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SS-XGBoost: a machine learning framework for predicting  1 

Newmark sliding displacements of slopes 2 

Mao-Xin Wang1, Duruo Huang2, Gang Wang3, M.ASCE and Dian-Qing Li4, M.ASCE 3 

Abstract: Estimation of Newmark sliding displacement plays an important role for 4 

evaluating seismic stability of slopes. Current empirical models generally utilize predefined 5 

functional forms and relatively large model uncertainty is involved. On the other hand, 6 

machine learning method has superior capacity in processing comprehensive datasets in a 7 

non-parametric way. In this study, a machine learning framework is proposed to predict 8 

Newmark sliding displacements using the extreme gradient boosting model (XGBoost) and 9 

the Next Generation Attenuation (NGA)-West2 database, where the subset simulation (SS) is 10 

coupled with K-fold cross validation (CV) technique for the first time to tune 11 

hyper-parameters of the XGBoost model. The framework can achieve excellent 12 

generalization capability in predicting displacements and prevent data overfitting by using 13 
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 2

optimized hyper-parameters. The developed data-driven Newmark displacement models can 14 

better satisfy both sufficiency and efficiency criteria, and produce considerably smaller 15 

standard deviations compared with traditional empirical models. Application of the models in 16 

probabilistic seismic slope displacement hazard analysis is also demonstrated. The proposed 17 

SS-XGBoost framework has great potential in developing data-driven prediction models for a 18 

wide range of engineering applications. 19 

 20 
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Introduction 24 

Earthquake-induced landslides are one of the most catastrophic effects of earthquakes, as 25 

evidenced by many historic events over the past decades. For example, during the 2008 26 

Wenchuan earthquake in China, 15,000 incidences of earthquake-induced landslides, 27 

rockfalls and debris flows increased the death toll by 20,000 (Yin et al. 2009). At Tangjiashan, 28 

earthquake-induced mass movement over 2,037 million m3 blocked the main river channel, 29 

posing a significant threat to lives downstream. Of the many landslide assessment methods, 30 

the Newmark sliding mass model and its variants have been extensively used to estimate 31 

earthquake-induced displacements in natural slopes, earth dams and landfills since the 1960s 32 

(Newmark 1965; Rathje and Bray 2000, Bray and Travasarou 2007; Du et al. 2018a, 2018b). 33 

Newmark sliding mass model and its variants have been extensively used to estimate 34 

earthquake-induced displacements in natural slopes, earth dams and landfills since the 1960s 35 

(Jibson et al. 2000, Rathje and Bray 2000, Jibson 2007, Bray and Travasarou 2007, Du et al. 36 

2018a, 2018b). Under the assumptions of rigid sliding block procedure, the sliding initializes 37 

once the input acceleration exceeds the yield acceleration (ky) that is determined by the 38 

properties of slope (e.g., soil properties and geometric conditions), and the permanent 39 

displacement continues to increase until the relative velocity between the block and sliding 40 

surface becomes zero. The Newmark displacement is computed through the integral of the 41 

velocity-time history of the sliding block. This rigid-block procedure is applicable to thin 42 

landslides in relatively stiff materials and is justified because almost 90% of 43 

earthquake-induced landslides are shallow slides and falls (Jibson 2011). Although the 44 

original Newmark model has been extended through some efforts, it is still the most common 45 
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analytical procedure for predicting the seismic displacements of natural slopes (Saygili and 46 

Rathje 2008; Rathje and Saygili 2009) and has become an important tool for constructing 47 

seismic landslide hazard maps (e.g., Du and Wang 2014). 48 

 In recent years, various empirical models (e.g., Bray and Travasarou 2007; Jibson 2007; 49 

Saygili and Rathje 2008; Du and Wang 2016; Song et al. 2016; Du et al. 2018b) have been 50 

proposed to correlate ground motion intensity measures (IMs) or seismological parameters to 51 

the Newmark displacement. Among them, the vector-IM models can better satisfy both the 52 

“sufficiency” and “efficiency” criteria than the scalar-IM models (Saygili and Rathje 2008, 53 

Wang 2012). However, the model uncertainty contributed from the Newmark displacement 54 

models alone is still much larger than that in ground-motion prediction equations (GMPEs) 55 

(Du et al. 2018a). Because traditional Newmark prediction models predefine the functional 56 

forms then adjust their terms according to residual analyses, the development of models 57 

strongly depends on experience. It is still challenging to capture the highly nonlinear behavior 58 

of the sliding block using only limited IMs and simple functional forms, which might be the 59 

reason that limits further reduction of the standard deviation of empirical prediction models 60 

throughout years. 61 

 As the fast development of artificial intelligence (AI) techniques, machine learning (ML) 62 

methods have been gradually introduced to solve engineering problems for their robust 63 

predictive ability and excellent generalization capability. A comprehensive overview of the 64 

application of ML methods to seismology can be found in Kong et al. (2018). Other examples, 65 

such as assessment of soil liquefaction resistance (e.g., Juang et al. 2003), simulation of 66 

ground motion recordings (e.g., Alimoradi and Beck 2014) and ground-motion prediction 67 
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models (e.g., Alavi and Gandomi 2011; Derras et al. 2012; Khosravikia et al. 2018) can be 68 

found in the literature. Recently compiled Next Generation Attenuation NGA-West2 database 69 

(Ancheta et al. 2014) provides an opportunity to develop data-driven Newmark displacement 70 

prediction models, which are expected to have better generalization capability (e.g., less bias 71 

and smaller standard deviation on the unseen dataset) than traditional Newmark displacement 72 

models. Also, updating Newmark models using the NGA-West2 database is essential because 73 

it contains more than 17500 additional recordings and more than doubled number of records 74 

for magnitude larger than 5.5 compared with the NGA-West1 database (Ancheta et al. 2014).  75 

There are two main challenges to develop data-driven Newmark models. First, the 76 

Newmark displacement data is highly nonlinear and imbalanced. Because sliding occurs only 77 

if the peak ground acceleration (PGA) exceeds ky, non-zero displacement data becomes much 78 

less for regression when ky is relatively larger. This is why some empirical models (e.g., Lee 79 

and Green 2015; Du and Wang 2016) developed separate prediction equations for different ky. 80 

To address this challenge, an advanced implementation of the gradient boosted regression 81 

tree (GBRT) (Friedman 2001) known as the extreme gradient boosting (XGBoost) (Chen and 82 

