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Abstract

A novel micromechanics based damage model is proposed to address failure mechanism of defected solids with ran-
domly distributed penny-shaped cohesive micro-cracks (Barenblatt–Dugdale type). Energy release contribution to the
material damage process is estimated in a representative volume element (RVE) under macro hydrostatic stress state.
Macro-constitutive relations of RVE are derived via self-consistent homogenization scheme, and they are characterized
by effective nonlinear elastic properties and a class of pressure sensitive plasticity which depends on crack opening vol-
ume fraction and Poisson�s ratio. Several distinguished features of the present model are compared with Gurson model
and Gurson–Tvergaard–Needleman (GTN) model, showing that the proposed model can better capture material de-
gradation and catastrophic failure due to cohesive micro-crack growth and coalescence.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Damage modeling has been an important sub-
ject in predicting material degradation and failure.
In past decades, numerous constitutive models
with evolving damage effects have been proposed
for various materials. A large number of them are
phenomenological in that damage effects are de-
fined by scalar or tensorial quantities without refer-
ring directly to the microstructure of the material.
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Yet another category of methods use microme-
chanics to relate material microstructure evolution
to its macromechanical behaviors. The popular
Gurson model [11,12] and its later extensions
[26–29] are such examples. The most distinguished
feature of the Gurson model is that its effective con-
stitutive relation at macro-level differs from the
constitutive relation at micro-level. Microscopi-
cally material�s failure mechanism is governed by
void growth, while at the macro-level the statisti-
cally averaged effective response is characterized
as pressure sensitive plasticity which depends on a
damage indicator—the volume fraction of the void
in a representative volume element (RVE).
ed.
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In principle, a more realistic micromechanics
model and a feasible homogenization scheme
should lead to a better constitutive law at macro-
level. For Gurson model, failure mechanism due
to void growth is supported by many experimental
observations on failures of ductile materials (e.g.
[8,10,20,24,29]). On the other hand, in most brittle,
quasi-brittle, and even some ductile materials
(such as concrete, rocks, ceramics and some met-
als), material�s failure mechanism may be attrib-
uted to propagation, nucleation and coalescence
of micro-cracks as well. Although several micro-
crack based damage models have been proposed
to describe elastic damage processes (e.g.
[4,9,15,16,19] and others), few micro-crack dam-
age models are available for inelastic damage
processes.

The motif of contemporary micromechanics is
aimed at discovering unknown but important
effective constitutive information by homogenizing
massive numbers of micro-objects with simple
structures. In this paper, new cohesive damage
models are derived based on homogenization of
randomly distributed penny-shaped cohesive cracks
(Barenblatt–Dugdale type [1,2,7]) in an elastic
RVE. At micro-level, the cohesive damage model
mimics realistic interactions among atomistic bond
forces at crack tips, hence it may capture the over-
all damage effects due to crack opening and
propagation.

In general, damage means material degradation
caused by defects or deformation. Damage may be
defined as surface separations, permanent lattice
distortion, various irreversible effects due to endo-
chronic dissipation etc. In the context of this
paper, the term damage is strictly referred to the
material degradation due to specific defect—per-
manent crack opening, or volume fraction of per-
manent micro-crack opening, which may be
viewed as a second phase in a composite material.
This definition of damage has been extensively
used in engineering literature. The definition of
damage used in Gurson model (e.g. void growth)
belongs to this category as well.

To distinguish the damage caused by deviatoric
stress, such as dislocation, disclination, and sur-
face sliding, with the damage caused by hydro-
static stress, such as permanent crack opening,
may simplify constitutive modeling. Of course in
reality, material damage may be susceptible and
related to both hydrostatic and deviatoric stress
states and it is sensitive to their combinations.
However, it is a reasonable approximation to as-
sume that the damage due to permanent crack
opening is only related to hydrostatic stress state,
which renders a tractable homogenization solu-
tion.

Throughout this paper, vectors and tensors are
denoted as bold-face letters, while their compo-
nents are written as italic. The symbol � Æ � denotes
inner product of two vectors a Æ b = aibi or con-
traction of adjacent indices of a vector and a ten-
sor (e.g. n Æ r = nirij). The symbol �:� denotes an
inner product of two second-order tensors (e.g.
c:d = cijdij) or a double contraction of adjacent
indices of tensors of rank two and higher (eg.
C:e = Cijklekl).
2. Average theorem for an RVE with cohesive

cracks

One of the fundamental concept in classical
micromechanics is so called representative volume
element (RVE). An RVE for a material point usu-
ally contains a very large number of microstruc-
tures and it is statistical representative of the
local continuum properties. Despite heterogeneity
of microstructures, averaged stress or strain prop-
erties of an RVE can be derived under specific
boundary conditions. For an RVE with randomly
distributed cohesive cracks inside, traditional
micromechanics averaging theory for traction-free
defects [23] cannot be applied. In this section, aver-
aging theorem for RVE containing cohesive de-
fects with constant cohesive traction would be
derived for our purpose.

