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Abstract This study investigates spatial cross-correlation models for two sets of
vector intensity measures (IMs) considering the influence of regional site conditions.
The first set of the vector IM consists of the peak ground acceleration, Arias intensity,
and the peak ground velocity; the second set is for spectral accelerations at multiple
periods. Geostatistics analyses are performed using 2686 strong-motion data from 11
recent earthquakes that occurred in California, Japan, Taiwan, and Mexico. The results
indicate that the spatial cross correlations of the vector IMs are strongly influenced by
the spatial distribution of regional site conditions, which can be quantified using RVS30

,
the correlation range of shear-wave velocity in the top 30 m. The linear model of
coregionalization is proposed to construct a permissible spatial correlation model,
and the short-range and long-range coregionalization matrices is specified to vary lin-
early with RVS30

. The proposed model demonstrated excellent performance in quan-
tifying the influence of regional site conditions on the spatial cross correlations for the
vector IMs, meanwhile the model guarantees a positive-definite covariance matrix for
any reasonable value of RVS30

, a mathematical condition required for stochastic gen-
eration of the spatially correlated random fields. The spatial cross-correlation models
proposed in this study can be conveniently used in regional-specific seismic risk
analysis and loss estimation of spatially distributed infrastructure using vector IMs.

Introduction

Modeling spatial distribution of ground-motion intensity
measures (IMs) is essential for the seismic-hazard analysis
and risk assessment of spatially distributed infrastructure,
such as lifelines, transportation systems, and structure port-
folios (e.g., Jeon and O’Rourke, 2005; Wang and Takada,
2005; Lee and Kiremidjian, 2007; Sokolov and Wenzel,
2011). Over the years, ground-motion prediction equations
(GMPEs) have been actively developed to estimate the prob-
ability distribution (e.g., the median and variance) of the IMs
at a single location. However, GMPEs do not estimate the
spatial correlation of ground motion IMs. In recent years,
several spatial correlation models have been proposed for
some IMs (e.g., Goda and Hong, 2008; Jayaram and Baker,
2009; Sokolov et al., 2010; Esposito and Iervolino, 2011,
2012; Goda, 2011; Du and Wang, 2013a). In particular,
Jayaram and Baker (2009) developed an intraevent spatial
correlation model for spectral accelerations (SAs). Esposito
and Iervolino (2011, 2012) studied the spatial correlations of
peak ground acceleration (PGA), peak ground velocity
(PGV), and SA using European earthquake data. The spatial
correlation of the ground-motion IMs is usually strong if two
sites are close together, and the correlation gradually de-
creases as the sites are separated father apart. More recently,
it has been observed that the spatial correlations of some

scalar IMs are closely related to regional site conditions. In
general, the spatial correlations appear to be stronger if the
regional site conditions are more homogeneous (Jayaram and
Baker, 2009). The spatial homogeneity of a region can be
indicated by the spatial correlation of shear-wave velocity in
the top 30 m (VS30), as a larger correlation range of VS30

implies a more homogeneous site condition (Du and Wang,
2013a). Relationships between the spatial correlations of
PGA and VS30 were investigated using earthquake data in
Taiwan (Sokolov et al., 2012). Predictive models were also
developed to quantify the spatial correlations of cumulative
absolute velocity (Electrical Power Research Institute, 1988),
Arias intensity (Ia; Arias, 1970), and SAs based on the cor-
relation range of VS30 (Du and Wang, 2013a). These findings
have significant implications in developing spatial correla-
tion models for regional-specific applications.

Many earthquake engineering problems require the use
of multiple IMs (termed as vector IM) to represent different
attributes of the ground-motion characteristics. To date, only
a few studies have been conducted regarding the spatial cross
correlations of vector IMs. Among these few examples, Loth
and Baker (2013) investigated the spatial cross correlations
of SAs at multiple periods for the analysis of structural port-
folios with various types of buildings. Yet, the influence of
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regional site conditions on the spatial correlation structure of
vector IMs has not been fully investigated.

Following the authors’ previous work (Du and Wang,
2013a), the spatial cross correlation of two sets of vector
IMs and their dependency on regional site conditions are
studied in this paper. As have been widely used in earthquake
engineering applications, PGA, Ia, and PGV are combined as
the first set of vector IM. The PGA, Ia, and PGV represent the
amplitude and energy attributes of the ground motions. A
combination of these IMs can be effectively used to predict
the earthquake-induced sliding displacements of earth struc-
tures (e.g., Rathje and Saygili, 2008) or cyclic structural re-
sponse (Iervolino et al., 2010). SAs at nine different periods
are chosen as the second set of vector IM to characterize the
frequency content of ground motions.