Guestrin 2016), is adopted in this study to predict the Newmark displacement. The GBRT 83 

combines a sequence of regression trees (RTs) into a powerful prediction model and has been 84 

proven to be an advantageous tool compared with other ML algorithms for some data mining 85 

problems (e.g., Youssef et al. 2016). Compared to the traditional GBRT, the regularization 86 

idea was introduced into XGBoost to penalize the tree complexity for a better model 87 

performance (Chen and Guestrin 2016). 88 

The second challenge in developing a data-driven Newmark model is the model 89 
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generalization capability. In this study, we propose a “hyper-parameter tuning” method using 90 

subset simulation to optimize XGBoost model configuration in order to achieve a 91 

bias-variance trade-off and better model generalization (e.g., Goodfellow et al. 2016). On the 92 

contrary, traditional strategies such as the rules-of-thumb (e.g., Hinton 2012) or the grid 93 

search (e.g., Pedregos et al. 2011) tune model configuration manually, which is 94 

time-consuming and impractical for a high-dimensional case. The subset simulation (SS) was 95 

originally developed for reliability analysis (Au and Beck 2001) and optimization (Li and Au 96 

2010; Li 2011). For the first time, it is coupled with the K-fold cross validation (CV) for 97 

hyper-parameter tuning of the XGBoost model in this study.  98 

This study aims at proposing an efficient SS-XGBoost framework to develop data-driven 99 

Newmark displacement prediction models. This paper starts with an introduction to the 100 

dataset used for model development. Next, methods and implementation procedure for the 101 

proposed SS-XGBoost framework are presented, followed by evaluation of the model 102 

performance and comparison with traditional empirical models based on various metrics. 103 

Finally, the application of the data-driven models to the probabilistic seismic slope 104 

displacement hazard analysis (PSSDHA) is illustrated using three hypothetical slope cases. 105 

 106 

Ground Motion Database and Data Preparation  107 

The sequential procedure for generating the final dataset primarily includes four steps: First, a 108 

subset of the NGA-West2 database from Pacific Earthquake Engineering Research (PEER) 109 

Center (http://ngawest2.berkeley.edu/) was generated by excluding low-quality recordings 110 

based on selection criteria by Campbell and Bozorgnia (2014). This resulted in 15521 pairs of 111 
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motions with two horizontal components from 322 worldwide earthquake events. Note that 112 

two horizontal recordings at a same station are treated as independent motions in Newmark 113 

analysis; Second, IMs (i.e., PGA, PGV, Ia) of individual recordings are calculated to generate 114 

the predictor variable samples; Third, Newmark displacements of individual recordings are 115 

computed to generate the target variable samples; Finally, samples whose displacements 116 

smaller than 1 × 10-4 cm are excluded from the database. The final dataset includes 43832 117 

data points, whose corresponding distribution of moment magnitude (Mw) and rupture 118 

distance (Rrup) is shown in Fig. 1. 119 

Following Saygili and Rathje (2008), the PGA, peak ground velocity (PGV) and Arias 120 

intensity (Ia) are considered to develop Newmark displacement models. Individual samples 121 

have a form of [xi, yi], where xi = i-th sample of predictor variables (i.e., [PGA, PGV, ky], or 122 

[PGA, Ia, ky] or [PGA, PGV, Ia, ky]); and yi = i-th sample of target variable (i.e., natural 123 

logarithm of observed Newmark displacement). Note that neither the commonly used 124 

logarithmic transformation (e.g., Jibson 2007; Saygili and Rathje 2008) or normalization (e.g., 125 

Derras et al. 2012; Jones et al. 2018) of predictor variables is needed for our tree-based model, 126 

which is invariant to scaling of predictor variables. This can somewhat simplify the data 127 

preprocessing compared to other ML methods such as the neural network. The whole dataset 128 

was randomly divided into training and testing sets following the ratios of 80% and 20%, 129 

respectively (e.g., Alavi and Gandomi 2011; Khosravikia et al. 2018). The former set was 130 

involved in the training process, and the latter set was used for testing model performance on 131 

the unseen data (generalization capability) (e.g., Ren et al. 2018; Jones et al. 2018). In ML 132 

studies, the testing error is generally larger than the training error, so the key challenge is to 133 
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low the training error and narrow the gap between the training and testing errors to avoid both 134 

underfitting and overfitting problems (e.g., Goodfellow et al. 2016).  135 

 136 

Gradient Boosted Regression Tree for Predicting Newmark Displacement 137 

Regression Tree 138 

The regression tree (RT) is introduced first because it is the base model of the gradient 139 

boosted regression tree (GBRT) (Friedman 2001). For illustration, a simple RT model using 140 

X1 and X2 as predictor variables is shown in Fig. 2. The predictor variable space is divided 141 

into several regions as shown in Fig. 2(a) and each region is represented by a path from the 142 

root split node to the corresponding leaf node as seen in Fig. 2(b). Each leaf node has a 143 

specific leaf score (w), which represents the predicted value for that region and will be fitted 144 

as the average of target variable samples in that region. The training of a RT is to search the 145 

optimal split nodes and continue the partition process (i.e., growing tree) until the stopping 146 

criterion is reached. In this study, we adopted the pruning technique that allows for removing 147 

unnecessary split nodes in a RT to prevent overfitting. Details can be referred to Hastie et al. 148 

(2009). 149 

 150 

XGBoost: An Advanced Implementation of Gradient Boosted Regression Tree 151 

The idea of ensemble modeling is to construct a powerful model by taking advantage of a 152 

collection of “weak” base models (e.g., Hastie et al. 2009; Shao and Deng 2018). The parallel 153 

ensemble technique has been widely used to reduce the model uncertainty in probabilistic 154 

seismic hazard analysis (PSHA) and PSSDHA through a logic tree framework (e.g., Du et al. 155 
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2018a). As a sequential ensemble technique, the gradient boosted regression tree (GBRT) 156 

develops a series of base regression trees (RTs) over time to enlarge the model capacity. In a 157 

forward stepwise manner, the additive training process of the boosted model can be expressed 158 

as:  159 
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where T = number of RTs for boosting; Θj = structure of the j-th RT (including all sections of 161 

a tree such as split and leaf nodes in Fig. 2); ν = shrinkage factor (also known as learning rate 162 

that satisfies 0 < ν < 1 for shrinking the contribution of individual RTs) ; ( )ˆ jy = prediction of 163 

target variable using first j RTs; and fj() = output of the j-th RT without shrinkage, which uses 164 

predictor variables x to approximate ( 1)ˆ jy y �� (i.e., residuals) with tree structure Θj. Therefore, 165 

the residuals will generally decrease as the number of RTs increases. A schematic diagram of 166 

GBRT is shown in Fig. 3 for demonstration. 167 

 To penalize the complexity of individual RTs, Chen and Guestrin (2016) proposed a 168 

scalable tree boosting system known as XGBoost, which follows the general idea of 169 

regularized learning and combines a regularization term with the traditional loss function in 170 