Define the volume average operator h Æ i, and
define macro stress tensor R as the volume average
of micro stress tensor in an RVE,

R ¼ hri ¼ 1

V

Z
V
rdV ð1Þ

First, consider the average stress in a three-dimen-
sional elastic RVE with a single penny-shaped
Barenblatt–Dugdale crack at the center. Neglect-



Fig. 1. Randomly distributed micro-cracks within an RVE.
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ing body force, the equilibrium equation inside an
RVE takes the form

r � r ¼ 0 8x 2 V ð2Þ
Assume that the prescribed tractions on the re-
mote boundary of the RVE (oV1) are generated
by a constant stress tensor r1. Let oVec denote
traction-free part of a cohesive crack surface,
and let oVpz denote the cohesive part of the crack
surface where constant traction force t is applied.
Using divergence theorem and Eq. (2), it is
straightforward to show that

hri ¼ 1

V

Z
V
rdV ¼ 1

V

Z
V
fr � ðr� xÞgT dV

¼ 1

V

Z
V
r1 dV �

Z
oV ec

fn � ðr� xÞgT dS
�

�
Z
oV pz

fn � ðr� xÞgT dS
�

¼ r1 � 1

V

Z
oV pz

fn � ðr� xÞgT dS

¼ r1 � 1

V

Z
oV pz

x� tdS ð3Þ

where t is the constant cohesive traction.
Note that oVpz = oVpz+ [ oVpz� and the sur-

face areas joV pzþj ¼ joV pz�j ¼ 1
2
joV pzj, where sub-

script �+� and ��� are used to distinguish upper
and lower part of the crack surfaces. So the last
term in Eq. (3) becomes

1

V

Z
oV pz

x� tdS¼ 1

V

Z
oV pzþ

x� tþdSþ
Z
oV pz�

x� t�dS

 !

¼ 1

2V
x�ðtþþ t�Þ j oV pz j¼ 0 ð4Þ

where t+ = �t� are the cohesive tractions acting
on oVpz+ and oVpz� respectively.

Therefore, the average stress inside the RVE
will equal to remote stress

R ¼ hri ¼ r1 ð5Þ
By superposition, it is straightforward to generate
this result to an RVE with N cohesive cracks ran-
domly distributed inside (see Fig. 1),

hri ¼ r1 � 1

V

XN
a¼1

Z
oV ðaÞ

pz

x� tðaÞ dS ¼ r1 ð6Þ
Hence, the averaging theorem follows:

Theorem. Suppose

1. an elastic representative volume element contains

N Barenblatt–Dugdale penny-shaped cracks with

cohesive tractions in the cohesive zones;

2. the tractions on the remote boundary of the RVE

is generated by a constant stress tensor, i.e.,

t1 = n Æ r1 and r1 is constant.

Then, macro stress of the RVE equals to the remote

constant stress, i.e. R = hri = r1.
3. Penny-shaped crack under uniform triaxial

tension

Before homogenization, the analytical solution
of three-dimensional (3D) penny-shaped crack in
an RVE that is under uniform triaxial tension is
outlined in this section (see Fig. 2).

Penny-shaped Dugdale crack problem has been
studied by several authors. The early contribution
was made by Keer and Mura, who used the Tresca
yield criterion to link the cohesive strength to
micro yield stress [17]. In their study, only uniaxial
tension loading was considered. More recently,



Fig. 2. A penny-shaped cohesive crack in representative
volume element (the shaded region: cohesive zone—yielded
ring).
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Chen and Keer re-examined the problem, and they
obtained general solutions for a penny-shaped
cohesive crack under mixed-mode loading [5,6].
On the other hand, however, the problem has
not been thoroughly examined from microme-
chanics perspective. For example, the connection
among the onset value of cohesive strength, micro
yield stress in an RVE, and remote macro stress
has not been made. By examining a cohesive
penny-shaped crack in an RVE, the study provides
a link among cohesive strength, yield stress of vir-
gin material, and remote stresses on the boundary
of an RVE, which provides foundation for ensuing
homogenizations.

Consider a three-dimensional penny-shaped
Dugdale crack of radius a with a ring-shaped cohe-
sive zone with width b � a in an RVE, which may
be viewed as an infinite isotropic space by ‘‘a
micro-observer ’’ inside the RVE.

Let the outward normal to crack surface paral-
lel to Z(X3) axis (see Fig. 2) and uniform triaxial
tension stress is applied at the remote boundary
of the RVE, i.e.

r1 ¼ r1Ið2Þ ð7Þ
uzðrÞ ¼
2
p

1�v�

l�

� �
Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

p
� r0

R b
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

p
=
ffiffiffiffiffiffiffiffiffiffiffi
t2 � r

p�
2
p

1�v�

l�

� �
Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

p
� r0

R b
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

p
=
ffiffiffiffiffiffiffiffiffiffiffi
t2 � r

p�
8><
>:
where I(2) = dijei � ej is the second-order identity
tensor. By the averaging theorem, it is obvious that
mean macro stress, defined as Rm ¼ 1

