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A B S T R A C T

This study is aimed at developing a computationally efficient algorithm to simulate the grout fluid propagation
by generalizing the recently developed Explicit Grout Forehead Pressure algorithm to two-dimensional discrete
fracture networks. A computer program is developed by using an innovative recursive scheme to track the paths
of grout propagation within the fractures, and the results can be visualized using a graphic interface. The
efficiency and accuracy of the algorithm is successfully validated using two series of laboratory tests. Finally,
sensitivity analyses are conducted to study the influence of key parameters, including initial pressure, grout fluid
density, grout viscosity and operation time, on the grout propagation for both dry and saturated in-situ
conditions. The study demonstrates that the existence of pore fluid inside the fractured medium can
significantly decrease the propagation area. Some other less studied factors are also investigated, such as
time-dependent hardening of the grout viscosity, initial yield stress of the grout fluid and rheology properties of
the in-situ pore fluid. These factors are also found to be important for improving efficiency of the grout
operation.

1. Introduction

The existence of discontinuities is the most important reason for
decreasing strength and the increasing permeability of rock masses
in comparison with the intact rock. Considering the effect of
discontinuities is very crucial in the large scale rock engineering
projects such as mining, civil, hydrogeology and petroleum reservoir
engineering. Grouting operation is one of the most effective techni-
ques for ground improvement, and plays a specific role in increasing
the strength of rock foundations, stabilizing rock slopes, under-
ground openings and decreasing water inflow into the underground
and surface excavations.

To date, many research works have been focused on developing
more accurate methods to predict the grout take, i.e., amount of raw
material needed for grouting, and grout propagation in fractured
rock mass based on initial parameters, such as geometrical para-
meters of rock fractures, rheological parameters of grout fluid and
operational parameters of grouting. Empirical methods1–4 in pre-
dicting the groutability of rock masses usually cannot provide
desired precision. Therefore, analytical or numerical methods for
predicting groutability were developed. For example, Wang et al.5

applied a pipe network modelling to calculate fluid flow in a three-
dimensional fractured medium. Ericsson et al.6 used a numerical
modelling to study the grouting in a two-dimensional lattice network
of fractures. In their modelling, the filtration phenomenon, i.e.,
changing in grout fluid density when it enters into a constriction, is
reported as the most effective factor to stop grout fluid flow.
However, only regular network of factures was considered in their
study. Yang et al.7 developed an analytical flow calculator in two-
dimensional discrete fracture networks (DFN) in which the rheolo-
gical equations governing the grout flow were used to obtain
equivalent permeability tensors for the heterogeneous and aniso-
tropic media. Shuttle and Glynn8 also developed analytical method
for a three-dimensional discrete fracture network. The Universal
Discrete Element Code (UDEC) was utilized to analyze the fluid flow
in a two dimensional network of fractures9–13. Equivalent perme-
ability of the fractured rock mass is also estimated by conducting
numerical analysis, and the effects of stress on the equivalent
permeability were also considered in these studies. Finite element
method (FEM) or extended FEM (XFEM) have been used14–18 to
simulate fluid flow in fractured rocks. However, applying these
analytical and numerical methods for a large scale fractured media
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is completely challenging due to their high computation cost,
especially when geomechanical, chemical and temperature effects
need to be considered. Therefore, some researches considered
fractured rock as a continuum or hybrid-continuum media to solve
the problem of upscaling of fluid flow19,20, while the precision of the
simulations for different scales might be variable. In engineering
practice, three-dimensional flow properties are often deduced from
two-dimensional calculations. Recently, Lang et al.21 demonstrated
that two-dimensional analysis cannot be directly used to approx-
imate three-dimensional equivalent permeability of a fractured rock
mass. However, some form of correction factor has been proposed to
translate two- to three-dimensional permeabilities, at least at high
fracture densities, when only two-dimensional analysis is available.