GBRT. The core task in boosted tree modeling is to find optimal Θj and build fj (X; Θj) at the 171 

j-th step, which is fulfilled by minimizing the objective function: 172 
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where N = number of considered samples; � � � �2
ˆ ˆ,  L y y y y� �  = commonly used square loss 174

function; and Ω(Θj) = regularization term on the j-th RT, which is written as: 175
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where ( )j
kw = leaf score of the k-th leaf node in the j-th RT (see Fig. 2); Mj = number of leaf 177

nodes in the j-th RT; γ = minimum loss reduction needed for a further node partition in RT; 178

and λ = L2 regularization term on leaf scores in RT. Through the second-order Taylor 179

expansion, Eq. (2) can be approximated as: 180
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where � � � �( ) ( 1) ( 1) ( 1)ˆ ˆ ˆ,  2j j j j
i i i i i ig L y y y y y� � �� � � � �  and � � � �2( ) 2 ( 1) ( 1)ˆ ˆ, 2j j j

i i i ih L y y y� �� � � � . 183

It is evident that more leaves (larger Mj) will be penalized by a larger γ and a larger λ will 184

produce more regular distribution of leaf scores (smaller ( )j
kw ). As yi is the given sample and 185

( 1)ˆ jy �  has been determined at the (j-1)-th step, � �( 1)ˆ, j
i iL y y �  can be considered as a constant 186

term and will be removed from Eq. (4). The XGBoost model finishes training after 187

determining all of Θj (j = 1, 2, …, T), such that Eq. (1) can be used to perform a prediction. 188

Interested readers are referred to Chen and Guestrin (2016) for more details about XGBoost. 189

The above T, ν, γ and λ are known as XGBoost hyper-parameters (θh). Unlike the model 190

parameters Θ determined in the training process, the θh should be specified before training 191

and are somewhat analogous to the number of neural hidden layers in the neural network. 192
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Besides them, another two hyper-parameters were also considered: (1) dmax = maximum 193 

depth of RT (i.e., number of edges with the farthest distance between the root split node and 194 

the leaf node, e.g., dmax = 3 in Fig. 2) and (2) wmc = minimum sum of instance weight needed 195 

for a further partition in RT. The problem that how to choose θh from initial ranges will be 196 

solved in the next section. 197 

 198 

Subset Simulation and K-fold Cross Validation for Hyper-parameter Tuning 199 

K-fold Cross Validation 200 

The search of the hyper-parameters should not be performed on the training data (that is seen 201 

by the training algorithm) because the model generalization performance on the unseen data 202 

is truly concerned. In this study, the K-fold cross validation (CV) is employed for such a 203 

purpose, in which the training set is divided into K folds randomly such that the training of 204 

model is performed on the (K - 1) folds using the specified hyper-parameters and then the left 205 

one fold is used for validation based on the trained model. In other words, each round of 206 

validation can be somewhat considered as the evaluation of the model generalization 207 

capability on unseen data. After repeating this process K times, the average value of 208 

performance measures from the K rounds is taken as the overall measure to evaluate the 209 

model performance with the corresponding hyper-parameters. Based on the literature (e.g., 210 

Hastie et al. 2009) and the consideration of our data size, K is chosen as 5 in this study. 211 

A common error index in ML namely the root mean square error (RMSE) (e.g., Alavi and 212 

Gandomi 2011; Jones et al. 2018) is taken as the performance measure during the 5-fold CV 213 

and is expressed as: 214 
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It is evident that RMSE should be minimized to obtain the appropriate hyper-parameters of 216 

XGBoost. The process of 5-fold CV considering the RMSE is illustrated in Fig. 4. Based on 217 

the RMSE value, the early stopping strategy (e.g., Goodfellow et al. 2016) is adopted to 218 

determine the optimal T; that is, T will be added until the RMSE for the j-th step is larger than 219 

that for the (j-5)-th step (j = 1, 2, …, T). The upper limit of T is set as 2000, which is an 220 

appropriate value as the contribution of adding RT becomes very small when j > 2000. Since 221 

there is a trade-off between choices of T and other hyper-parameters (e.g., a smaller ν or dmax 222 

resulting in a larger T), this adaptive strategy is useful in tuning hyper-parameters of the 223 

gradient boosted model (Hastie et al. 2009). 224 

Subset Simulation for Hyper-parameter Tuning  225 

Traditionally, the hyper-parameter search in ML is achieved manually through the 226 

rules-of-thumb (e.g., Hinton 2012) or the grid search (e.g., Pedregos et al. 2011), which are 227 

relatively time-consuming and impractical especially when the number of hyper-parameters 228 

is large. An automatic hyper-parameter search method was proposed in this paper based on 229 

the subset simulation (SS) (Au and Beck 2001), which has been widely used in geotechnical 230 

reliability analysis (e.g., Li et al. 2016; Wang et al. 2020) and recently modified to solve 231 

stochastic optimization problems (Li and Au 2010; Li 2011). In the context of SS, the search 232 

process is achieved through finding the minimum RMSE and the associated hyper-parameter 233 

set of XGBoost. A brief introduction of the implementation procedure of SS is given below in 234 

an order of the simulation level (l = 1, 2, …m), where m = number of total levels in SS. 235 
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In the first simulation level (l = 1), Nl random samples sets of θh are generated through 236 

the artificial distributions, which are specified as truncated normal distributions (Li and Au 237 

2010). Obviously, a large Nl will increase the computational cost while a small Nl may not 238 

produce an acceptable result as the search space is not covered well. Based our test, Nl = 200 239 

can achieve such a trade-off and is adopted in this study. After configuring each set of θh for 240 

the XGBoost model, 200 RMSE values are computed through Eq. (5) using the 5-fold CV. 241 

Then, these RMSE values are ranked in an ascending order and the (plNl+1)-th (i.e., 101-th) 242 

RMSE is regarded as rmsel (i.e., rmse1 in this level), where pl = conditional probability. A 243 

descending strategy that set p1 = 0.5 in the first level and reduce it to 0.2 if the largest 244 

estimate of the standard deviation of θh sample is less than 0.1, and further reduce pl to 0.1 245 

when the largest estimate of the standard deviation of θh sample is less than 0.01, is adopted 246 

to achieve a better convergence (Li 2011). 247 

The 100 sets of “good” θh corresponding to RMSE < rmse1 are taken as “seeds” to 248 

generate the left 100 sets of θh using the Markov Chain Monte Carlo Simulation (MCMCS) 249 

