be classified into
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three subcategories: the equivalent continuum model, the double-medium model and the
discrete fracture network (DFN) (Karimi-Fard and Firoozabadi, 2003; Parashar and Reeves,
2012; Zhang and Yin, 2014; Xie andWang, 2014; Ye et al., 2016; Mohajerani et al., 2017). The
DFN is one of the most widely used methods to simulate fluid flow through fractured rocks.
In this method, the effect of discrete discontinuities on the fluid flow is explicitly considered
with the assumption of impermeability of rock matrix.

The foundation of DFN method is partition of a n-dimensional domain to a n-1-
dimensional statistically distributed set of fractures. The partition has a significant effect on
computational cost of the flow models, particularly for the three-dimensional models. The
fracture locations are generated in a desired domain using a statistical process, and the
geometrical parameters of the fractures, such as the orientation (dip and dip direction), and
length are modeled using the probability density functions (PDF) based on sampling
methods (Jin et al., 2003; Gallager, 2012). Geological data directly mapped from wellbores,
surface outcrops, trenches using one of the mapping methods (the scanline, mapping
window and circular estimator) and geophysical mappings are the most important part of
DFN modeling (Wu et al., 2011). The shape of the fractures is a hypothetical parameter and
often simulated by circles, ellipses and polygons in the various research works (Dershowitz
and Einstein, 1988; Han et al., 2016). Hydrological parameters such as aperture and
roughness of the fracture wall surfaces may be estimated either by laboratory tests or by
using in situ field tests. These parameters can be assigned to the location of fractures as a
constant value or a PDF (Tsang, 1992).

In the literature, various numerical solution schemes have been used to solve the fluid flow
problem in the fractured rocks. In this regard, the finite element method (FEM) (Karimi-Fard
and Firoozabadi, 2003; Moradi et al., 2017), finite volume method (FVM) (Koudina et al., 1998),
boundary element method (BEM) (Olson, 1993), finite difference method (FDM) (Rutqvist et al.,
2013), discontinuous deformation analysis (DDA) (Jing et al., 2001) and hybrid methods
(Elsworth, 1986) have been given considerable attention. In general, such these methods
require a high-quality meshing framework to solve the flowwith adequate precision.

Unfortunately, there are some serious challenges to discrete a DFN model into a high-
quality mesh. On one hand, the structured meshing is not convenient to represent complex
three-dimensional geometry of a fractured medium and on the other hand, a high-quality
unstructured meshing must be able to meet particular geometrical requirements (Mustapha
et al., 2011). As shown in Figure 1, a network of statistically generated fractures can include

Figure 1.
Realization of DFN
generated by the

developed code in the
research
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fractures’ length spanning over several orders of magnitude. To solve the flow field in small
fractures, they must have small enough meshing elements compatible to their length. A
good mesh requires a balance between two sides: its elements should not be too small to
avoid significant increase in computational costs, yet, they should not be too large to
deteriorate the numerical precision. Also, due to complex structure of a three-dimensional
DFN with arbitrary shape and spatial position of fractures, challenges are encountered to
mesh parallel or crossover fractures. If the distance between parallel intersections, or the
angle between crossover intersections, is too small, low-quality meshing may be generated.
The meshing elements may lead to an ill-conditioned discretization matrix and cause
divergence in numerical solution (Hyman et al., 2014).

To date, conforming and non-conforming meshing methods have been developed
(Hautefeuille et al., 2009; Mackerle, 2001). The conforming mesh refers to the case that nodes
on the intersection line are unique and common to these two intersecting fractures. On the
other hand, the non-conforming mesh discretizes each fracture plane independently.
Although, the non-confirming mesh is more flexible, additional system of equations has to
be implemented to ensure continuity of the hydraulic head and flow rate on the intersection
of fractures, therefore, the solution schememay be time-consuming (Hyman et al., 2014).

Koudina et al. (1998) provided one example of a conforming meshing algorithm for DFN
based on the advancing front technique. An alternative algorithm based on the paving
method was proposed by Wang et al. (2016). Although, these methods are used successfully
in simple networks of fractures, they cannot well meet the aforementioned challenges when
the number of fractures increases and the geometrical structure of DFN becomes more
complex. The challenge was partially addressed by Maryška et al. (2005). In their method,
however, geometrical structure of DFN changes during meshing. The intersections of
fractures are changed with length variation and displacement. It can change the
connectivity pattern of fractures; therefore, it seems that the mesh is no longer a faithful
representative of geometrical structure of the DFN.