Most of previous literatures are unable to model various types of
grout fluids, time-dependent phenomena such as grout hardening
and/or influence of in-situ pore fluid. Most recently, Mohajerani
et al.22 developed a simple yet accurate numerical model to over-
come some of the above limitations for predicting the grout
propagation in the rock mass fractures, which is termed as Explicit
Grout Forehead Pressure algorithm (EGFP). EGFP is a fully explicit
algorithm for prediction of the grout penetration length in a pair of
parallel slots using three types of parameters, including geometrical
parameters of a single fracture, rheological parameters of grout fluid
and operational parameters of grouting operation. EGFP was
designed to consider the filtration phenomenon, time-dependent
grout hardening and also the effects of gravity and in-situ pore fluid
pressure. Furthermore, different types of grout fluid behavioral
model (Newtonian, Bingham or power-law) could be modeled using
the EGFP algorithm22.

In order to simulate a practical grouting operation, it is necessary to
generalize EGFP to a network of interconnected fractures modeled by
Discrete Fracture Network (DFN). The DFN method was introduced in
the late 1970s as "analysis and modelling in which explicitly involves
the geometry of fractures, as the fundamental factor controls the fluid
flow"23. The method uses Monte-Carlo simulation to generate fracture
networks based on probability density functions (PDF) of geometric
parameters of joint sets, which can be obtained from field surveys.
Since the DFN method can incorporate field variation of joint
distribution, grouting simulation based on the DFN can be more
realistic compared with other methods.

The geometry of DFN simulation includes density, dip, dip
direction and length of fracture sets as well as aperture of single
fractures, which have important influence on the flow of the grout
fluid. In many researches, it is usually assumed that the rock matrix
is impermeable24. Fracture length usually is demonstrated by the
power-law, log-normal or negative exponential distribution func-
tion. The distribution function of aperture is usually power-law or
log-normal. Conductivity of fractures is related to the aperture
through the cubic law and is determined from the in-situ data. It
seems logical that the aperture and the length of the fractures are
correlated. This relationship has been reported as power-law with
linear or sublinear scaling24. Many different codes are developed to
implement the DFN method. For example, a code to generate a two-
dimensional network of discrete fractures has been developed25. In
this code, geometric parameters of fractures include fracture posi-
tion (derived from the joint density), orientation (including dip
angle and dip direction), fracture length (a function of the fracture
trace length), and fracture aperture.

2. Development of GrouIUT2D program: generalizing EGFP
algorithm to DFN

GroutIUT2D is structurally divided into two main sections: two-
dimensional DFN generation, and generalization of EGFP algorithm to
this generated network. More discussion about these two sections is
provided in the following.

2.1. DFN generation

A program module in C++ has been developed for generating DFN
in GroutIUT2D. The generation procedure involves the following steps
as described in25,26:

I. Specifying a generation domain and the number of DFN realiza-
tions.

II. Generating the locations of centers of fractures using Poisson’s
process, according to the measured fracture intensity for each joint
set.

III. Generating fracture orientation, based on approximated PDF for
each joint set.

IV. Generating trace length of fractures according to the approximated
PDFs for each joint set.

V. Repeating steps (II) to (IV) for all sets of fractures using Monte-
Carlo method. The random occurrence of discontinuities along a
line is an instance of a one-dimensional Poisson process. A Poisson
process is defined by assuming that any small increment along the
line has the same, but very small, probability of containing a
discontinuity occurrence. If the total discontinuity frequency is λ, it
can be shown that the probability P(k, x) of exactly k discontinuity
intersections occurring in an interval of length x, selected at
random along the line, is given by the following equation27:

P k x e λx
k

( , ) = ( )
!

λx k

(1)

If discontinuity intersections along a line obey a one-dimensional
Poisson process, then it is reasonable to assume that the occurrence of
the mid-points of the discontinuity trace in a plane will obey a two-
dimensional Poisson process27.

The DFN module was further improved to better accommodate the
EGFP algorithm. For example, boundaries were changed to conform
with dimensions of grouting operation domain, and position of
grouting wellbore was added and output matrix of position of fractures
were rearranged.