(e.g., Xiao et al. 2016; Wang et al. 2020). During MCMCS, a candidate sample (in 250 

independent standard normal space) for the next state in the Markov Chain is first generated 251 

from a proposal probability density function defined through the current Markov Chain state 252 

and this candidate will be accepted or rejected based on the acceptance ratio (Li et al. 2016). 253 

Therefore, 200 sets of θh (100 seeds and 100 new samples) are obtained again and thereby 254 

entering the next level of SS. Similarly, configuring the 100 sets of new θh for XGBoost can 255 

produce 100 new RMSE values and a total of 200 RMSE values (100 seeds and 100 new 256 

RMSE values) are computed, followed by ranking them and identifying rmsel again. The 257 
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above procedure will be repeated until 5
1l lrmse rmse �

�� ����� . Note that the number of 258 

seed samples will be reduced at the subsequent levels because of the descending strategy for 259 

pl. As the level of SS increases, the 200 sets of θh will gradually gather from a broad space to 260 

a narrower region.  261 

 262 

SS-XGBoost Framework for Developing Newmark Displacement Prediction Model 263 

Implementation Procedure 264 

As is shown in Fig. 5, the proposed SS-XGBoost framework can be systematically divided 265 

into four sub-parts: (1) dataset preparation, (2) subset simulation and K-fold cross validation 266 

for tuning hyper-parameters (θh), (3) final training and testing of XGBoost model, and (4) 267 

model prediction for estimating median value and standard deviation of Newmark 268 

displacement. The proposed framework is also applicable to other ML algorithms such as 269 

neural network and support vector machine. Such steps can readily be programmed as 270 

user-friendly functions using Python or R languages, whose corresponding XGBoost 271 

packages are freely accessible. These organized functions can be directly used and 272 

geotechnical practitioners only need to import the region-specific dataset if they want to 273 

develop a new model. Then, the trained Newmark displacement model serves as output to be 274 

saved for practical use. Like many other engineering problems, there is a trade-off between 275 

result accuracy (model performance) and operation convenience (model complexity). 276 

Practitioners can make a choice between traditional models and machine learning models 277 

according to the specific conditions. More easily, they can also use the developed models in 278 

this paper. 279 
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Hyper-parameter Tuning and Model Development 280 

Five relatively important hyper-parameters of XGBoost (ν, dmax, wmc, λ and γ) were tuned 281 

using SS, while T was determined adaptively through the mentioned early stopping strategy. 282 

Other hyper-parameters (e,g, � ) were taken as the default values, which can be found in the 283 

XGBoost documentation (https://xgboost.readthedocs.io/en/release_0.80/parameter.html). To 284 

improve the tuning effectiveness and efficiency, the search ranges of hyper-parameters were 285 

specified based on our preliminary trials, such that some manifestly unreasonable values can 286 

be bypassed. Note that ν can directly reduce the contribution of each RT and a smaller ν will 287 

produce a more conservative training and require a larger T (more RTs). A relatively small ν 288 

(0.05 < ν < 0.1) is adopted in this paper because the generalization capability on new data 289 

may be better when ν < 0.1 (Friedman 2001). All of the search ranges are summarized in 290 

Table 1. 291 

The mean and minimum RMSE values in each SS level corresponding to the three 292 

vector-IM models versus the level are illustrated in Fig. 6. It can be seen that different RMSE 293 

values in the 5-fold cross validation (CV) decrease as the level of SS increases and the SS 294 

stops automatically when its stopping criteria is reached. The reason for the gradually slower 295 

decline of curves is that the sample sets at the subsequent simulation levels become repeated, 296 

illustrating the convergence of SS for the hyper-parameter tuning. Note that the relatively 297 

small decrease of RMSE values can be attributed to the strong prediction capability of 298 

XGBoost and the careful setting of hyper-parameter tuning ranges. Among them, the (PGA, 299 

PGV, Ia) model produces the smallest RMSE value while the (PGA, Ia) model has the largest 300 

RMSE value, which is consistent with the result of Saygili and Rathje (2008) using the same 301 
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IM combinations. The smallest minimum RMSE values at the final level for the (PGA, PGV), 302 

(PGA, Ia) and (PGA, PGV, Ia) combinations are 0.576, 0.610 and 0.503, respectively. The 303 

corresponding hyper-parameter tuning results for the three models are also listed in Table 1. It 304 

is seen that the hyper-parameters for the combinations of (PGA, PGV) and (PGA, Ia) are 305 

relatively similar. Although a smaller shrink factor ν is determined for the (PGA, PGV, Ia) 306 

model, a smaller T is still needed because one more IM is considered. In addition, a larger λ is 307 

needed in 3-IMs model to penalize the leaf scores of RTs. 308 

The RMSE values corresponding to all rounds in 5-fold CV (refer to Fig. 3) and their 309 

average value against the number of RTs using the optimal hyper-parameters are presented in 310 

Fig. 7, where a break point is set for the region from 1 to 3 on the Y axis. The RMSE values 311 

decrease steeply at first 100 boosting steps, and then the improvement of validation 312 

performance gradually becomes insignificant as the residuals of prediction in following 313 

boosting steps become smaller. Note that the validation errors decrease continuously and the 314 

general rule for overfitting behavior that the validation performance starts to become worse 315 

(e.g., Hastie et al. 2009; Goodfellow et al. 2016) is not observed. Additionally, the RMSE 316 

values in individual rounds of CV are close to their average value, indicating that the 317 

determined optimal hyper-parameters can produce low variance among the 5 rounds and 318 

control the model generalization error effectively. Finally, these hyper-parameters were 319 

configured for the corresponding XGBoost models, followed by the ultimate model training. 320 

 321 

Results and Comparisons 322 

This section will sequentially illustrate the sufficiency, overall performance, model 323 
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uncertainty, median prediction and interpretation of the developed XGBoost models, where 324 

the traditional models with functional forms will also be involved for comparison. 325 

Traditional Newmark Displacement Prediction Model 326 

Because of its popularity in predicting Newmark displacements and the same considered 327 

predictor variables, The Saygili and Rathje (2008) models (referred to as SR08 models) are 328 

selected as representatives of traditional models. The respective functional forms of the SR08 329 

(PGA, PGV), (PGA, Ia) and (PGA, PGV, Ia) models are expressed as follows: 330 

                   331 

� � � �

2 3 4

1 2 3 4 5

6 7 ln

ln
PGA PGA PGA PGA

       ln PGA ln PGV

y y y y

D

k k k k
D a a a a a

a a ��

�  �  �  �  
� � � � �! " ! " ! " ! "

# $ # $ # $ # $
� � �

             (6a) 332 

� � � �

2 3 4

1 2 3 4 5

6 7 ln

ln
PGA PGA PGA PGA

       ln PGA ln

y y y y

a D

k k k k
D a a a a a

a a I ��

�  �  �  �  
� � � � �! " ! " ! " ! "