3
Rkk, equals

applied remote stress,

Rm ¼ r1 ð8Þ
In cylindrical coordinate, the traction conditions
on the remote boundary oV1 and symmetric dis-
placement boundary condition are expressed as

rzzjoV 1
¼ rhhjoV1

¼ rrrjoV 1
¼ Rm ð9Þ

uzðr; h; 0Þ ¼ 0 for b 6 r; 0 6 h 6 2p ð10Þ
The stress distribution on the crack surface and
cohesive zone is

rzzðr; h; 0Þ ¼ r0Hðr � aÞ
for 0 6 r 6 b; 0 6 h 6 2p ð11Þ

where Rm is the remote stress, H(r � a) is the
Heaviside function, and r0 is the material�s cohe-
sive strength, the onset value for crack opening,
and it is different from the micro yielding stress.
The problem can be solved via superposition of
two sub-problems: a trivial problem—an intact
RVE in uniform triaxial tension state, i.e. "x2V,

rð0Þ
zz ¼ rð0Þ

hh ¼ rð0Þ
rr ¼ Rm ð12Þ

rð0Þ
rz ¼ rð0Þ

rh ¼ rð0Þ
zh ¼ 0 ð13Þ

and a crack problem—an RVE with a center crack
that is subjected to the following boundary condi-
tions (see Fig. 3):

rðcÞ
zz joV1

¼ rðcÞ
hh joV1

¼ rðcÞ
rr joV1

¼ 0 ð14Þ

rðcÞ
zz ðr; h; 0Þ ¼ �Rm þ r0Hðr � aÞ
for 0 6 r 6 b; 0 6 h 6 2p ð15Þ

uðcÞz ðr; h; 0Þ ¼ 0 for b 6 r; 0 6 h 6 2p ð16Þ
For the crack problem, the crack opening displace-
ment could be solved as
ffiffi
2 dt
�
; 0 < r < affiffi

2 dt
�
; a < r < b

ð17Þ



Fig. 4. Projection domain of crack surface and cohesive zone.

Fig. 3. Illustration of superposition of cohesive crack problem.
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In the yield ring (z = 0 and a < r < b), stress dis-
tributions are found as

rðcÞ
zz ¼ r0 � Rm ð18Þ

rðcÞ
rr ¼ � 1þ 2v�

2
Rm

þ 1� 2v�

2
1þ a2

r2

� �
þ 2v�

� 	
r0 ð19Þ

rðcÞ
hh ¼ � 1þ 2v�

2
Rm

þ 1� 2v�

2
1� a2

r2

� �
þ 2v�

� 	
r0 ð20Þ

rðcÞ
rz ¼ rðcÞ

rh ¼ rðcÞ
zh ¼ 0 ð21Þ

where Poisson�s ratio v*, to be treated as either
overall or matrix material property, is unspecified
at this moment, which may depend on the later
homogenization procedures.

To ensure the stresses at crack tip to be finite,
the size of the cohesive zone a/b, macro stress
Rm, and the cohesive stress r0 are related through
the following expression:

a
b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

m

r2
0

s
or

Rm

r0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

b2

s
ð22Þ

Denote the projection of traction-free crack sur-
face onto X1X2 plane as X1, and the projection
of the cohesive zone (ring shape) as X2. The total
volume of crack opening by a single cohesive crack
is the integration of crack opening displacement
over the entire projection area, X = X1 [ X2 (see
Fig. 4). It is readily to show that

V c ¼
Z
X
½uz�dS ¼

Z
X1

½uz�dS þ
Z
X2

½uz�dS

¼ 8ð1� v�Þ
3l� b3 Rm � r0ð1� ða=bÞ2Þ3=2

h i

¼ 8ð1� v�Þ
3l� a3

Rmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðRm=r0Þ2

q ð23Þ

where the crack opening displacement, COD, is
defined by

½uz� ¼ uþz � u�z ¼ 2uz ð24Þ
If one is mainly interested in inelastic deformation
of quasi-brittle materials, it may be assumed that
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micro-scale yielding due to hydrostatic stress state
is small-scale yielding: a

2

b2
� 1. For a 6 r 6 b, a

2

r2 � 1.
The total stress distribution within cohesive zone
(a 6 r 6 b) may be approximated as

rðtÞ
zz ¼ rð0Þ

zz þ rðcÞ
zz ¼ r0 ð25Þ

rðtÞ
rr ¼ rð0Þ

rr þ rðcÞ
rr ¼ 1� 2v�

2
Rm þ r0 ð26Þ

rðtÞ
hh ¼ rð0Þ

hh þ rðcÞ
hh ¼ 1� 2v�

2
Rm þ 2v�r0 ð27Þ

rðtÞ
rz ¼ rðtÞ

rh ¼ rðtÞ
zh ¼ 0 ð28Þ

It is assumed that inside the cohesive zone micro
plastic yielding is controlled by the Huber–von
Mises criterion. Therefore, one can link the cohe-
sive strength, r0, with the yield stress of the virgin
material, rY, by

1

2
rðtÞ
rr �rðtÞ

zz


 �2 þ rðtÞ
hh �rðtÞ

zz

� �2
þ rðtÞ

rr �rðtÞ
hh

� �2� 	
¼ r2

Y

ð29Þ
Substitute Eqs. (25)–(27) into (29) and solve for r0.
The following quadratic equation may be obtained:

4
r0

Rm

� �2

� 2
r0

Rm

� �
þ 1� 2

1� 2v�
rY

Rm

� �2

¼ 0

ð30Þ
which has two roots. The positive root is chosen to
link the cohesive stress r0 with the yield stress rY
of virgin material in uniaxial tension,

r0

Rm

¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

1� 2v�
rY

Rm

� �2

� 3

s

4
ð31Þ
4. Effective elastic material properties of an RVE

One of the goals of homogenization is to find the
effective material properties of an RVE to charac-
terize the constitutive relation of stress and strain
relation at the macro-level. Conjugate to the macro
stress R, the macro strain E is defined through the
overall complementary energy densityW c of an RVE

E ¼ oW c

oR
ð32Þ
Define the effective compliance D of the micro-
cracked RVE through

E ¼ D : R ¼ D : r1 ð33Þ

where the macro stress R = r1, according to aver-
age theorem, is regarded as prescribed. It is noted
that the macro strain of an RVE may not be the
volume average strain, i.e, E 5 hei. Furthermore
Eq. (33) may not be a linear relationship, because
D may depend on R in general, which will be sub-
stantialized in later sections.