2.2. The EGFP algorithm

The explicit grout forehead pressure (EGFP) algorithm has been
developed to estimate grout penetration length in a single fracture22.
This algorithm follows an explicit iterative scheme for estimating grout
penetration length in a singular fracture. In this algorithm, the
penetration length is determined using rheological equations of fluid
through a pair of parallel slots. For simplicity, two walls of a fracture
are simulated as an identical line with a given aperture and each
fracture line is divided into a number of small segments. Geometrical
parameters of the fracture, initial pressure of grout fluid and the
maximum grouting duration time are the initial parameters given to
the model. The stopping criteria for grout propagation are depletion of
grout fluid forehead pressure and/or finishing of the considered
maximum grouting duration time. These stopping criteria finally cease
the movement of grout fluid forehead inside the fracture. Depletion of
fluid pressure is due to the pressure drop caused by resistance of the
pore fluid pressure, frictional effect, filtration phenomenon and grout
hardening. The effect of gravity is depended on position of grout
forehead and also the density of grout and pore fluid. Therefore, the
gravity can be either a contributory or a disincentive factor for grout
fluid flow22.

The EGFP algorithm is schematically illustrated in Fig. 1. As shown
in Fig. 1(a), the pairs of parallel slots are simplified to singles lines. The
fracture 1 is intercepted by the grouting borehole and fracture 2 at
nodes i and j, respectively. The EGFP algorithm is based on explicit
calculation of grout flow in small computational segments formed on
each fracture. Denote P0 as the pressure in the grout forehead, and PL as
the pore fluid pressure within the facture. They are acting at two ends
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of the segment n, a is the effective hydraulic aperture, and L is the
length of the segment. It is supposed that P0 is known at the first
segment of the fracture 1 as the boundary condition, and PL is known
everywhere.

As proposed by Barton et al.28, the effective hydraulic aperture a
can be related to physical aperture and joint roughness by an empirical
model. On the other hand, indirect estimation of a can be obtained by
measurement of the permeability of a rock mass27. By the parallel plate
analogy (cubic law), an estimate for the average effective hydraulic
aperture a can be obtained through the following equation:

⎡
⎣⎢

⎤
⎦⎥a

μK
λρg

=
12 m

1/3

(2)

where Km is the apparent mass permeability given by a flow test, g is the
gravitational acceleration, ρ is the density of the fluid, μ is the dynamic
viscosity, and λ is fracture frequency.

As shown in Fig. 1(b), the average velocity of the grouting fluid
forehead propagating through the segment n can be determined by the
pressure gradient and the properties of the grouting fluid. For a
Bingham fluid, the grout forehead average velocity (V ) through a pair
of parallel plates is given by Eq. (3)22:
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Alternatively, the average grout forehead velocity of a power-law
fluid is according to22
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where τ0 is the initial yield stress of the Bingham fluid, n is the
behavioral index of the power-law fluid and k is the consistency index
of the power-law fluid.

As shown in Fig. 1(c), the grouting fluid will propagate into segment
n by the average forehead velocity V . Therefore, the grout fluid will fill
in the segment at t t L V= + /n n+1 . Then, the pressure of the grout
forehead drops from P n0( ) at tn to P n0( +1) at tn+1 through the following
equation:

P P P= − ∆ ,n n total n0( +1) 0( ) ( ) (5)

where P∆ total n( ) is the total resistant pressure and is obtained using
Eq. (6).

P P P∆ = ∆ + ∆total n l n g n( ) ( ) ( ) (6)

where P∆ l n( ) is frictional pressure drop and P ρg h∆ = ∆g n( ) is the pressure
change due to difference in elevation h(∆ ) at two ends of the segment,
where ρ is the density of the grout fluid. In particular, the frictional
pressure drop can be determined by the forehead velocity V through
Darcy-Weisbach equation29:

P ρ f
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D
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2

,l n D
e

he
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2

(7)

where, fD, le and Dheare Darcy roughness coefficient, element length
and equivalent hydraulic diameter of fracture, respectively. For flow
between parallel plates, D a= 2he , i.e. two times of the effective
hydraulic aperture. Accordingly, fD can be estimated based on the
state of flow (laminar or turbulent) and the type of grout fluid
(Bingham or power-law)22.

Using an explicit iterative method, the calculated forehead pressure
will be updated following Eq. (6) when the grout fluid propagates into a
segment. The updated pressure will be used for grout propagation into

Fig. 1. (a) A scheme of grout forehead, joints, elements, nodes and grouting borehole. (b) a scheme of active forces on an element. (c) a scheme of propagation during consecutive time
steps.
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the next segment. Since the element length and average velocity of
grout fluid is known, it is possible to calculate simply the grout passing
time at each element. Therefore, the effect of time-dependent grout
hardening can be considered by changing viscosity of the grout fluid.
Also, the effects of filtration phenomenon, i.e. changing in grout fluid
density when it enters into a constriction, can be modeled. The grout
forehead continues to propagate until the stopping criteria are satisfied.