# $ # $ # $ # $
� � �

             (6b) 333 

� � � � � �

2 3 4

1 2 3 4 5

6 7 8 ln

ln
PGA PGA PGA PGA

       ln PGA ln PGV ln

y y y y

a D

k k k k
D a a a a a

a a a I ��

�  �  �  �  
� � � � �! " ! " ! " ! "

# $ # $ # $ # $
� � � �

             (6c) 334 

 335 

where D = Newmark displacement (cm); PGA, PGV, Ia and ky are in units of g, cm/s, m/s and 336 

g, respectively; a = [a1, a2, …, a8] = regression coefficients of functional form, which are 337 

summarized in Table 2; ε = standard normal variable; σlnD = standard deviation in natural 338 

logarithm units, which is usually used to quantify the model uncertainty and a smaller σlnD 339 

corresponds to a more efficient model (Saygili and Rathje 2008). 340 

For a fair comparison, we also used our dataset and R software to obtain new regression 341 

coefficients of the three models, which are referred to as the update SR08 models throughout 342 
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this paper. Their model parameters are also listed in Table 2. The following sub-sections will 343 

illustrate that the results for SR08 models and updated SR08 models are generally consistent. 344 

Both of the SR08 and updated SR08 models will be considered to compare with the XGBoost 345 

models. However, the updated SR08 models are involved in most of subsequent comparisons 346 

considering a desirable purpose of comparing the model performances given the same 347 

dataset. 348 

Comparison of Model Sufficiency 349 

It is important to demonstrate that the developed XGBoost models can satisfy sufficiency 350 

criterion (e.g., Rathje and Saygili 2009), namely the model can sufficiently predict Newmark 351 

displacements without the need for specifying earthquake magnitude (e.g., Mw) and 352 

source-to-site distance (e.g., Rrup). The residuals (lnDobs - lnDpred) against Mw and Rrup for the 353 

updated SR08 models and the XGBoost models are shown in Fig. 8 and 9, respectively, 354 

where Dobs and Dpred = observed and predicted Newmark displacements (cm), respectively. 355 

Note that the means and error bars of residuals for the XGBoost models are calculated based 356 

on all of data. In Fig. 9(c), the positive residuals at Rrup < 5 km for the updated SR08 (PGA, 357 

Ia) model shows that the polynomial model is biased and may underestimate the Newmark 358 

displacement near the source. Such a biased trend was also observed in the original SR08 359 

(PGA, Ia) model although not shown here for brevity. By contrast, XGBoost models generally 360 

have an unbiased mean of residuals with much reduced scattering against Mw and Rrup, 361 

indicating that the developed models can better satisfy the sufficiency criterion. Note that 362 

similar patterns appear on training and testing sets, indicating good generalization capabilities 363 

of developed models.  364 
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Comparison of Overall Model Performance 365 

Some regression metrics will be introduced in this sub-section to illustrate the overall 366 

performance of developed models. Fig. 10 plots Dpred versus Dobs for updated SR08 models 367 

and XGBoost models against the 1:1 line. The coefficient of determination (R2) is used to 368 

reflect the model efficiency (e.g., Jibson 2007; Wang 2012). Obviously, data distribution in 369 

the XGBoost models is closer around the ideal fitting line than that in the SR08 forms, which 370 

is illustrated quantitatively by the overall larger R2 for the XGBoost models. Note that 371 

XGBoost models have higher R2 than any one of the updated SR08 models. In each model, R2 372 

increases following the same order of (PGA, Ia), (PGA, PGV) and (PGA, PGV, Ia) 373 

combination. In addition, R2 is similar for both training and testing data. These results clearly 374 

demonstrate that the developed data-driven models have both good fitting and generalization 375 

performances. 376 

To further evaluate the model generalization capability, external validation for the 377 

XGBoost models is performed using the optimal hyper-parameters. Three regression metrics 378 

are presented in Table 3, including Pearson correlation coefficient (R), RMSE and mean 379 

absolute error (MAE) for both the training and testing datasets in XGBoost models. Generally, 380 

the predicted values are thought to have a strong correlation with the observed ones if R ≥ 0.8 381 

and the error metrics (e.g., RMSE and MAE) are minimized (e.g., Alavi and Gandomi 2011; 382 

Khosravikia et al. 2018). As a result, all of the developed XGBoost models have a high R and 383 

relatively low RMSE, MAE values for both the training and testing sets. In addition, external 384 

validation metrics suggested by Golbraikh and Tropsha (2002) are adopted for overall 385 

performance verification. As is seen in Table 3, the developed models satisfy all the required 386 
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criteria. It is interesting to note that the RMSE values associated with the testing set for the 387 

three models are almost equal to the respective RMSE values in the hyper-parameter tuning 388 

(refer to Figs. 6 and 7), which shows the model generalization capability again. From the 389 

overall perspective, these validation results reflect the efficiency of the developed models in 390 

predicting the Newmark displacement. The reason for the general better training performance 391 

than the testing performance is that the residual data has significant scattering on the 392 

logarithmic scale if displacement is small (e.g., displacements smaller than 0.01 cm). 393 

Although not shown here for brevity, the training and testing performances will become very 394 

similar if these small displacements of little engineering importance (e.g., Du and Wang 2016; 395 

Du et al. 2018a) are excluded. 396 

Table 4 presents the R2, MAE and RMSE values for the SR08 models, updated SR08 397 

models and XGBoost models on testing set after excluding small displacement data (Dpred < 398 

0.01 cm). It is seen that XGBoost models can produce stronger correlations and smaller errors 399 

than other models on this unseen dataset. Particularly, the 2-IM XGBoost (PGA, Ia) model 400 

can achieve even better performance than both 3-IM SR08 and updated SR08 (PGA, PGV, Ia) 401 

models.  402 

Comparison of Model Uncertainty 403 

Smaller model uncertainty is usually reflected by lower standard deviation σlnD and indicates 404 

the Newmark model can better satisfy the efficiency criterion. Fig. 11 plots σlnD versus Dpred 405 

on the training and testing sets. Three observations can be made. First, σlnD decreases with an 406 

increase of Dpred for all of IM combinations. Second, considering an additional IM (i.e., 407 

3-IMs model) can produce a smaller σlnD. This is not unexpected because more information 408 
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about the ground motion can be complemented by more IMs. Third, the σlnD between training 409 

and testing sets are generally similar at displacement level of engineering interest (e.g., 410 