A common strategy for homogenization of ran-
domly distributed defects is to divide the macro
strain E into two parts,

E ¼ eð0Þ þ eðaÞ ð34Þ

where e(0) = D:R is known, and D is the elastic
compliance of the corresponding virgin material.
The second term e(a) is so-called additional strain
tensor representing the effect of defects. If the rela-
tionship between additional strain and macro
stress can be found, say e(a) = H:R, where H is
the added compliance due to micro-cracks, subse-
quently the effective elastic compliance moduli,
D ¼ DþH, can be deduced.

Energy method is applied to find an additional
strain formula for cohesive cracks. The essence
of energy methods is to find the energy release in
a cohesive fracture process and hence to find the
equivalent reduction of material properties. For
elastic cracks, the energy release rates were dis-
cussed in the classical works of Rice and his
co-worker [3,25,26]. Nevertheless, the energy dissi-
pation process of cohesive fracture is much more
complicated than a purely elastic fracture process.
It includes energy dissipation from both surface
separation and plastic dissipation. A related dis-
cussion can be also found in [18,22,31].

Although accurate determination of energy loss
during a damage process requires an in-depth
understanding of the physical process involved,
an upper bound estimate may be made based on
simplified assumptions. It is assumed that the total
energy release of a cohesive crack is completely
consumed in surface separation, which may or
may not be true in cohesive fracture, because of
plastic dissipation in the cohesive zone.
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Subjected to uniform triaxial loading r1 =
RmI

(2), the total energy release rate of an RVE with
a single penny-shaped cohesive micro-crack can be
estimated as

R ¼
Z
X
Rm½uz�dS �

Z
X2

r0½uz�dS ð35Þ

Carrying out the integration using crack displace-
ment solutions Eqs. (17), the energy release esti-
mate can be written as following expression:

R ¼ 16ð1� v�Þ
3l� r2

0a
3
a 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðRm=r0Þ2

q� �
ð36Þ

Consider that there are N penny-shaped cracks in-
side the RVE. The density of energy release of the
RVE is estimated as sum of each crack contribu-
tion, i.e. R ¼

PN
a¼1Ra. Define the crack opening

volume fraction as

f ¼
XN
a¼1

4pa3a
3V

b ð37Þ

where aa is the radius of the ath crack, and 4pa3a=3
is the volume of a sphere with radius aa, and b is
the ratio between the volume of permanent crack
opening and the volume of total crack opening
of a cohesive crack. For simplicity, it is assumed
that this ratio is fixed for every crack inside an
RVE. Obviously, 0 < b < 1.

By Eqs. (36) and (37), the density of energy re-
lease estimate can be written as

R
V

¼ 16ð1� v�Þ
3l�b

r2
0

XN
a¼1

4pa3a
3V

b

� �

� 3

4p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðRm=r0Þ2

q� �

¼ 4ð1� v�Þ
bpl� r2

0f 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðRm=r0Þ2

q� �
ð38Þ

The overall complementary energy density may
then be expressed as the sum of complementary
energy density of corresponding virgin material
and the density of energy release estimate due to
micro-crack distribution,

W
c ¼ W c þ R

V
¼ 1

2
r1 : D : r1 þ 4ð1� v�Þ

bpl� r2
0f

� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðRm=r0Þ2

q� �
ð39Þ
Based on definition (32) and the averaging
theorem, for a given crack opening volume frac-
tion, f, the elastic macro strain tensor can be ob-
tained as

E ¼ oW
c

oR
¼ oW

c

or1 ¼ D : r1 þ oðR=V Þ
oðRmÞ

oðRmÞ
or1

¼ D : r1 þ 4ð1� v�Þ
3bpl� f

RmI
ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðRm=r0Þ2
q ð40Þ

It is noted that Eq. (40) holds only when the
RVE is under hydrostatic stress state, i.e.,
r1 = RmI

(2). One can find the expression for addi-
tional strain as

eðaÞ ¼ 4ð1� v�Þ
3bpl� f

RmI
ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðRm=r0Þ2
q ð41Þ

A bonafide self-consistent scheme should take into
account micro-crack interaction (see [4,13,14]).
Since the micro-crack distribution is isotropic,
the damaged RVE should also be considered as
isotropic at micro-level. The micro-crack interac-
tion effect could be captured by taking l� ¼ �l
and v� ¼ �v in all above derivations, where �l and
�v are effective shear modulus and effective Pois-
son�s ratio in an RVE. Recast Eq. (41) into a more
general form

eðaÞ ¼ H : R ð42Þ
so

E ¼ D : R ¼ ðDþHÞ : R ð43Þ
where H is an isotropic tensor, which may be writ-
ten in a general form as

H ¼ h1
3
Ið2Þ � Ið2Þ þ h2I

ð4sÞ ð44Þ

where I(2) = dijei � ej and

Ið4sÞ ¼ 1
2
ðdikdjl þ dildjkÞei � ej � ek � el

are second- and fourth-order identity tensors
respectively. Parameters h1 and h2 will be specified
later.