2.3. GroutIUT2D development

The EGFP algorithm is developed to calculate time and penetration
length of the grout fluid inside a single fracture. For a network of
fractures, the influence of connectivity pattern of the network must be
considered. When the grout fluid passes through a multi-way junction
into branches, additional pressure drop must be included into Eq. (6)
for the total pressure drop in the grout forehead. The additional
pressure drop can be determined via Eq. (8) by assuming the grout
fluid passes through a virtual fracture with an equivalent fracture
length29:

L κ D= .eq n he( ) (8)

where Leq n( ) is equivalent length of the virtual fracture, and Dhe is the
equivalent hydraulic diameter. κ is a constant coefficient depending on
the type of the multi-way junction. In the program, κ is chosen as 15
and 50 for a 3-way and 4-way junction, respectively.

Note that the equivalent length is virtual, the grout propagation
time through it will be set as zero. Correspondingly, the stopping point
(also called the cut-off point) of the grout forehead never forms in the
multi-way junction. If the farthest cut-off points from the grouting
wellbore are connected together, they create a propagation surface. The
propagation surface can be a key criterion for measuring the grout-
ability in rock engineering projects such as determination of grouting
wellbore spacing or estimation of sealing efficiency.

Fig. 2 illustrates the flowchart of GroutIUT2D program. A graphical
user interface (GUI) has been developed in GroutIUT2D to visualize the
DFN framework, grouting wellbore, pore fluid table line, initial and
calculated parameters, and the grout propagation surface. Grouted
fractures are displayed by the bold red lines.

Fig. 2. The flowchart of GroutIUT2D program.
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As shown in Fig. 3, DFN is simulated with a specified domain. This
simulated DFN is one of the several random realizations created with
the same geometrical and statistical parameters of jointed rock mass.
GroutIUT2D also prescribe the geometry of grouting wellbore in the
simulation domain.

After identifying all the nodes in the desired domain, the program
begins to remove the fractures so called “dead-end” or “isolated”.
Isolated fractures which do not intersect with any other fractures or
boundary line are not considered actually as a path for transmitting
grout fluid and thus are removed. However, dead-end fractures are
connected with the other fractures at only one end. It is assumed that
the pore air / fluid is trapped in these fractures. Therefore, dead-end
fractures will prevent the entrancing of the grout fluid forehead into
themselves and should be removed from the domain for increasing
speed of modelling.

Consider nf is the total number of internal fractures in DFN. Since in
this two-dimensional region there are four boundaries and one well-
bore, the total number of linear elements form connectivity pattern is:

n n= + 5t f (9)

Any linear element is shown by Fi where i n∈ 1, …, t . As previously
mentioned, each node is formed by intersection of two fractures F F,i j.
Therefore, a node is defined as: ξ ξ F F i j n i j}= { | ⋂ , , ∈ 1, …, , ≠k i j t .
Internal nodes formed by intersection of two fractures are called
“major nodes”. The set of all major nodes is shown by N ξ⊂ . By the
way, nN is the number of members of N . On the other hand,
intersection of a fracture with the wellbore or the boundary box of
the DFN is called a “minor node”. The set of all minor nodes and
number of them are shown by λ ξ⊂ and nλ, respectively. Therefore, the
total number of nodes (members of ξ) is given by the Eq. (10).

n n n= +T n λ (10)

Information of each node includes its ID number (k), position (x z, ),
arrival time (the time when grout forehead location is on the node) (t)
and corresponding grout forehead pressure (p). This information are in
the form of set x z t p= { , , , }k k k k k , k = 1, …, nT . The information of
nodes is inserted in a two-dimensional matrix titled “connectivity

matrix” ( ij, i j n, ∈ 1, …, t). The component ij is an empty set (ϕ) if
F F ϕ∩ =i j (no intersection between two fractures), or k for informa-
tion of the node formed by intersection of Fi and Fj. The adjacent nodes
are a collection of nodes that are directly connected to node k in the
fracture network. Since a node is an intersection of a maximum of two
fractures, node k is able to have a maximum of four adjacent nodes.