Two similar meshing methods were also suggested by Mustapha and Mustapha (2007)
and Erhel et al. (2009). Although, these methods can generate a high-quality mesh, they are
not able to model intersection of more than two fractures. The method was generalized later
to improve meshing quality. Another generalization of these methods was developed by
Karimi-fard et al. (2003), in which a conforming mesh is generated by altering the geometric
structures of the DFM through adding, moving, deleting and merging the vertices of
meshing triangles. Method proposed by Hyman et al. (2014) uses the feature rejection
algorithm (FRAM) to prevent creation of inconvenient fractures during generating DFN.
However, the geometry of the network and the connectivity pattern of fractures are altered.
Li et al. (2014) provided a method to generate a conforming mesh for DFN in which using
Persson and Strang meshing generator, the location of vertices of triangles are determined
with solving a system of equations of force balance in trusses and results in a high-quality
mesh. This method is not optimal due to high computational cost and is not able to meet the
meshing challenges completely. Adaptive meshing could be implemented to refine the mesh
locally based on solution variables, for example, Hernández et al. (1997). Zhang (2015)
developed another interesting algorithm to triangulate complex DFNs by two steps: firstly,
subdividing 2D domains of the fractures into closed loops surrounded by intersection lines
between fractures, then, triangulating these arbitrary loops without adding any node.

Some studies have been focused on developing the non-conforming meshing methods. As
mentioned before, these methods require more computational efforts than the conforming
methods; therefore, they are not generally appropriate for networks of a huge number of
fractures. Benedetto et al. (2016) provided a combined conforming and non-conforming
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method to solve a fluid flow problem in DFN using the virtual element method (VEM). In
this method, some additional unique vertices are added on intersections of fractures and
each fracture is meshed independently. The application of this method is limited to VEM.

The main purpose of this research is developing a new computationally efficient
algorithm to mesh three-dimensional DFN structures. This algorithm maintains the
geometrical structure of the network and thereby connectivity pattern of fractures remains
unchanged. Triangular elements of the meshing structure are generated based on Delaunay
criterion and are refined to increase the quality. Thus, discretization matrices assembled by
the numerical schemes are not ill-conditioned and often solution converges using this
algorithm. Because of a large number of fractures with a wide range of lengths in DFN, an
optimal element size is proposed to reduce computational cost and achieve high numerical
precision. Furthermore, this algorithm is able to well cover the critical meshing conditions
such as junction of two fracture intersections with a small angle or two parallel fracture
intersections with a small distance on third fracture plane.

This paper is organized as following: in Section 2, the algorithm of DFN generation,
finding the intersections of the fractures, triangulation and refinement are provided. In
Section 3, the details of the validation of the present algorithm with the finite element
scheme, solutions of the flow problem in two simple regular geometrical structures and
comparison of the results with the analytical results are discussed. Also, a series of
sensitivity analyses on the meshing parameters in a complex DFN are conducted to
determine the effect of various parameters and demonstrate the performance of the
algorithm.

2. The meshing algorithm
In this section, various algorithm and methods used to develop the present meshing
algorithm are described.

2.1 Generation of DFN
Depending on geological origin, the rock fractures are grouped into joint sets that has
similar geometrical properties (dip and dip direction). In a three-dimensional geometrical
model, the joint sets are estimated using the hemispherical projection. The joint sets are
simulated independently and the ultimate model is a union of all. Each joint set includes
certain geometrical distribution parameters such as, the location, orientation (dip and dip
direction) and length of planar fractures.

The location of fractures is the first parameter that must be considered in simulation of
the joint-sets. A single-point homogeneous Poisson process is generally used to determine
the location of fractures in the domain of model. Given a constant number as fracture
intensity (l ) (the number of fracture planes per unit volume of the model), the location is
distributed in three-dimensional space. The average of Poisson distribution is calculated
from equation (1):

m ¼ l � Vm; (1)

where, Vm is volume of the model. As the center of some of fractures is outside of the model
domain, while their length is large enough to enter it and affect the connectivity pattern, the
domain of the generation of the fractures is initially considered to be several times larger
than model domain. The cube of model is extracted from generating domain after the
completion of generating process. To generate the location of fractures, a random variable
(h ) from Poisson distribution function is generated using equation (2) (Xu and Dowd, 2010):
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P h ¼ nð Þ ¼ e�mmn

n! ; (2)

A sequence of random numbers (xi) in the range of [0,1] as far as,
Yk

i¼1
xi < e�m , are

generated using uniform distribution function. For any n = k events, three independent
values are calculated by setting P in the uniform distribution function. These values are
considered as coordinates of the location of the fracture (o). Figure 2 demonstrates an image
of the generated locations of DFN fractures.