Decompose the moduli into volumetric and
deviatoric parts

D ¼ 1

3K
E1 þ 1

2l
E2 ð45Þ
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D ¼ 1

3K
E1 þ 1

2�l
E2 ð46Þ

H ¼ ðh1 þ h2ÞE1 þ h2E
2 ð47Þ

where E1 ¼ 1
3
Ið2Þ � Ið2Þ, E2 ¼ � 1

3
Ið2Þ � Ið2Þ þ Ið4sÞ.

Since the traction stress state on the remote
boundary of the RVE is hydrostatic, H tensor in
Eq. (44) cannot be uniquely determined in this
case. Information carried in Eq. (43) is only volu-
metric and admits only one scalar relation,

D : RmI
ð2Þ ¼ ðDþHÞ : RmI

ð2Þ ð48Þ
Consider Eq. (34) and identities E1 : I(2) = I(2) and
E2 : I(2) = 0. By virtue of Eqs. (41) and (48), it
can be shown that

1

3K
¼ 1

3K
þ ðh1 þ h2Þ

¼ 1

3K
þ 4ð1� �vÞ

3bp�l
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðRm=r0Þ2
q ð49Þ

There are two unknowns, K and �l, or equivalently
h1 and h2 in Eq. (49). Additional condition is
needed to uniquely determine D or H. Impose
the restriction that the relative reduction of the
shear modulus is the same as that of the bulk
modulus,

K
K

¼ �l
l

ð50Þ

This restriction further guarantees the positive def-
initeness of the overall strain energy.

Consider the relations

1

3K
¼ 1� 2v

E
and

1

3K
¼ 1� 2�v

E
1

2l
¼ 1þ v

E
and

1

2�l
¼ 1þ �v

E

ð51Þ

A direct consequence of Eq. (50) is �v ¼ v, so

1

3K
¼ 1

2�l
1� 2�v
1þ �v

� �
¼ 1

2�l
1� 2v
1þ v

� �
1

3K
¼ 1

2l
1� 2v
1þ v

� � ð52Þ

which, when substituted into Eq. (49), leads to the
estimates of effective elastic moduli
K
K

¼ �l
l
¼ 1� 8ð1� v2Þ

3bpð1� 2vÞ
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðRm=r0Þ2
q ð53Þ
5. Micro-cohesive-crack damage model

Homogenization of nonlinear problems is often
difficult. Without proper statistical closure, aver-
aging along may not be sufficient to provide sensi-
ble results. In this paper, it is postulated that there
is a limit for the amount of distortional energy that
a given material ensemble can store. This reflects
in the following hypothesis on the condition of
macro-yielding:

The macroscopic yielding of an RVE begins when

the distortional strain energy density of an RVE

reaches to a threshold. In other words, the maximum

elastic distortional energy of an RVE is a material
constant,

Ud 6 U cr
d ð54Þ

It is noted that above criterion is a reminiscence
of the Hencky�s maximum distortional energy
principle in traditional infinitesimal plasticity.
The criterion can be calibrated using an uniaxial
tension test of the virgin material

U cr
d ¼ 1

6l
r2
Y ð55Þ

Define the macro deviatoric stress tensor and its
second invariant as

R0 ¼ R� 1
3
RkkI

ð2Þ ð56Þ

J 2 ¼ 1
2
R0 : R0 ð57Þ

and the equivalent macro stress Req is defined as

Req ¼
ffiffiffiffiffiffiffi
3J 2

p
ð58Þ

In a real damage evolution process, the above cri-
teria take the following form:

Ud ¼
J 2

2�l
¼

R2
eq

6�l
6 U cr

d ð59Þ

So the criterion of the maximum distortional en-
ergy density of an RVE becomes

R2
eq

r2
Y

¼ �l
l

ð60Þ
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Using Eq. (53), one may derive the following effec-
tive yielding potential:

WðReq;Rm; qÞ ¼
R2

eq

r2
Y

þ 8ð1� v2Þ
3bpð1� 2vÞ

� fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðRm=r0Þ2

q � 1 ¼ 0 ð61Þ

where Req and Rm are defined as the equivalent
macro stress and mean macro stress, and q repre-
sents the other internal variables, which may be
implicitly embedded in rY.

In terms of the stress ratio Rm/rY, the effective
yielding potential function of plastic flow W can
be recast as

WðReq;Rm; qÞ

¼
R2

eq

r2
Y

þ 8ð1� v2Þf
3bpð1� 2vÞ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rY

ð1�2vÞRm

� �2
� 3

r

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4rY
ð1�2vÞRm

� �2
� 3

r !2

� 16

0
@

1
A

1
2

� 1 ¼ 0

ð62Þ

The newly derived pressure-sensitive yielding
function W, is displayed in Fig. 5 with different
Poisson�s ratios. It should be mentioned that the
self-consistent scheme based damage model W will
fail at v = 0.5, since for incompressible materials,
uniform triaxial tension load will not be able to
produce dilatational strain energy.