According to Algorithm 1, is updated in each iteration based on
EGFP algorithm computation of pk and tk. At the first, GroutIUT2D

seeks around the grouting wellbore to find minor nodes λ and assigns
values of k to for each of these nodes based on the initial pressure
(p0) and time (t = 00 ) in the wellbore. Consider ij

n( ) is connectivity

matrix for nth iteration. Therefore, ij
(0) includes for the wellbore

nodes, and ij
(1) only includes updated of the first wellbore node. The

iterations continue to form complete connectivity matrix with
information of all of nodes in the domain. After all of the cut-off points
are determined and are put in S3, it is time to estimate the grout
propagation surface. A computational sub-code is merged in the
GroutIUT2D for calculating the closed surface area resulting from
connecting outermost flow cut-off points inside the model around the
grouting wellbore.

Fig. 4 illustrates grout propagation following the GroutIUT2D

algorithm. The fracture network consists of seven nodes. Nodes 1
and 5 are minor nodes, the remaining nodes are major nodes. As
shown in Fig. 4(a), the calculation starts with node 1 to its only
adjacent major node 2. Node 2 has three other adjacent nodes in the
order of no. 4, 7 and 3. The information set (pk and tk) of k is then
calculated for node 4 and 3 (k = 3,4). A cut-off point 1 is formed
between nodes 2 and 7 when a stopping criterion (Algorithm 1(6)) is
satisfied; Accordingly, the information for node 7 will not be updated,
and node 7 will not be further considered in subsequent calculation.
Then, consider grout propagation from node 3 to its only adjacent node
6. When a stopping criterion is satisfied, a cut-off point 2 is formed
between nodes 3 and 6. Finally, consider grout propagation from node
4 to its adjacent nodes. Cut-off points 3 and 4 are formed in two (green)
branches due to the comparison criteria and stopping criteria.

Fig. 4(b) illustrates the grout propagation routes starts from node 5.
New information set for node 4 is obtained in this round of calculation,

Fig. 3. A DFN realization with a wellbore generated by GroutIUT2D program.
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which replaces the previous information of node 4 due to comparison
criteria (Algorithm 1(5)). Cut-off point 4 is removed because grout
propagates from node 4–6 for this case. At last, a cut-off point 6 is
formed between nodes 6 and 3 when the time or pressure is depleted.

Algorithm 1. GroutIUT2D algorithm for grout propagation.

(1) Initialize t = 0, p p= l for major nodes.
(2) Find all minor nodes k, and updated their k on . Put node ID k

into a list (S1).
(3) If S ϕ1 ≠ , Select the last node (α) in the list, delete it from the list

and search for its adjacent nodes based on matrix . Put all of
adjacent nodes in a list (S2) and got to 4.
Otherwise, go to 7.

(4) If S ϕ2 ≠ , Select the last node (β) in the list S2, delete it from the
list S2 and go to 5.

Otherwise, go to 3.
(5) [Comparison criteria] Consider t1 and p1 are initial time and initial

pressure of node β, respectively. Compute t2and p2 of β according
to EGFP algorithm.

If t t>2 1 and p p<2 1 (the criteria are satisfied), keep β on
for node β as t p x z{ , , , }1 1 . Form the cut-off point and put it at a list
(S3);

Otherwise, update β on for node β as t p x z{ , , , }2 2 .
(6) [Stopping criteria] If t t> max or p p≤ l0 (the criteria are satified),

form the cut-off point and put it at a list (S3) and go back to 3;
Otherwise, put ID of β into the list (S1) and go back to 4.

(7) End.