Mathematically, a permissible spatial correlation model
for the vector IM must yield a positive semidefinite spatial
correlation matrix (Goovaerts, 1997, p. 108). The require-
ment is challenging but necessary for the random realization
of jointly distributed vector IMs in space, a process known as
stochastic simulation. For this purpose, a geostatistical ap-
proach, the linear model of coregionalization (LMC; Journel
and Huijbregts, 1978), is adopted in this study to derive the
spatial cross correlations of these vector IMs using strong-
motion recordings from 11 earthquakes that occurred in dif-
ferent regions. A simple permissible spatial correlation
model for two sets of vector IMs will be proposed by taking
into account the influence of regional site conditions, which
is parameterized by the correlation range of VS30 of the re-
cording stations. The proposed correlation matrices are guar-
anteed to be positive definite for any finite number of site
locations and all reasonable correlation ranges of VS30.
Finally, an illustrative example is provided to highlight the
model’s capability in generating spatially distributed vector
IMs and its possible applications in regional-specific hazard
analysis of spatially distributed structures.

Strong-Motion Data

In this study, a large number of strong-motion data from
different regions are systematically compiled and analyzed to
develop the spatial cross-correlation models for PGA, Ia,
PGV, and SAs. The selected earthquake events satisfy the
following criteria: (1) ground-motion data are densely popu-
lated, a sizable number (greater than 30) of recordings must
be available within each separation distance bin in order to
get a statistically reliable sample size; (2) necessary seismo-
logical and geological information must be available for
these events, this information includes source parameters,
site-to-source distance and site conditions (VS30 values),
etc., so that the median IMs and their residuals can be esti-
mated from GMPEs; (3) the moment magnitudes of events
are greater than 5, and the rupture distances of recordings
are within 200 km. Following these criteria, 2686 records
from 11 earthquake events are selected. These earthquakes
occurred in California (1994 Northridge earthquake, 2004

Parkfield earthquake, 2005 Anza earthquake, 2007 Alum
Rock earthquake, and 2008 Chino Hills earthquake), in
Mexico (2010 El Mayor–Cucapah earthquake), in Japan
(2000 Tottori earthquake, 2004 Niigata earthquake, 2007
Chuetsu earthquake, and 2008 Iwate earthquake), and in Tai-
wan (1999 Chi-Chi earthquake). The recorded time histories
for these events are obtained from the Center for Engineering
Strong-Motion Data (CESMD), Consortium of Organizations
for Strong Motion Observation Systems (COSMOS) for U.S.
earthquakes, and K-NET and KiK-net for Japan earthquakes.
The raw ground-motion data are uniformly processed by the
authors following the Pacific Earthquake Engineering
Research Center (PEER) procedure (Darragh et al., 2004).
The seismic information and site conditions are obtained
from the PEER’s strong-motion database and the table S1
database provided by Kaklamanos and Baise (2011). For the
Chi-Chi event, the VS30 data of recording stations are up-
dated according to the Taiwan Strong Motion Instrumenta-
tion Program (TSMIP; Kuo et al., 2012). The moment
magnitude versus rupture-distance distribution of the data
is illustrated in Figure 1. The detailed information for each
event is summarized in Table 1.

Geostatistical Analysis of Ground-Motion Residuals

Ground-Motion Residuals

Given an earthquake event i, a ground-motion IM at site
j can be written as

lnYij � lnYij�M;Rrup; θ� � ηi � εij; �1�
in which Yij is the recorded IM of earthquake event i at site j;
lnYij�M;Rrup; θ� is the predicted mean value by GMPE as a
function of magnitude (M), rupture distance (Rrup), and other
parameters (θ); ηi and εij denote the interevent and intraevent
residuals, respectively. The residual terms are assumed to
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Figure 1. Magnitude and rupture-distance distribution of re-
cords in the database. The color version of this figure is available
only in the electronic edition.
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follow normal distributions with a zero mean and a standard
deviation of τi and σij, respectively (Abrahamson and
Youngs, 1992; Joyner and Boore, 1993; Jayaram and Baker,
2008), which are also provided by GMPEs. The total standard