After that, the orientation and length of fractures are generated using PDF and Monte
Carlo sampling, these and are assigned to the locations of the fractures. The parameters, dip
(a), dip direction (b ) and rotation angle (g ) have been schematically shown in Figure 3. The
uniform and Fisher PDF are usually used to model the dip and dip directions, respectively.
The rotation angle is modeled by uniform PDF as well (Baghbanan and Jing, 2008).

In the literature, the power-law or log-normal is used as PDF of the fracture length (L). The
shape of fractures is a hypothetical parameter, which is simulated as circular, elliptical or
polygonal (Figure 3). Then, hydraulic parameters of fractures such as aperture and roughness
are assigned to the location of fractures as required similar to the generation of geometrical
parameters. The PDF of the aperture is usually uniform (Baghbanan and Jing, 2008).

A number of equations have been suggested to determine the relation between the
aperture and length of fractures. An example of such equations has been represented in
equation (3) (Vermilye and Scholz, 1995):

a ¼ §
ffiffiffi
L

p
; (3)

where a is the aperture in millimeter, L is the fracture length in millimeter and § is a
constant coefficient which is determined depending to the conditions of fractures and in
general case is equal to 0.004 (Vermilye and Scholz, 1995). Various PDFs and their
parameters required to generate DFN, have been listed in Table I.

As mentioned before, after generating the fractures, the desired representative
elementary volume (REV) is extracted from a much bigger originally generated domain.

Figure 2.
Locations of DFN
fractures generated
using developed code
in the research
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Each fracture and the set of all the fractures of the model are shown by fi and F ¼ [Nf

i¼1fi,
respectively, in whichNf is the number of all fractures. Referring to Figure 3, two systems of
coordinates are introduced. The global Cartesian system (X, Y, Z) defines a three-
dimensional space and the local coordinate (x, y) defines a two-dimensional plane on each
fracture.

2.2 Determination of intersection of fractures
In this research, the fractures are considered planar, and the intersection of two fractures is a
linear segment. For the sake of determination of coordinates of two ends of an intersection
segment in (X, Y, Z), each fracture is intersected by other fractures and the boundary facets
of the model. Figure 4(a) shows how intersections are formed. Each of intersections and the
set of all of them are represented by si = fj \ fk, where j, k = 1. . .Nf and S ¼ [Ns

i¼1si,
respectively, where, Ns is the number of all intersections of the model. Therefore, the domain
is characterized asX = F| S.

Fractures can have one of three main types of the connectivity with other fractures or
boundaries of the model: multiple connectivity (persistent fractures), only one connection
(dead-end fractures) and no connection (single fractures). As Figure 4(b) shows, the
persistent fractures (blue colored) usually have a larger length and several (at least two)
intersections with the other entities. Such fractures can be intersected by the boundaries
of the model or be connected to dead-end fractures and be completely located inside the
model. However, dead-end (green colored) and single (red colored) fractures can have
important effects on ultimate strength and mechanical properties of rock-mass, they do
not have significant effect on its hydraulic properties. Because hydraulic analyses are the
main aim of generation of three-dimensional DFNs in this research, it is convenient to
remove dead-end and single fractures from the model domain. It dramatically increases
performance and speed of solution, particularly if the model deals with a large number of
fractures. Therefore, the isolated and dead-end fractures are searched within the set F.
Accordingly, these fractures and their corresponding intersections s are removed from
the sets of F and S, respectively. Figure 4(c) shows an image of the identified intersections
in the model domain.

Figure 3
A schematic fracture,

its geometrical
parameters and the
global (X,Y, Z) and

local (x, y) systems of
coordinates

Z

YX
α β

Fracture plane

γ

L

x

y

Fracture shape
o
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2.3 Mesh generation
The present meshing algorithm generates triangular elements in a two-dimensional local
coordinate system (x, y) on the surface of each fracture using Delaunay criterion. The
ultimate meshing geometry in the three-dimensional global system of coordinates (X,Y, Z) is
a union of all planar triangles which is transposed using a transpose matrix. As will be
discussed in the following section, there are vertices of triangles on intersection of fractures.
Because these vertices are unique, it results in a conforming mesh. To increase the quality of
triangulation, the Ruppert algorithm is used to refine low-quality triangles (Cheng et al.,
2012). This algorithm provides an optimized unstructured triangulation to mesh the
complex DFN geometry and random shape and position of fractures and their intersections
in three-dimensional space, without changing geometrical structure of DFN to avoid change
in connectivity pattern of fractures.