In Fig. 6, the cohesive damage model is juxta-
posed with the popular Gurson model [12], whose
effective yield function takes the following form:

U ¼
R2

eq

r2
Y

þ 2f cosh
3

2

Rm

rY

� �
� ð1þ f 2Þ ¼ 0 ð63Þ

Both yield functions will reduce to classical J2
plasticity when f = 0. However, it is worth noticing
that for the limit case of infinitesimal amount of
damage (i.e. f ! 0), the proposed cohesive damage
model predicts yielding of material when the stress
ratio of hydrostatic stress and the cohesive strength,
or equivalently the ratio of hydrostatic stress and
true yield stress, approaches a finite value, i.e.
Rm

r0

! 1 or
Rm

rY

! 4ffiffiffiffiffi
12

p
ð1� 2vÞ

ð64Þ

For Gurson model, when the amount of damage is
infinitesimal the material will not yield unless the
hydrostatic stress becomes infinite. The asymptotic
yielding potentials for infinitesimal damage are
highlighted as dashed lines in Fig. 6(c) and (d).
Obviously, the Gurson model is not realistic, be-
cause any material will fail when the remote load
exceeds the material�s theoretical strength.

In the followings, features of the present model
will be explored in the framework of continuum
mechanics. The macro response the reversible part
of effective constitutive relation is characterized as
a nonlinear elasticity, whereas the irreversible part
of effective constitutive relation is a form of pres-
sure-sensitive plasticity. The rate form of constitu-
tive relation for damaged materials is written as

_R ¼ C : ð _E� _E
pÞ ð65Þ

where C is the effective elastic moduli and
C ¼ D

�1
; _E and _E

p
are the average rate of total

deformation and the average rate of plastic defor-
mation respectively.

The macro plastic flow direction may be given
by the associative rule

_E
p ¼ _kN ð66Þ

where N is the normal of yield surface in stress
space

N ¼ oW
oR

ð67Þ

and the plastic multiplier _k can be determined by
consistency condition as usual,

_k ¼ hN : C : _Ei
N : C : N�Wq �N

ð68Þ

where Wq ¼ oW
oq
, h Æ iis the Macauley bracket, and q

are internal variables whose evolutions are as-
sumed to be governed by

_q ¼ _khðR; qÞ ð69Þ

The damage evolution law for micro-cracks in a
cohesive elastic environment may be significantly
different from that of voids in a perfectly viscoplas-
tic environment. For this moment, conventional



Fig. 5. Cohesive micro-crack damage model, W(Req, Rm, q), with different Poisson�s ratios (b = 1/3).

312 G. Wang, S.F. Li / Theoretical and Applied Fracture Mechanics 42 (2004) 303–316
damage evolution law is adopted. Let the volume
of the RVE be denoted as V = Vm + Vc, where
Vc is the crack opening volume and Vm is the vol-
ume of matrix. Assuming the total rate change of
the crack volume is proportional to the volume rate

change in an RVE, i.e.

_V c ¼ c _V ð70Þ
where c is the proportionality constant. Then

_f ¼ d

dt
V c

V

� �
¼ ðc� f Þ

_V
V

¼ ðc� f Þtraceð _EÞ ð71Þ

Assume a specimen is originally intact (i.e. f = 0),
and it is subjected to an uniaxial tension test under
displacement control. The onset of material dam-
age, which is physically initiation and propagation
of micro-cohesive-cracks, will occur after the spec-
imen first reaches its yield limit (rY, eY).
Let r and e denote axial stress and axial strain

of the specimen, it is obvious that Req = r,
Rm = r/3 and traceð _EÞ ¼ ð1� 2vÞ_e. Eq. (71) is
used to describe post-elastic damage evolution
process, and for the purpose of illustration one
can simply choose c = 1. Integrate the rate form,
volume fraction f could therefore be deduced from
a given axial strain e,

f ¼ 1� 1

expðð1� 2vÞðe� eYÞÞ
ð72Þ

The corresponding axial stress during persistent
plastic loading could be derived via solving yield-
ing potential functions W(r, e) = 0 or U(r, e) = 0.

In Figs. 7 and 8, the predicted post-elastic mate-
rial behaviors of the present model and Gurson
model are plotted for various Poisson�s ratios.
For clarity, initial yield strain eY is neglected in



Fig. 6. Comparison between cohesive model W and Gurson model U.
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all plots. Significant differences between these
models solely stem from use of different yield pot-
entials. It is shown that for all Poisson�s ratios, the
present cohesive crack model predicts similarly
quasi-linear degradation at initial stage. As dam-
age develops, specimen collapses catastrophically
at a certain strain limit. In another word, the model
is able to predict a critical volume fraction ff at
which complete failure of material would occur.
The predicted ff for different Poisson�s ratio is
summarized in Table 1.

It is well known, also as shown in Fig. 8,
Gurson model has limitation unable to capture this
catastrophic failure. As a sharp contrast, Gurson
model predicts quite gentle softening responses.
It is also worth mentioning that, as material ap-
proaches incompressible limit, i.e. Poisson�s ratio
is very close to 0.5 (v = 0.499 in Figs. 7 and 8),



Fig. 9. Comparison of model predictions (v = 0.3).