deviation is given by σT �
�����������������
σ2ij � τ2i

q
. Throughout the study,

some recently developed GMPEs are used to calculate the
ground-motion residuals for PGA, PGV, SAs (Campbell and
Bozorgnia, 2008), and Ia (Campbell and Bozorgnia, 2012). It
should be noted that most of these earthquake events
(except for the Chi-Chi and the Northridge earthquakes) are
not used in developing these GMPEs. Accordingly, it is not
surprising that the ground-motion residuals are biased
against the rupture distances (Rrup) and VS30 because the
GMPEs are not calibrated by these data. For example,
Figure 2 shows significant biases of the intraevent residuals
of PGAwith respect to Rrup for 11 earthquake events. Similar
biases are also observed for other IMs. If not corrected, the
biased residuals would inevitably result in inaccurate esti-
mate of the spatial correlation (Sokolov et al., 2010;
Foulser-Piggott and Stafford, 2012). Therefore, the com-
puted residuals need to be corrected to remove the bias as
follows (Du and Wang, 2013a):

εcorrij � εij − �φ1 � φ2 ln�Rrup� � φ3 ln�VS30��; �2�

in which φ1, φ2, and φ3 are the coefficients obtained by
linear regression for each event. As expected, the corrected
residuals are not biased against Rrup and VS30, and they will
be used in the following semivariogram analysis. For better
comparison between different earthquakes, the corrected
intraevent residuals are normalized as follows:

ε′ij�
εcorrij

σij

≈
lnYij− lnYij�M;Rrup;θ�− �φ1�φ2 ln�Rrup��φ3 ln�VS30��

σij
;

�3�

in which ε′ij is the normalized intraevent residual and σij can
be obtained either from sample variances or from GMPEs.
Throughout this paper, estimates of σij from the sample var-
iances are adopted because the values provided by GMPEs
may not be appropriate for all events considered. The above
approximation equation (3) neglects the interevent residual
term ηi because it is constant for each site during an earth-
quake and therefore does not contribute to the intraevent spa-
tial correlation.

It is worth mentioning that there exists apparent incon-
sistency of using current GMPEs for the estimation of spatial
correlation because they usually assume the IM residuals are
uncorrelated. Considering spatial correlation of residuals in
GMPEs, the interevent standard deviation would decrease
and the intraevent standard deviation would increase; how-
ever, the predicted median IMs and their total residuals would
not be significantly affected (Jayaram and Baker, 2010). By
equation (3), the intraevent standard deviation will not affect
the spatial correlation of the normalized residuals. The incon-
sistency in GMPEs is not expected to significantly influence
the estimated spatial correlations presented in this study.

Univariate Analysis

Semivariogram analysis is a widely used geostatistical
tool to analyze the spatial correlation of a univariate random
field. If it is assumed that a random field Z is second-order
stationary, the semivariogram formulation can be written as
(Goovaerts, 1997)

γ�h� � 1

2
E��Z�u� h� − Z�u��2�; �4�

in which h is the separation vector, Z�u� h� is the random
variable at a position separated by h from the position u. In
this paper, the random variable refers to the normalized intra-
event residual ε′ij. The second-order stationary assumption
implies that the mean value of the random field is constant
over the entire domain, and the semivariogram γ�h� (as well
as the covariance function introduced later) does not depend

Table 1
Summary of Earthquake Events

Earthquake Name Date (yyyy/mm/dd) Moment Magnitude Location Fault Mechanism Number of Recordings

Northridge 1994/01/17 6.69 California Reverse 152
Chi-Chi 1999/09/20 7.62 Taiwan Reverse-oblique 401
Tottori 2000/06/10 6.61 Japan Strike-slip 235
Parkfield 2004/09/28 6 California Strike-slip 90
Niigata 2004/10/23 6.63 Japan Reverse 365
Anza 2005/06/12 5.2 California Reverse-oblique 111
Chuetsu 2007/07/16 6.8 Japan Reverse 401
Alum Rock 2007/10/30 5.4 California Strike-slip 161
Iwate 2008/06/13 6.9 Japan Reverse 279
Chino Hills 2008/07/29 5.4 California Reverse-oblique 337
El Mayor–Cucapah 2010/04/04 7.2 Mexico Strike-slip 154