The present algorithm includes four main steps:
� Step I: Vertices (v j

si ) on the intersection lines are formed in S.
� Step II: Boundary vertices (v j

bi
) are formed on the boundaries of the fractures ( Cfi ).

� Step III: A Delaunay-based triangulation (Ti) is generated using a set of all vertices

of fracture fi, V
j
i ¼ [Nvsi

j¼1v
j
si

� �
[ [Nvbi

j¼1 v
j
bi

� �
, where Nvsi and Nvbi are the total

number of intersection and boundary vertices of fi, respectively.
� Step IV: Ti is refined using Ruppert algorithm.
� Steps I to IV are repeated for i = 1.. . ..Nf.

The flowchart of the algorithm is illustrated in Figure 5. In Step I, find the possible
crossover where the intersection line si from the S is intersected by another intersection sj.

Table I.
PDF and their
parameters

PDF Formula Parameters

Uniform f xð Þ ¼
1

b� a
a# x# b

0 otherwise

8><
>: a, b

Fisher f(u ) = k sin u ek cos u /ek – e–k u , k

Normal f xð Þ ¼
1ffiffiffiffiffiffi
2p

p
s
e
�

x� mð Þ2
2s 2 x > a

0 x# a

8>>><
>>>:

a, m , s

Log-normal f xð Þ ¼
1ffiffiffiffiffiffi

2p
p

sex
e
�

ln x� að Þ � m
� �2

2s 2 x > a

0 x# a

8>>><
>>>:

a, m , s

Power-law f(x) = ax–k a, k

Negative exponential f xð Þ ¼ l e�l x�mð Þ x > m
0 x# m

�
l , m
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If such a crossover is found, the crossover vksi ¼ si \ sj; where i; j ¼ 1; � � � ;Ns is
registered as a vertex and a coverage radius (hs) is associated with it. Note that hs governs
the mesh size and is discussed in the next section. Then, the middle point of the
intersection segment si is identified using coordinates of its two ends. If this point is not
inside a sphere centered at vksi with a radius of hs, a new vertex (v̂si ) is registered with
coordinates of the middle point and hs is associated to it. Attention should be given that in
order to maintain connectivity pattern of fractures, at least one of the vertices, vksi or v̂si ,
must be saved if both of them are located in the same circle within coverage radius
of previous registered vertices. After that, an iteration loop is created and for each
iteration i, two vertices with spacing i� hs are characterized on both sides of the midpoint
v̂si on the intersection line si.

These vertices are registered with the previous ones that they are not inside a sphere
with radius of hs and center of previous saved vertices. These vertices are named v�si k and a
coverage radius hs is dedicated to them. The loop is terminated when the distance between
two identified vertices is larger than length of segment si.

This process goes on to determine all unique intersection vertices in (X, Y, Z) for all si,
where i= 1,. . .,Ns. The set of these vertices is represented byVs ¼ [Ns

i¼1 [
k
vksi [ v�si k

� �
[ v̂si .

In the second step, the algorithm is focused on the fracture plane fi, where i = 1,. . ., Nf
from the set of F. All intersections (sj) of S included in fi, are identified. Then, the vertices of
sj are selected from Vs and placed in Vj

i . The coordinates of these vertices are transposed
from global (X, Y, Z) to local (x, y) on the fracture plane using a transpose matrix. The
boundary vertices vjbi are equally spaced on the perimeter boundary of the fracture (Cfi ) with
the spacing hs. These vertices are added to Vj

i and a hs is associated to them if they are

Figure 4.
Schematics of

(a) formation of
intersections,

(b) isolated (red),
dead-end (green) and
persistent fractures
and (c) intersections
of DFN fractures on
boundaries of the
model (green) and
inside the model

(black) identified by
the developed code
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“covered” by previously registered vertices inVj
i . At the end of this step,V

j
i is obtained with

the total number of the vertices (Nvi ) on the fracture fi.
A Delaunay-based triangulation can be generated with any arbitrary set of vertices

(Cheng et al., 2012). Therefore, a Delaunay-based triangulation (Ti) is generated with Vj
i in

the third step. In a two-dimensional space, Ti is Delaunay-based if and only if empty-circle
criterion is satisfied for all elements of Ti. This criterion checks whether the circumcircle of
the jth triangle (tji ) includes another vertex except t

j
i or not. Figure 6 displays a schematic of

the empty-circle criterion and Delaunay-based triangulation. As shown in this figure, empty-
circle criterion means that no vertex is inside the circumcircles of triangles. Moreover, three
independent vertices of Vi form a triangle must satisfy the visibility requirement. That is,
these vertices must be on the same open surface domain of si. The visibility criterion results
in independent meshing on each side of intersections.