Fig. 8. Gurson model prediction of axial stress and strain for
different Poisson�s ratios.

Fig. 7. Cohesive model prediction of axial stress and strain for
different Poisson�s ratios.

Table 1
Predicted critical volume fraction for different Poisson�s ratios

v 0.100 0.200 0.300 0.400 0.499
ff 0.632 0.489 0.343 0.186 0.002
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volume fraction change throughout the tension
test is very tinny according to Eq. (72). Gurson
model reduces to J2 plasticity and fail to predict
any damage effect. While for the present model,
because yielding potentials also depend on Poisson�s
ratio, it is still able to capture softening behavior at
the nearly incompressible limit.

To account for the rapid void coalescence at
failure, Tvergaard and Needleman extended origi-
nal Gurson model by introducing parameters q1,
q2 and f*. As a modification of Eq. (63), the yield-
ing potential function of Gurson–Tvergaard–Nee-
dleman (GTN) model [30] is written as

U� ¼
R2

eq

r2
Y

þ 2q1f
� cosh

3q2
2

Rm

rY

� �
� ð1þ q21f

�2Þ ¼ 0

ð73Þ
where f* is specified as a piecewise function of f via

f � ¼

f for f 6 fc

fc þ
1=q1 � fc
ff � fc

ðf � fcÞ for f c < f 6 ff

1=q1 for f f < f

8>>><
>>>:

ð74Þ
Note that fc and ff are volume fractions at onset of
void coalescence and total failure respectively.
They are regarded as material constant and need
to be specified. It is seen that as volume fraction f

grows towards its failure value ff and f* approaches
1/q1 the yield surface for macro stresses shrinks to
a point, so material is ‘‘preprogrammed’’ to fail at
f = ff. So in GTNmodel, effects of void coalescence
and total failure are addressed by scaling and inter-
polation, while failure prediction is embedded in
the cohesive cracked model.
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Predictions of all three models are plotted in
Fig. 9 for Poisson�s ratio v = 0.3. For simply illus-
trative purpose, parameters for GTN model are
chosen as q1 = 1.5, q2 = 1, and ff = 0.343, fc =
ff/3. It is noted that above ff value is chosen on
purposely to be the same as that predicted by
cohesive crack model. Although GTN matches
cohesive model at both ends (of course), its
undergoes an abrupt change once f exceeds fc.
Damage process towards failure is piecewise qua-
si-linear and catastrophic failure effect is still
absent.
6. Concluding remarks

In this paper, a novel micromechanics based
damage model is proposed for addressing failure
mechanism of defected solids with randomly dis-
tributed penny-shaped cohesive micro-cracks
(Barenblatt–Dugdale type). The distinguished fea-
tures of the present cohesive crack damage models
are:

• Homogenized macro-constitutive relations are
different from the micro-constitutive relations:
the reversible part of macro-constitutive rela-
tion is nonlinear elastic versus the linear elastic
behaviors at micro-level; the irreversible part of
macro-constitutive relation is a form of pressure
sensitive plasticity versus the Huber–von Mises
plasticity or cohesive laws at micro-level.

• In cohesive damage models, the effective yield
surfaces depend on materials Poisson�s ratio;
whereas in the Gurson model, no such depend-
ence can be predicted, because of its assumption
of RVE is perfectly plastic. Different asymptotic
yield surfaces are also observed for the case of
infinitesimal damage.

• Comparison of the present model with Gurson
model and Gurson–Tvergaard–Needleman
(GTN) model for a simple loading shows that,
the present model can predict a critical volume
fraction at which complete failure of material
would occur. It can model and predict post elas-
tic material degradation and catastrophic fail-
ure due to cohesive micro-crack growth and
coalescence.
The key step in the model development is how
to accurately determine the energy release contri-
bution to the material damage process. The energy
release in nonlinear fracture mechanical process is
consumed in several different dissipation processes,
e.g. surface separation, dislocation movement and
hence plastic dissipation, heat conduction, and
may be even phase transformation, etc. In fact,
both Kfouri [18] and Wnuk [31] have studied
energy release caused by the extension of Dugdale-
BCS cracks in a two-dimensional space. To incor-
porate those available results into the current
formulation, an in-depth study may be needed to
refine the damage models proposed here. A de-
tailed companied mathematical exposition on
cohesive damage model is reported in Li and
Wang [21].
Acknowledgment

This work is supported by a research fund to
Professor Shaofan Li by the committee on re-
search in University of California at Berkeley,
which is appreciated.
References

[1] G.I. Barenblatt, The formation of equilibrium cracks
during brittle fracture, Journal of Applied Mathematics
& Mechanics 23 (1959) 622–636, English translation from
PMM 23 (1959) 434–444.

[2] G.I. Barenblatt, Mathematical Theory of Equilibrium
Cracks in Brittle Fracture, Advances in Applied Mechan-
ics, vol. 7, Academic Press, 1962, pp. 55–129.

[3] B. Budiansky, J.R. Rice, Conservation laws and energy
release rates, Journal of Applied Mechanics 26 (1973) 201–
203.

[4] B. Budiansky, R.J. O�Connell, Elastic moduli of a cracked
solid, International Journal of Solids and Structures 12
(1976) 81–97.

[5] W.R. Chen, L.M. Keer, Fatigue crack growth in mixed
mode loading, ASME Journal of Engineering Materials
and Technology 113 (1991) 222–227.