Using GroutIUT2D algorithm, Fig. 5 shows grout propagation
patterns in a 25 m × 25 m DFN domain. The number of joint sets,
type of PDF and value of statistical parameters of density, dip direction,
dip, length and aperture of DFN fractures are given in columns 1 - 6 of
Table 1, respectively. The grout fluid is a Bingham fluid with time-
dependent hardening of grout fluid viscosity specified using the
following equation22,30:

μ μ ξ t t= {1 + exp [ ( / −1)]}g g0 (11)

where μ0 is the initial gout viscosity, ξg is a grout hardening constant. As
grout develops to a gel after a given time interval, the gel induction
time tg corresponds to the time interval in which viscosity of the grout
increases to two times of its initial value30. Finally, parameters of the
grout fluid are specified as follows: μ0 is 0.1 poise, density is 1500 kg/

m3, initial yield stress is 2 Pa, grout hardening constant ξg is 1.5, and
gel induction time tg is 1800 s.

3. Model validation

In this research, two series of laboratory tests performed by31,32

have been used to validate the GroutIUT2D program. Previously, the
EGFP algorithm has been successfully validated for a single fracture by
experimental results22. Therefore, only for understanding the concept
of generalization of EGFP to a network of fractures and validation of
the results, a number of simple lattice networks have been considered.

3.1. Experiment 1

As shown in Fig. 6(a), the experimental set-up consists of two plates of
plexiglass with the dimensions of 1.2 × 1 × 0.015 m. A lattice channel
network has been constructed by placing rectangular cubes of plexiglass in
a symmetrical pattern between the two plates forming1 × 5 mm channels.
The construction has been placed at a small angle to the horizontal plane
to construct a hydraulic gradient ( m m0.02 / ). The construction has been
injected with a grout fluid via its central node with an injection head of

m0.48 . The grout fluid had time constant properties and the rheological
properties. The evaluated parameters were 3.0 Pa in yield value and 0.35
Poise in viscosity. The results from the laboratory experiment have been
taken at different times after the start of injection and compared with the
simulated propagation at those times31.

3.2. Experiment 2

The laboratory set-up has been illustrated in Fig. 6(b). From the
container the grout is injected to the actual set-up consisting of a
network of pipes of different diameters. At the other end of the network
the pipes are open. The network was constructed of pipes connected to
each other. As shown in Fig. 6(c), pipes of three different radii
(0.29 mm, 0.43 mm and 0.89 mm) have been used in the network.
Two different grout fluid have been used in the experiment. The
rheological parameters of grout fluid 1 are: the initial yield stress is
1 Pa, initial viscosity is 0.7 Poise, critical diameter for filtration
phenomenon is 898 µm. The same parameters for grout fluid 2 are
1.3 Pa, 1.2 Poise and 110 µm, respectively32. Three tests were con-
ducted in Experiment 2: test No. 1 and test No. 2 used fluid 1 and fluid
2 under injection pressure of 100 kPa, respectively, while test No. 3
used fluid 1 under injection pressure of 50 kPa32.

Fig. 4. Illustration of grout propagation using GroutIUT2D algorithm.
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3.3. Comparison

GroutIUT2D simulations have been carried out in such a way that a
direct comparison between experiments and simulations could be
performed. Due to the symmetry, only a half or a quarter of the model
is modeled. Fig. 7 shows the visual comparison between the simulated

and experimental results. More comparison between GroutIUT2D

simulations and laboratory experiments are provided in Fig. 8.
Fig. 8(a) compares results of experiment 1 with the GroutIUT2D

simulation at 2.5, 6, 22, 65 and 1400 s. The simulated propagation
surface closely matches the experimental data. The simulation also
indicates that the propagation surface starts to get stabilized after

Fig. 5. A grouting process simulated in a 25 m × 25 m domain of DFN2D using GroutIUT2D program. operation time and initial pressure are (a) 60 s at 50 kPa, (b) 300 s at 50 kPa (c)
300 s at 100 kPa, respectively. (d) a rose diagram of mapped joints.

Table 1
The geometrical / statistical parameters of the generated discrete fracture network.

Number of joint sets Density of fractures (1/
m2)

Fracture dip direction
(Deg)

Average fracture dip (Deg) /
Fisher constant

Average fracture length (m)/ Fractal
dimension

Fracture aperture
(mm)

1 2 43.55 84.29 / 22.57 20.00 / 1.78 0.15
2 2 131.60 84.99 / 13.75 20.00 / 1.78 0.15
3 2 246.30 38.10 / 14.30 20.00 / 1.78 0.15
PDF Uniform Poisson Fisher Power-law Poisson
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1000 s Fig. 8(b-d) compare three tests in experiment 2 with
GroutIUT2D simulations. All experiment data were sampled at 5, 10
and 20 s. Again, evolution of grout propagation surface predicted by
GroutIUT2D closely matches that of the experiment, except for small
deviation in test No. 2.