Till this step, the size and quality of the formed triangles may still not be appropriate in
the unstructured Ti and may still result in ill-conditioned discretization matrices. In fact,
there will be many short edges and small acute angles resulting in bad-shaped triangles if
arbitrary DFNs are considered. In this case, using Delaunay-based triangulation is not
practical enough. Therefore, in Step IV, Ruppert algorithm (Shewchuk, 2002) is used to
refine the original mesh structure Ti. The basis of the refinement algorithm is to preserve
triangulation as Delaunay by adding some vertices to reach a high-quality triangulation,
which is theoretically validated and practically satisfying for two-dimensional triangulated
meshes. This algorithm finds low-quality triangle tji and remove them from Ti during a
forward-searching process, and it inserts a vertex in the circumcenter of the removed tji .
Then, the searching process continues to remove triangles that lose their Delaunay property
due to inserting the new vertex. Finally, a new triangulation (T� i j) is generated with the
newly inserted vertices and vertices whose corresponding triangles have been removed, and
T� i j is added to Ti (Shewchuk, 2002). One of techniques to determine the quality of triangles
is the ratio of the smallest edge to radius of the circumcircle of the triangle (v ). By definition,
the minimum internal angle of the triangle can be calculated using equation (4) (Cheng et al.,
2012):

Figure 5.
Flowchart of the
proposed meshing
algorithm
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u min ¼ arcsin
1
2v

� 	
; (4)

To ensure termination of the Ruppert algorithm, the critical value umin = 20.7° has been
theoretically calculated. If umin for each triangle is smaller than 20.7°, the triangle should be
refined by Ruppert algorithm (Ruppert, 1995). Figure 7 illustrates the refined meshes for a
single fracture with two orthogonal intersections, and for three orthogonally intersected
fractures.

Note that hs is a user-defined key parameter in the present triangulation algorithm. This
parameter controls the size of triangles and the precision of the problem. As hs increases, the
intersections whose length is smaller than hs are practically reduced to a single point, but
they will never be removed. Therefore, the connectivity pattern of fractures is maintained.
With decreasing hs, the precision of the solution increases. It is obvious that the
computational costs will also increases due to increase in the number of triangles. Thus,
determination of the optimized hs is a critical issue and will be discussed in the sensitivity
analysis section.

Figure 6.
Delaunay-based

triangulation with
representation of

empty-circle criterion

Figure 7.
Refined Delaunay

triangulation for (a) a
single fracture with

two orthogonal
intersections and (b)

three intersecting
fractures, generated
by developed code in
the present research
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The present algorithm is able to generate high quality meshes for tightly spaced parallel
plates and for the cases where fracture planes are intersected at small acute angles. To
demonstrate the meshing quality, Figure 8 illustrated meshes of two fracture planes
intersected with an acute angle of 10°, and they are all perpendicular to a third fracture
plane. The intersection nodes (highlighted in red) near the center have been modified to
avoid acute angle within the elements to ensure meshing quality.

3. Algorithm validation
In this section, validation of the present meshing algorithm and a series of sensitivity
analyses on meshing parameters are discussed using three examples. Regular and simple
geometrical structures are investigated in Examples I and II to compare outcomes of
numerical flow calculations with analytical results to validate the present algorithm, and in
Example III, a DFN is used to conduct the sensitivity analyses.

3.1 Flow numerical solution scheme
Below assumptions are considered in this research:

� Rock matrix is impermeable.
� The flow is in a steady state.
� Two walls of each fracture are planar, smooth and parallel.
� The flow model of fluid is Newtonian.

The planar flow rate is calculated on each fi in (x, y) with a certain aperture afi . It is assumed
that afi � Lfi , where Lfi is the length of fi. In this research, a uniform PDF has been used to
determine afi . Depending on Poiseuille law, the permeability of a fracture (kfi ) is obtained
using equation (5) (Baca et al., 1984):

Figure 8.
Meshing structure of
two acutely
intersected fractures
on the third fracture
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kfi ¼
afi

3

12
: (5)

As given in equation (6), the classic equations of Darcy and conservation of mass govern the
fluid flow through fractured rock media (Koudina et al., 1998):

qf ¼ � 1
m
Kf � rp

rqf ¼ 0
;

8><
>: (6)

rp ¼ r � g � rh: (7)

In these equations, qf is the average flow rate through fracture [m2/s], Kf is the permeability
matrix of fracture [m3] assembled from individual fracture, rp is pressure gradient [Pa/m],
r is the fluid density [kg/m3], g is the gravitational acceleration [m/s2] and rh is hydraulic
head gradient.