Dpred > 1 cm) (Bray and Travasarou 2007). Therefore, the generalization capabilities of the 411 

developed models on the future data (testing set) are verified again. The σlnD is usually 412 

derived from all of data when developing polynomial-based Newmark displacement models, 413 

while this way is not preferred by machine learning methods. In this study, the σlnD on the 414 

testing set is recommended to quantify the model uncertainty. The reason will be illustrated in 415 

the following with the aid of K-fold cross validation (CV). 416 

Within the 5-fold CV scheme, σlnD in individual validation rounds with the optimal 417 

hyper-parameters are plotted in Fig. 12. Also, σlnD on the testing set shown in Fig. 11, is 418 

reproduced in Fig. 12 for comparison. Note that the validation data in individual validation 419 

rounds is unseen by the model trained in that round and different validation rounds can be 420 

regarded as “bind tests” for quantifying model uncertainty to some extent (refer to Fig. 3), 421 

while the testing set is truly unseen throughout the model development. It is observed that the 422 

σlnD on the testing set has similar trend to σlnD in different CV rounds, indicating that the σlnD 423 

on the testing set can be used to quantify the model uncertainty well. 424 

To derive the σlnD in probabilistic calculations conveniently, the σlnD versus Dpred 425 

relationships for three models shown in Fig. 12 are fitted by trilinear functions:   426 
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To make a comparison of σlnD between the developed models and traditional models, Fig. 430 

13 shows the σlnD versus Dpred on the testing set for the SR08 models, updated SR08 models 431 

and XGBoost models. Several observations can be made. First, similar trends are observed 432 

for different models and the performance rankings of different IM combinations are the same. 433 

Second, the σlnD for SR08and updated SR08 models are very similar although the former ones 434 

use a much larger dataset in regression, implying the model capacity of traditional methods; 435 

that is using more data is not helpful to better satisfy the efficiency criteria. Third, all 436 

XGBoost models produce considerably smaller σlnD than 2-IMs SR08 model (and updated 437 

SR08 models) and 2-IMs XGBoost models may even achieve better performance than the 438 

3-IMs SR08 (PGA, PGV, Ia) model. Based on the results of updated SR08 and XGBoost 439 

models, the relative percentage of σlnD reduction at several Dpred levels are listed in Table 5. 440 

Generally, the percentage reduction of σlnD increases with Dpred. Among three IM 441 

combinations, the model uncertainty of (PGA, Ia) reduces most significantly using the 442 

XGBoost model. The results indicate that the advantage of the XGBoost models will be more 443 

significant with an increase of displacement. Note again that updated SR08 model are 444 

regressed through the whole dataset including this comparison set (i.e., testing set) while this 445 

set is always unseen by XGBoost models. 446 
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Comparison of Median Prediction 447 

For a deterministic earthquake scenario: that Mw = 7, Rrup = 5 km and 30-m shear wave 448 

velocity Vs30 = 760 m/s, the corresponding values of PGA, PGV and Ia to predict the 449 

displacement are 0.33 g, 30 cm/s and 1.07 m/s, respectively (Saygili and Rathje 2008). Fig. 450 

14 shows the median predicted displacements for XGBoost models with respect to various ky. 451 

Besides SR08 and updated SR08 models, the original BT07 (Mw, PGA) model (Bray and 452 

Travasarou 2007) and J07 (PGA, Ia) model (Jibson 2007) are also presented for comparison. 453 

As shown, the curves associated with different prediction models are generally comparable. 454 

Specifically, the median predictions for the SR08 and updated SR08 models are also similar. 455 

The large difference in J07 model is caused by its low order of polynomial and the limited 456 

data for the regression. Additionally, BT07 model produces larger displacements than SR08 457 

models and XGBoost models, which is in accordance with the finding by Saygili and Rathje 458 

(2008) using the same IM combinations. 459 

Moreover, model prediction for varying earthquake scenarios is also investigated. For the 460 

three IMs involved in this study, the ground-motion prediction equations (GMPEs) proposed 461 

by Campbell and Bozorgnia (2012, 2014) are adopted to estimate PGA, PGV, and Ia, 462 

respectively. The median predicted displacements for a strike-slip fault with magnitudes Mw 463 

= 5.5 and 7.5, Vs30 = 400 m/s (soil site) and Vs30 = 760 m/s (rock site), ky = 0.1 g are plotted in 464 

Fig. 15 against Rrup. Similarly, the developed XGBoost models can generally predict 465 

comparable median displacements with other models while the curves corresponding to the 466 

combination of (PGA, Ia) are relatively unsmooth. This may be attributed to large correlation 467 

between PGA and Ia, so information conveyed by these two IMs are not complementary. 468 
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However, these curves are still situated within the clusters of others. Similar unsmoothness of 469 

the median prediction curves for data-driven methods can also be found in the literature (e.g., 470 

Alavi and Gandomi 2011). 471 

Interpretation of Models 472 

Median predicted displacements versus IMs are shown in Fig. 16 using contour maps, where 473 

ky is fixed as 0.1 g and only 2-IMs models are considered herein. It can be seen that the 474 

displacement contour maps for the updated corresponding SR08 models and XGBoost 475 

models are generally comparable. Since PGA and IA are two intensity measures that are 476 

highly correlated, data distribution in the predictor space is narrowly focused, as shown in Fig. 477 

16(d). The contour lines of XGBoost (PGA, Ia) is locally unsmooth and can be influenced by 478 

individual data. That explains why displacement prediction by XGBoost (PGA, Ia) may even 479 

increase with increasing Rrup, as shown in Fig. 15. On the contrary, the data points for the 480 

XGBoost (PGA, PGV) model are well-distributed in the whole predictor space, so its contour 481 

seems relatively smooth. Therefore, Newmark displacements predicted by data-driven 482 

method are greatly influenced by the range and distribution of ground motion data.  483 

Furthermore, the relative importance of each predictor variable in predicting the 484 

Newmark displacement is identified based on the developed model. As discussed early, the 485 

optimal split nodes of variables should be found to partition the predictor space at each 486 

boosting step. Therefore, the number of times to split the data for a predictor variable in all 487 

regression trees is taken as the feature importance score. Table 6 lists the feature importance 488 

scores for different models. It is seen that PGA has the highest score in both the 2-IMs and 489 

3-IMs models, which is not unexpected because the importance of PGA is reflected in both 490 
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triggering and accumulating sliding displacement. This can explain why PGA is the primary 491 

IM to predict the Newmark displacement in the literature (e.g., Bray and Travasarou 2007; 492 

Jibson 2007; Rathje and Saygili 2009). In addition, PGV is more important than Ia in the 493 

3-IMs model, which is consistent with the result that the larger correlation between PGA and 494 