[6] W.R. Chen, L.M. Keer, Mixed-mode fatigue crack prop-
agation of penny-shaped cracks, ASME Journal of Engi-
neering Materials and Technology 115 (1993) 365–372.

[7] D.S. Dugdale, Yielding of steel sheets containing slits,
Journal of Mechanics and Physics of Solids 8 (1960) 100–
104.



316 G. Wang, S.F. Li / Theoretical and Applied Fracture Mechanics 42 (2004) 303–316
[8] J.D. Duva, J.W. Hutchinson, Constitutive potentials for
dilutely voided nonlinear materials, Mechanics of Mate-
rials 3 (1984) 41–54.

[9] N. Fleck, Brittle fracture due to an array of microcracks,
Proceedings of Royal Society of London Series A 432
(1991) 55–76.

[10] M. Gologanu, J.B. Leblond, J. Devaux, Recent extensions
of Gurson�s model for porous ductile metals, in: P. Suquet
(Ed.), Continuum Micromechanics, Springer-Verlag, 1995,
pp. 61–130.

[11] A.L. Gurson, Plastic flow and fracture behavior of
ductile materials incorporating void nucleation, growth
and interaction, Ph.D. Thesis, Brown University, RI,
1975.

[12] A.L. Gurson, Continuum theory of ductile rupture by void
nucleation and growth: Part I. Yield criteria and flow rules
for porous ductile materials, Journal of Engineering
Materials and Technology 99 (1977) 2–15.

[13] R. Hill, Theory of mechanical properties of fiber-strength-
ened materials—III: Self-consistent model, Journal of
the Mechanics and Physics of Solids 13 (1965) 189–
198.

[14] R. Hill, A self-consistent mechanics of composite materi-
als, Journal of the Mechanics and Physics of Solids 13
(1965) 213–222.

[15] J.W. Hutchinson, Crack tip shielding by micro-cracking in
brittle solids, Acta Metallurgica 35 (1987) 1605–1619.

[16] M. Kachanov, Elastic solids with many cracks and related
problems, in: J.W. Hutchinson, T. Wu (Eds.), Advances in
Applied Mechanics, vol. 32, Academic Press, New York,
1994, pp. 259–445.

[17] L.M. Keer, T. Mura, Stationary crack and continuous
distributions of dislocations, in: Proceedings of The First
International Conference on Fracture, vol. 1, The Japanese
Society for Strength and Fracture of Materials, 1965,
pp. 99–115.

[18] A.P. Kfouri, Crack separation energy-rates for the DBCS
model under biaxial modes of loading, Journal of Mechan-
ics and Physics of Solids 27 (1979) 135–150.
[19] D. Krajcinovic, Damage Mechanics, Elsevier, Amsterdam–
New York, 1996.

[20] F.A. McClintock, A criterion for ductile fracture by the
growth of holes, ASME Journal of Applied Mechanics 35
(1968) 363–371.

[21] S.F. Li, G. Wang, On damage theory of a cohesive
medium, International Journal of Engineering Science 42
(2004) 861–885.

[22] T. Mura, Micromechanics of Defects in Solids, Martinus
Nijhoff Publishers, Dordrecht, 1987.

[23] S. Nemat-Nasser, M. Hori, Micromechanics: Overall
Properties of Heterogeneous Materials, 2nd ed., Elsevier,
Amsterdam–Lausanne–New York–Oxford, 1999.

[24] T. Pardoen, J.W. Hutchinson, An extended model for void
growth and coalescence, Journal of the Mechanics and
Physics of Solids 48 (2000) 2467–2512.

[25] J.R. Rice, A path independent integral and the approximate
analysis of strain concentration by notches and cracks,
ASME Journal of Applied Mechanics 35 (1968) 379–386.

[26] J.R. Rice, Mathematical analysis in the mechanics of
fracture, in: H. Liebowitz (Ed.), Fracture: An Advanced
Treatise, vol. 2, Academic Press, 1968, pp. 191–311.

[27] V. Tvergaard, Influence of voids on shear band instabilities
under plane strain conditions, International Journal of
Fracture 17 (1981) 389–407.

[28] V. Tvergaard, On localization in ductile materials contain-
ing voids, International Journal of Fracture 18 (1982) 237–
251.

[29] V. Tvergaard, Material failure by void growth to coales-
cence, in: J.W. Hutchinson, T.Y. Wu (Eds.), Advances in
Applied Mechanics, vol. 27, Academic Press, New York,
1990, pp. 83–151.

[30] V. Tvergaard, A. Needleman, Analysis of the cop-cone
fracture in a round tensile bar, Acta Metallurgica 32 (1984)
157–169.

[31] M.P. Wnuk, Mathematical modeling of nonlinear phe-
nomena in fracture mechanics, in: M.P. Wnuk (Ed.),
Nonlinear Fracture Mechanics, Springer-Verlag, Wien–
New York, 1990, pp. 359–451.


	A penny-shaped cohesive crack model for material damage
	Introduction
	Average theorem for an RVE with cohesive cracks
	Penny-shaped crack under uniform triaxial tension
	Effective elastic material properties of an RVE
	Micro-cohesive-crack damage model
	Concluding remarks
	Acknowledgment
	References