Any standard boundary condition can be applied to this system of equations. The
boundary conditions can be either Dirichlet or Neumann. It is assumed that CD and CN are
parts of boundaries of DFN model with Dirichlet and Neumann boundary conditions,
respectively; therefore, the boundary conditions are written as equation (8):

h ¼ hD on CD

q ¼ qN on CN
:

�
(8)

where, hD and qN are boundary conditions of the hydraulic head and flow rate. For each fi,
the permeability matrix Kfi 2 RNdofi

�Nvi � RNdofi
�Nvi is assembled according to the number

of degrees of freedom (Ndofi ) and vertices (Nvi ) of fracture. Then, the vectors qfi 2 RNdofi
�Nvi

and hfi 2 RNdofi
�Nvi are considered as the vectors of the flow rate and the hydraulic head

respectively. As given in equations (9) to (11), the total permeability matrix (K) and total
vectors of flow rate (q) and hydraulic head (h) for a DFN model are derived from union of
transposed localKfi , qfi and hfi , respectively:

K ¼

K11 K12 � � � K1N�

K21 K22 � � � ..
.

..

. ..
. . .

. ..
.

KN�1 � � � � � � KN�N�

2
66664

3
77775; (9)

q ¼

q1
..
.

..

.

qN�

0
BBBB@

1
CCCCA; (10)
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h ¼

h1
..
.

..

.

hN�

0
BBBB@

1
CCCCA; (11)

where,N�¼ Nvt � Ndoft andNvt andNdoft are the total number of total vertices and degrees of
freedom of the model, respectively. Amount of hydraulic head must be determined in all the
vertices of the model. Therefore, the total number of equations of the system is equal to N�

which is calculated based on the flow equilibrium conditions. For the sake of validation of
the present meshing algorithm and performing the sensitivity analyses, a developed code is
implemented in c# using FEM scheme with a visual three-dimensional graphical user
interface to show the results. The results are calculated using conjugate gradient (CG)
method.

3.2 Example I
An example of a simple geometrical structure is provided to investigate the accuracy of the
linear flow calculations and validate the meshing algorithm. The geometrical model X1
includes a circular fracture with the center located at the global origin of coordinates and the
radius of 5 m, which is enclosed with two parallel planar boundaries by spacing of 2 m.
The hydraulic head on the upper boundary H1 = 1 m and on the lower boundary is H2 = 0.
The permeability of the fracture is k = 1 m2/s. The analytical solution of the total flow rate
for a 2-� 10-m rectangular slab is equal to 5 m3/s (Long et al., 1985). In this numerical model,
the summation of the flow rate of vertices located on one of the boundaries of the model is
listed in Table II for a range of meshing sizes. The calculations demonstrate that the
numerical results converge to 5 m3/s with a decreasing meshing size, which is in a good
agreement with the analytical results. The meshing structure and the diagram of hydraulic
head distribution has been shown in Figure 9.

3.3 Example II
Shown in Figure 10(a), the example considers three orthogonal planar fractures embedded in
a three-dimensional space. The simulation domain is a cube with side length of 100 m.
Center of all three fractures are located at origin of the coordinates. Normal vectors of
fractures are in the direction of X, Y and Z axes, respectively. The permeability of fractures
is homogeneously equal to 8.172 � 10�5 m2/s. Boundary conditions of the model have been
demonstrated in Figure 10(a). Constant hydraulic heads of H1 = 1 m and H2 = 0 m are
applied on the upper and lower boundaries of the model and a constant gradient of hydraulic
head is prescribed on the side boundaries. The mesh structure and diagram of hydraulic

Table II.
Meshing size versus
the numerical
solution of the flow
rate for Example I

Meshing size (m) Flow rate (m3/s)

0.2 4.909
0.18 4.930
0.16 4.927
0.14 4.942
0.12 4.925
0.1 4.971
0.08 4.954
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head distribution have been shown in Figure 10(b) and 10(c). The head gradient along two
vertical planes are constant. The total flow rate through the inflow or outflow face of the
cube is given in Table III against the meshing size based on numerical solutions.
The numerical solutions approach 1.630 � 10�5 m3/s which completely agrees with the
analytical solution of Long et al. (1985). Also note that the computed hydraulic head is
constant (0.5 m) and the flow rate is zero across the horizontal fracture plane, indicating that
no flow passes through that plane.