All these benchmark examples validated the accuracy of the
GroutIUT2D simulations. In the followings, sensitivity analysis will be
performed by the GroutIUT2D to study the influence of model para-
meters.

4. Sensitivity analyses and discussions

Sensitivity analyses are performed in this session to study the
influence of model parameters on grout propagation. In each analysis,
only one parameter varies within a specified range, while all others
remain to be constants.

The constant parameters include the operation time, the initial
yield stress, the grout fluid density, initial viscosity and initial pressure

are 600 s, 2 Pa, 1500 kg/m3, 0.1 Poise and 25 kPa, respectively. Also,
time-dependent hardening of grout fluid is deactivated. The grout fluid
is cement-based and can be described by the Bingham rheological
behavioral model. Geometrical/statistical properties of fractures are
already listed in Table 1. It should be noted that the simulated grout
propagation surface is resulted from arithmetic average over 10
different realizations of discrete fracture networks generated using
the same group of parameters. The uncertainty in numerical simula-
tions is clearly illustrated using error bars showing the arithmetic
average plus/minus one standard deviation in each figure. In general,
uncertainty associated with random realization of DFN is not pro-
nounced. For many simulations, the coefficient of variation is just
around 0.05–0.1.

The sensitivity analyses are carried out for both dry and saturated
conditions for all varying parameters. In the dry and saturated
conditions, the pore fluids are air and water respectively. As shown
in Fig. 9, increasing density of cement-based grout fluid will increase
the propagation surface for both dry and saturated conditions. For the
saturated case, in-situ fluid pore pressure counteracts the grout
propagation. It is only when grout density is greater than 1500 kg/
m3 that the expansion rate of the grout propagation surface signifi-
cantly increases. The observed phenomenon should be related to
increase in grout energy with increase in the grout density. Also,
gravity helps increase propagation surface as the density of the grout
becomes greater than that of the in-situ fluid. Therefore, it is advised to
use heavier grout in the saturated case. On the other hand, the
expansion rate of the grout propagation remains rather linear with
increase in grout density in the dry case.

Fig. 10 shows the effect of initial grouting pressure on the
propagation surface in both conditions. For the dry case, the propaga-
tion surface increases almost linearly with increase in the initial
grouting pressure. For the saturated case, the rate of increase in the
propagation surface becomes significant when the initial pressure is
greater than a threshold value of about 25–50 kPa. The phenomenon is
similar to the previous discussion: it seems that a threshold grout
energy is required to break out the resistance of in-situ fluid pressure to
gain a fast increase in expansion rate of the propagation surface.

The operation time of grouting is an important factor in grouting
operation, which is determined by the user. The variation of operation
time versus the grout propagation surface in the dry and saturated
conditions are examined in Fig. 11. In both cases, the grout propaga-
tion surface increases with time to a limiting value. The corresponding

Fig. 6. (a) A schematic illustration of experimental set-up29. The channel cross section is visible in the right part of the figure. (b) A schematic illustration of laboratory test30 with pipe
radii and lengths in the network.

Fig. 7. Visual comparison between experiment results and GroutIUT2D simulations. (a)
Experiment 1 result for 65 s (b) Simulated result for experiment 1 for 65 s (c)
Experiment 2 no 1 result for 20 s (d) Simulated result for experiment 2 no 1 for 20 s.
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operation time is called “critical time”. Beyond the critical time, the
change in the propagation surface is negligible. For example, increasing
the operation time from 2400 s to 4800 s only results in an increase in
the grout surface area by 2–4%. Therefore, determination of the critical
time could be useful to avoid the waste of money and time in a real
grouting operation.

As seen in the Fig. 12, the grout propagation surface decreases with
increasing grout viscosity. For the Bingham fluid, increase in fluid
viscosity at a constant initial pressure causes decrease in fluid velocity
and fluid kinetic energy consequently. The percentage of reduction in
the propagation surface becomes significant when the grout fluid

Fig. 8. Comparison between GroutIUT2D simulations and the results of (a) experiment
1, (b) experiment 2, test No.1, (c) experiment 2, test No.2, (d) experiment 2, test No.3.