Ia leads to a larger standard deviation for (PGA, Ia) model than that for (PGA, PGV) model, 495 

because PGV can supplement more intermediate frequency content information for PGA. The 496 

lowest score for ky is because it is a nominal variable and needs less split in regression trees. 497 

The importance score may be helpful for selecting predictor variables to develop sufficient 498 

and efficient predictive models in engineering problems, especially when the number of 499 

candidate variables is large.  500 

Application to Probabilistic Seismic Slope Displacement Hazard Analysis 501 

The application of the developed XGBoost prediction models to the probabilistic seismic 502 

slope displacement hazard analysis (PSSDHA) (Rathje and Saygili 2008; Wang and Rathje 503 

2018) is illustrated based on three deterministic values of slope yield acceleration, which are 504 

assumed as 0.05, 0.1 and 0.15 g, respectively. The inherent variability of soil properties (e.g., 505 

Qi and Li 2018; Xiao et al. 2018) is not considered because we focus on comparing the model 506 

uncertainty herein. The stiff soil site (Vs30 = 400 m/s) with a Rrup of 5 km from a point source 507 

is considered and the following Gutenberg–Richter (G-R) recurrence law is used to describe 508 

the seismicity of the source: 509 

10log 4.2 1.0m wM� � �                                                      (10) 510 

where λm = mean annual rate of exceedance of Mw. A truncated G-R distribution with a 511 

minimum Mw of 4.2 and a maximum Mw of 8.0 is adopted, in which the magnitude bin is 512 
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equal to 0.2. Considering the limited length of paper, only the recommended combination 513 

(PGA, PGV) by both this study and Saygili and Rathje (2008) is considered herein for a 514 

demonstration purpose. The σlnD of the updated SR08 (PGA, PGV) model is derived by Fig. 515 

13, although the original σlnD from Saygili and Rathje (2008) can produce similar hazard 516 

curves based on our test. Again, the previous GMPE (Campbell and Bozorgnia 2014) is used 517 

to determine the median and the standard deviation of PGA and PGV as well as the 518 

correlation between them. 519 

Fig. 17 plots the displacement hazard curves for the XGBoost model and the updated 520 

SR08 model for the three slope cases. It is observed that the hazard curves for the updated         521 

SR08 model and the XGBoost model are consistent at the small-to-median displacement level 522 

while the former model will result in a larger hazard at the large displacement level, although 523 

the comparable median predictions are produced as discussed previously. Furthermore, three 524 

specific hazard levels (10%, 5% and 1% probability of exceedance in 50 years) are chosen to 525 

compare the corresponding Newmark displacements for the two models explicitly, as listed in 526 

Table 7. Because of the reduction of model uncertainty, the XGBoost model can reduce 527 

displacement hazard by 23-36% in the three cases, indicating that a large uncertainty 528 

accompanied with the Newmark displacement prediction model will result in an 529 

overestimation of the landslide hazard and lead to a conservative engineering design. 530 

 531 

Summary and Conclusions 532 

This study proposes a SS-XGBoost framework to develop data-driven models for predicting 533 

the Newmark displacement. The framework proposes a subset simulation (SS) and K-fold 534 
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cross validation (CV) procedure, which is efficient for tuning hyper-parameters of XGBoost 535 

model. Three data-driven Newmark displacement models are developed using different 536 

vector IMs, namely, the XGBoost (PGA, PGV), XGBoost (PGA, Ia) and XGBoost (PGA, 537 

PGV, Ia) models. The developed models have excellent generalization capability, and do not 538 

require predefined functional forms. 539 

Residual analyses clearly reveal that the developed XGBoost models can better satisfy 540 

sufficiency and efficiency criteria, when compared with the SR08 models using same IMs 541 

and dataset. Generally, the XGBoost models have reduced standard deviations (σlnD) by 542 

20%-50% compared with SR08 models, and the reduction becomes most significant at large 543 

displacement levels. Based on the 5-fold CV, the standard deviation on the testing dataset is 544 

recommended to describe the model uncertainty. In the end, three trilinear equations are 545 

proposed to quantify the model uncertainty for practical use. 546 

Generally, the developed data-driven models can produce the median predicted 547 

displacements comparable with existing empirical models. Yet, the developed model is more 548 

flexible in capturing high nonlinearity embedded in the dataset. Attention should be paid to 549 

the number and range of training data, which has significant influence on the generalization 550 

of the data-driven models. In addition, it is indicated that PGA is the most important IM and 551 

the XGBoost (PGA, PGV) and XGBoost (PGA, PGV, Ia) models are recommended for use 552 

for their better generalization capability and robustness. Furthermore, probabilistic seismic 553 

slope displacement hazard analysis (PSSDHA) is conducted using the developed models. 554 

Compared with empirical models, it is found that the data-drive models result in smaller 555 

displacement hazards because of their reduced model uncertainty. 556 
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The developed Newmark displacement models utilize the most updated NGA-West2 557 

database, which can be regarded as alternatives to existing empirical models (e.g., Jibson 558 

2007; Saygili and Rathje 2008; Du and Wang 2016). For practical use, the developed models 559 

are provided in executable files at http://gwang.people.ust.hk/XGB-Newmark.html. 560 

Geotechnical practitioners only need to import predictor variables (i.e., IMs and ky) in a 561 

spreadsheet and then the predicted Newmark displacements and associated standard 562 

deviations can be obtained. The developed model can also be combined with spatial 563 

cross-correlation models of PGA, PGV and Ia (Wang and Du 2013) for risk analysis of 564 

spatially distributed slopes (e.g., Du and Wang 2014). In addition, the proposed framework 565 

can also be applied to solve other data-driven problems such as ground-motion prediction and 566 

liquefaction assessment. 567 

 568 
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 580 

Notation 581 

The following symbols are used in this paper: 582 

a = regression coefficients of functional form; 583 

Dobs = observed Newmark displacement; 584 

Dpred = predicted Newmark displacement; 585 

dmax = maximum depth of regression tree; 586 

fj() = output of the j-th regression tree without shrinkage; 587 

Ia = Arias intensity; 588 

IM = ground motion intensity measure; 589 

ky = slope yield acceleration; 590 

L() = square loss function; 591 

Mj = number of leaf nodes in the j-th regression tree; 592 

Mw = moment magnitude; 593 

MAE = mean absolute error; 594 

m = number of total levels in subset simulation; 595 

N = number of considered samples; 596 

Nl = number of samples generated in each level of subset simulation; 597 

PGA = peak ground acceleration; 598 

PGV = peak ground velocity; 599 

pl = conditional probability in subset simulation; 600 
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R = Pearson correlation coefficient; 601 