3.4 Example III
In this example, numerical simulation of the fluid flow has been performed for ten
realizations of a DFN model (Xi

3 ; i ¼ 1; � � � ; 10) with REV of 5 � 5 � 5 m. The numerical
results for different realizations are averaged as the representative results. In this example,
Xi

3 is independently generated using geometrical statistical data given in Table IV, based on
the technique illustrated in Section 2.1. The number of fractures and intersections ofXi

3 have
been listed in Table V. The density and viscosity of the fluid considered in this example are
equal to 1,000 kg/m3 and 0.001 Pa·s, respectively. The meshing parameter (hs) varies to
study its effect on the flow calculation. Altogether, 70 samples will be available to analyze
the sensitivity of parameters. Figure 1 shows one of the realizations for which meshing
structure and hydraulic head distribution have been illustrated in Figure 11.

For the sake of advancing the sensitivity analyses, it is necessary to determine an
optimized hs. Here, the critical case is evaluation of umin for different values of hs. A
rudimental survey showed that if umin is unchanged, and the termination of the meshing
algorithm strongly affected as hs changes. A larger umin generates a higher-quality
triangulation, but choosing a too large umin for a small hs can cause instability in the
meshing algorithm (lack of termination) due to forming infinite loops to refine it. Therefore,
it is important to select an optimized umin for any hs to ensure the termination of
the algorithm and to maintain the precision of the solution. In fact, umin is described as the
value by which the algorithm can be terminated within a reasonable number of iterations.
These results have been displayed in Figure 12, where, as hs decreases, umin decreases as

Figure 9.
(a) Themeshing

structure and (b) the
diagram of hydraulic
head for Example I

Generation of
conforming

mesh

2873

D
ow

nl
oa

de
d 

by
 H

O
N

G
 K

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
, P

ro
fe

ss
or

 G
an

g 
W

an
g 

A
t 0

4:
57

 2
8 

N
ov

em
be

r 
20

18
 (

PT
)

https://www.emeraldinsight.com/action/showImage?doi=10.1108/EC-03-2018-0127&iName=master.img-017.jpg&w=344&h=184


well. So, as an ordinary result, choosing a larger hs can generate a higher-quality
triangulation forXi

3 in terms of minimum internal angle.
Diagrams of the total number of vertices (Nv) and the total number of triangles (Nt) of the

meshing versus hs have been depicted in Figure 13(a) and 13(b). However, decreasing trend
seems obvious in this figure, achieving this power-law trend is indicative of success in
triangulation process of Xi

3. Also, with increasing hs, Nv and Nt are led to constant numbers.
Earlier is the number of vertices from union of the intersection and the boundary vertices, and
later is the number of Delaunay-based triangles generated by these vertices. Reduction of hs can
significantly increase the number ofNv andNt and consequently the computational cost.

Figure 10.
(a) Boundary
conditions of the
hydraulic head, (b)
the mesh structure
and (c) the hydraulic
head distribution for
Example II
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Figure 14 shows diagram of Nv versus Nt. The relation between these two parameters is
approximately according to Equation (12) with a correlation factor of 0.95. Because of
discrepancy in the connectivity pattern of fractures in different Xi

3, it is possible to generate
a various number of triangles with a certain number of vertices:

Nv ¼ 0:7552 Nt þ 145:53; (12)

In this research, the average flux c is used to determine the precision of the solution
[Equation (13)]:

c ¼ kq2k
Ndoft � Nvt

; (13)

Table III.
Meshing size versus

the numerical
solution of the flow
rate for Example II

Meshing size (m) Flow rate (m3/s)

10 1.623� 10–5

9 1.630� 10–5

8 1.629� 10–5

7 1.634� 10–5

6 1.628� 10–5

5 1.633� 10–5

4 1.630� 10–5

Table IV.
Geometrical

statistical data of
each joint set

Dip [Deg] Dip direction [Deg] Density [1/m3] Length [m] Aperture [mm]
Uniform Fisher Poisson Power-law Uniform

Joint set Average Average k Average Max Min a Min Max

1 70 40 45 0.2 1.78 1 10 4 12
2 30 20 135 0.12 1.78 1 10 4 12
3 80 40 135 0.1 1.78 1 10 4 12
4 45 20 315 0.15 1.78 1 10 4 12

Table V.
The number of

fractures and their
intersections for each

realization

Realization no. Joints no. Intersections no.