Fig. 9. the variation of density of grout fluid versus the grout propagation surface.

Fig. 10. The variation of initial grout pressure versus the grout propagation surface.

Fig. 11. The variation of operation time versus the grout propagation surface.

Fig. 12. The variation of grout fluid viscosity versus the grout propagation surface.
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viscosity is greater than 0.1 (Poise), which is defined as “critical
viscosity” accordingly.

In order to assess the effect of in-situ pore fluid properties (viscosity
and density), three simulations are compared in Fig. 13. In each
simulation, the model is saturated by a different pore fluid, namely,
water, hydrocarbon fluid and sulfuric acid. Hydrocarbon fluid was
modeled as a Newtonian fluid with viscosity 0.09 Poise and density
850 kg/m3, and sulfuric acid was modeled as a Newtonian fluid with
viscosity 0.24 Poise and density 1840 kg/m3. For reference, the
viscosity of water is 0.01 Poise and density is 1000 kg/m3. As shown
in Fig. 13, the trend of the results seems vary significantly for different
pore fluids. The grout propagation surface in sulfuric acid is the
smallest due to high viscosity and high density of the fluid.

As pointed out before, the grout fluid used in the present sensitivity
analysis is a Bingham fluid. Therefore, initial yield stress of the grout
might also affect the groutability of the model. According to Fig. 14, the
grout propagation surface decreases significantly with increase in the
initial yield stress of the grout fluid. The reason for this trend is similar
to that explained for fluid viscosity.

Fig. 15 shows the propagation surface versus gel induction time of
the grout fluid, as is also compared with the upper-bound case when
hardening is deactivated. Based on these analyses, the grout propaga-
tion surface area would not be much affected if gel induction time is
longer than 600 s.

5. Conclusions

Simulation of grout propagation in a realistic fracture network is an
important yet challenging problem in rock engineering. In the past,
only limited experimental studies have been conducted on simple
fracture networks. Although some empirical equations have been
developed to predict groutability indicators, such as the grout penetra-
tion length given initial conditions, they were calibrated only by very
limited amount of data and cannot be reliably generalized for practical
usage. Therefore, an efficient computer algorithm is much needed to
simulate the grout propagation with changing operational and rheolo-
gical parameters.

GroutIUT2D is such a program that takes advantage of recent
development in Grout Forehead Pressure (EGFP) algorithm and
generalizes it to two–dimensional discrete fracture networks (DFN).
The EGFP algorithm can effectively predict the pressure and the
propagation velocity of the grout forehead, making it a fast and
accurate algorithm for predicting grout penetration in a single fracture.
Furthermore, the effects of the time on grout properties and filtration
phenomena can be easily incorporated in the EGFP algorithm.

An innovative grout propagation algorithm is then developed in
GroutIUT2D to generalize the EGFP to DFN. The algorithm employs a
recursive scheme to track the paths of grout propagation within the
fractures. The grout stops propagating when the forehead pressure is
depleted. The GroutIUT2D algorithm has been successfully validated
using two series of laboratory tests.

Sensitivity analyses have also been performed to study the influence
of model parameters. For both dry and saturated in-situ conditions, the
grout propagation surface generally increases with increase in grout
density, initial pressure and operation time. The influence of grout fluid
viscosity and initial yield stress are also studied. Through the analyses,
critical time and critical viscosity are quantified, which provides very
useful information for the efficiency of the grouting operation. The
program is also capable of investigating some less studied factors,
including rheology properties of the in-situ pore fluid, time-dependent
hardening and initial yield stress of the grout fluid. These factors are also
found to be important for improving efficiency of the grout operation.

It is also noted that due to computational limitations and simplicity,
current study is only limited to two-dimensional analysis. Yet, the
algorithm has great potential to be extended to a three-dimensional
DFN, which will the focus of our future study. Similar to Liang et al.21,
a correction model that translates calculations of grout propagation
from two-dimensional to three-dimensional analysis can be explored in
the future.
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