R2 = coefficient of determination; 602 

Rrup = rupture distance; 603 

RMSE = root mean square error; 604 

rmsel = specific threshold of root mean square error in the l-th level of subset simulation; 605 

T = number of regression trees for boosting; 606 

Vs30 = average shear wave velocity in the upper 30 m; 607 

( )j
kw = leaf score of the k-th leaf node in the j-th regression tree; 608 

wmc = minimum sum of instance weight needed for a further node partition in regression tree; 609 

xi = i-th sample of predictor variables; 610 

yi = i-th sample of target variable; 611 

( )ˆ jy = prediction of target variable using first j regression trees; 612 

γ = minimum loss reduction needed for a further node partition in regression tree; 613 

ε = standard normal variable; 614 

λ = L2 regularization term on leaf scores; 615 

λm = mean annual rate of exceedance of moment magnitude; 616 

Θj = structure of the j-th regression tree; 617 

θh= model hyper-parameters; 618 

ν = shrinkage factor; 619 

σlnD = standard deviation in natural logarithm units; and 620 

Ω() = regularization term on regression tree. 621 

 622 
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Fig. 1. Distribution of used earthquake recordings in terms of Mw and Rrup. 

 

 

Fig. 2. Individual regression tree: (a) partition of a two-dimensional predictor space; and the 

associated (b) tree structure. 
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Fig. 3. Schematic diagram of the gradient boosted regression tree. 

 

 

 
 

 
Fig. 4. Schematic diagram of dataset division and 5-fold cross validation (CV). 
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Fig. 5. Flowchart of the SS-XGBoost framework. 
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Fig. 6. RMSE versus simulation level in hyper-parameter tuning process for three XGBoost 

models.  

 

 

  
Fig. 7. RMSE versus boosting step in 5-fold cross validation for three XGBoost models with 

the optimal hyper-parameters.
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Fig. 8. Distributions of residuals with respect to Mw for different models: (a) updated SR08 

(PGA, PGV); (b) XGBoost (PGA, PGV); (c) updated SR08 (PGA, Ia); (d) XGBoost (PGA, Ia); 

(e) updated SR08 (PGA, PGV, Ia); and (f) XGBoost (PGA, PGV, Ia). The error bar represents 

μ ± σ. 
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Fig. 9. Distributions of residuals with respect to Rrup for different models: (a) updated SR08 

(PGA, PGV); (b) XGBoost (PGA, PGV); (c) updated SR08 (PGA, Ia); (d) XGBoost (PGA, Ia); 

(e) updated SR08 (PGA, PGV, Ia); and (f) XGBoost (PGA, PGV, Ia). The error bar represents 

μ ± σ. 
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Fig. 10. Distributions of Dpred with respect to Dobs for different models: (a) updated SR08 

(PGA, PGV); (b) XGBoost (PGA, PGV); (c) updated SR08 (PGA, Ia); (d) XGBoost (PGA, 

Ia); (e) updated SR08 (PGA, PGV, Ia); and (f) XGBoost (PGA, PGV, Ia). 
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Fig, 11. Standard deviation versus predicted displacement on training and testing datasets for 

three XGBoost models. 

 

  

Fig. 12. Standard deviation versus predicted displacement on validation and testing datasets 

for (a) XGBoost (PGA, PGV); (b) XGBoost (PGA, Ia); and (c) XGBoost (PGA, PGV, Ia) 

models.
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Fig. 13. Comparison of standard deviations on the testing set for different models. 

 

  

 
Fig. 14. Median predicted displacements associated with different models for deterministic 

earthquake scenario but varying slope conditions. 
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Fig. 15. Median predicted displacements associated with different models for deterministic 

slope condition (ky = 0.1 g) but varying earthquake scenarios: (a) Mw = 5.5, Vs30 = 400 m/s; (b) 

Mw = 5.5, Vs30 = 760 m/s; (c) Mw = 7.5, Vs30 = 400 m/s; and (d) Mw = 7.5, Vs30 = 760 m/s. 
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Fig. 16. Comparison of median displacement contours for different models: (a) updated SR08 

(PGA, PGV); (b) XGBoost (PGA, PGV); (c) updated SR08 (PGA, Ia); and (d) XGBoost 

(PGA, Ia) considering ky = 0.1 g. 
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Fig. 17. Comparison of displacement hazard curves associated with updated SR08 model and 

XGBoost model for the (PGA, PGV) combination. 

 

10-1 100 101 102 10310-4

10-3

10-2

10-1

100

ky = 0.15 g

ky = 0.1 g

 

 

A
nn

ua
l r

at
e 

of
 e

xc
ee

da
nc

e

Displacement (cm)

ky = 0.05 g

2-IMs (PGA, PGV)
 XGBoost
 Updated SR08



 1

Table 1. Hyper-parameter tuning ranges and results for the three XGBoost models 

 

Method Hyper-parameter Tuning 
range 

Optimal hyper-parameter 

(PGA, PGV) (PGA, Ia) (PGA, PGV, Ia) 

Subset 
simulation 

dmax 3-6 6 6 6 

ν 0.05-0.1 0.075 0.078 0.067 

wmc 1-10 4.790 4.939 5.289 
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Early 
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Table 5. Relative differences between σlnD for updated SR08 models and XGBoost models 

 

IM combination 
Dpred (cm) 

0.1 1 10 100 1000 

2-IM (PGA, PGV) 17.4% 24.7% 32.5% 35.6% 45.4% 

2-IM (PGA, Ia) 24.3% 35.6% 44.0% 50.3% 43.5% 

3-IM (PGA, PGV, Ia) 19.7% 29.7% 37.5% 33.5% 31.5% 

Note: The value is calculated by (1 - σlnD, XGBoost/σlnD, SR08) × 100%. 
 

 

Table 6. Importance scores of predictor variables for the three XGBoost models 

 

IM combination PGA PGV Ia ky 

2-IM (PGA, PGV) 14745 12744 - 6507 

2-IM (PGA, Ia) 15856 - 13796 5206 

3-IM (PGA, PGV, Ia) 9604 7760 7142 6615 

 
 
Table 7. Comparison of displacement hazard for updated SR08 model and XGBoost model 

with (PGA, PGV) combination 

 

 ky = 0.15 g ky = 0.1 g ky = 0.05 g 
Probability of 
exceedance in 50 years 10% 5% 1% 10% 5% 1% 10% 5% 1% 

D (cm) Updated SR08 37 59 121 76 114 225 176 254 448 

 XGBoost 26 41 93 52 81 145 113 168 310 

Hazard reduction (%) 31.6 28.9 35.6 35.8 33.9 30.8 29.7 30.5 23.1 

Note: The hazard reduction is calculated by (1 - DXGBoost/DSR08) × 100%. 