1 125 313
2 115 271
3 119 331
4 130 361
5 114 324
6 117 304
7 109 269
8 122 303
9 114 270
10 111 313
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Figure 11.
(a) Mesh structure
and (b) the hydraulic
head distribution for
DFN in Example III
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whereNdoft is number of degrees of freedom andNvt is number of vertices. q is vector of flow
rate for all vertices and all degrees of freedom, i.e. q = {q1x ; q1y ; q1z ; q2x . . .}), and ||q||2 is
the L2-norm of the vector. Equation (13) can be considered as averaged flow rate for whole
the REV, and it is used as a benchmark to compare solution of the model for different
meshing sizes.

Figure 12.
Diagram of the

minimum internal
angle of triangles
(u min) versus the
meshing size (hs)
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Figure 13.
(a) Total number of

vertices (Nv) and
(b) the total number

of triangles (Nt)
versus the meshing

size (hs)
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Diagrams of c against hs for all realizations are shown in Figures 15. The trend
demonstrated that the calculated average flow field is rather constant for all mesh sizes.
However, we do experience un-convergence if mesh size hs > 0.3 m, while it seems that the
convergence of the numerical solution can be reached within a reasonable number of
iterations for hs # 0.3 m for all the realizations. Therefore, as a secondary result, choosing a
smaller hs can computationally be more convenient.

In Figure 16(a) and 16(b), diagrams of runtime of the meshing algorithm and the
solution scheme against hs are depicted, respectively. In fact, Nv represents the total
number of variables and the consequently the number of equations of the model for
each degree of freedom. All the calculations have been done using the same hardware
system. Since both variations of the runtime of meshing and the runtime of the solution
scheme have power-law trends relative to hs, use of a small hs can significantly increase
the runtime of calculations. Also, diagram of the solution and triangulation runtimes
versus Nv has been shown in Figure 16(c). According to this figure, the trend of both the

Figure 14.
Diagram of the
number of vertices
(Nv) versus the
number of triangles
(Nt) of the meshing

y = 0.7552x + 145.53
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Figure 15.
Diagram of average
flux c versus the
meshing size hs for 10
realizations
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Figure 16.
Diagrams of the
meshing size (hs)

versus (a) the
meshing runtime,
(b) the numerical

solution runtime and
(c) the diagram of
both the runtimes

versus the number of
the vertices of the

model
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Figure 17.
Diagrams of the

average flow rate
versus REV side
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runtimes follow a power-law and the triangulation runtime is about 25 per cent of
solution runtime for all cases.

To understand the effect of REV size on the flow rate solution, sensitivity analysis is
performed by increasing the REV side length. Twenty simulations for REV size are
conducted. Figure 17 shows the transmissivity solution (i.e. flux per cross section area)
converges to a constant value when the side length of REV is greater than 5 m. For this case,
the variability of the solution, shown as the bars in Figure 17, also significantly decreases.
For this reason, an REV side length of 5 m is used in the sensitivity study of meshing
parameters.

Based on results of Figures 12, 13, 15 and 16, it seems that increasing triangular size
could increase minimum angle of the mesh, reduce number of triangles, and eventually
improve the numerical stability. On the other hand, it may deteriorate the accuracy of
numerical solution. In this study, hs = 0.2-0.25 m is recommended as an optimized meshing
size for this particular example. Note that the optimal hs value may depend on the problem
dimension and network connectivity. Sensitivity analyses as demonstrated in this example
should be conducted to obtain the optimal hs for meshing 3DDFNmodels.

4. Conclusion
In this research, a new Delaunay-based meshing algorithm for triangulation of geometrical
structure of three-dimensional discrete fracture network has been developed. This algorithm
enjoys benefits of high precision and fast speed, while maintaining connectivity pattern of
the fracture network. Also, the process of generating discrete fractures, removing isolated
and dead-end fractures, avoiding acute intersection angles have been described. The present
algorithm has been validated through comparison with analytical results. A series of
sensitivity analyses have been conducted to determine the effect of meshing parameters on
the flow and to illustrate performance of the algorithm. It is shown that the meshing size is a
key parameter in the present algorithm; therefore, a sensitivity analysis shows how to
evaluate an optimizedmeshing size to ensure accuracy and convergence of the algorithm.
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