Only recorded data within rupture distance of 200 km are included for the earthquakes in Japan.
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on the site location u, but only on the separation vector h.
Furthermore, the stationary semivariogram is said to be iso-
tropic if it is independent of direction such that the separation
vector h in equation (4) can be replaced by the separation
distance h � khk (Goovaerts, 1997). It is worth pointing
out that the isotropic assumption for the spatial distribution
of the intraevent residuals have been verified for some
events, such as the Northridge earthquake (Jayaram and
Baker, 2009). However, comprehensive validation is still
needed in future studies. Similar to the semivariogram func-
tion, the covariance function C�h� is defined as

C�h� � Cov�Z�u�; Z�u� h��
� E��Z�u� − E�Z�u����Z�u� h� − E�Z�u����: �5�

Finally, the correlation function is defined as

ρ�h� � C�h�
C�0� : �6�

Under the assumption that the random field is isotropic
and second-order stationary, it is straightforward to relate the
semivariogram function to the correlation function as fol-
lows:

γ�h� � C�0��1 − ρ�h�� � Var�Z��1 − ρ�h��: �7�

Several basic functional forms can be used to approxi-
mate the empirical semivariogram data, such as the exponen-
tial, Gaussian, and spherical model (Goovaerts, 1997). In
particular, the exponential model assumes

γ�h� � a�1 − exp�−3h=r��
and ρ�h� � exp�−3h=r�; �8�

in which a is the sill of the semivariogram and also the pop-
ulation variance of empirical data and r is the range of the
semivariogram, defined as the separation distance h at which
γ�h� equals 95% of the sill. Several approaches can be used
to estimate the model parameters, such as the least square fit
and weighted least square (WLS) fit. The weight for WLS is
chosen as 1=hk (in which hk is the center of each distance
bin) so that the empirical data in close separation distances
can be better approximated. Figure 3 illustrates an example
of the empirical semivariogram data and different fitting
schemes. The exponential model fitted by WLS scheme
can provide better estimate of the empirical data in the close
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Figure 2. Distributions of intraevent residuals of PGAversus rupture distance for 11 earthquake events. The color version of this figure is
available only in the electronic edition.
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separation distance range than other models. Therefore, the
exponential model using WLS fit will be employed through-
out this study. It is worth mentioning that the exponential,
Gaussian, and spherical model are all permissible models
for a univariate field by construction. The resulted correlation
matrix will always be positive definite regardless of number
of the sites and their locations.

Multivariate Analysis

Cross-semivariogram analysis is an extension of the
above univariate case to the multivariate random field (Jour-
nel and Huijbregts, 1978; Goovaerts, 1997). Assuming that a
multivariate random field consists of n isotropic second-
order stationary random variables Z1; Z2;…; Zn, the cross-
semivariogram γij�h� measures the average dissimilarity be-
tween two variables Zi and Zj separated by distance h via the
equation

γij�h� �
1

2
E��Zi�u� h� − Zi�u���Zj�u� h� − Zj�u���;

�9�
in which Zi�u� and Zi�u� h� refer to the values of Zi evalu-
ated at locations u and u� h, respectively. In this paper, Zi

refers to the normalized intraevent residual of the ith com-
ponent of the vector IM. The empirical cross semivariogram
~γij�h� can be estimated as

~γij�h� �
1

2jN�h�j
XN�h�

α�1

f�zi�uα � h� − zi�uα���zj�uα � h�

− zj�uα��g; �10�
in whichN�h� is the number of data pairs within this distance
bin, zi�uα � h� and zi�uα� represent the αth data pair in this

bin for ith component of the vector IM. On the other hand,
the covariance function Cij�h� measures the similarity be-
tween data as follows:

Cij�h� � Cov�Zi�u�; Zj�u� h��
� E��Zi�u� − E�Zi�u����Zj�u� h� − E�Zj�u����:

�11�

For an isotropic and stationary field, limh→∞γij�h� �
Cov�Zi�u�; Zj�u�� � Cij�0�. Therefore, the relationship be-
tween covariance function and cross-semivariogram function
can be established as (Goovaerts, 1997, pp. 72–74)

Cij�h� � lim
h′→∞

γij�h′� − γij�h� � Cij�0� − γij�h�: �12�

The spatial correlation coefficient between Zi and Zj is
defined as

ρij�h� �
Cij�h���������������������������������

Cii�0� × Cjj�0�
p

� Cij�0���������������������������������
Cii�0� × Cjj�0�

p −
γij�h���������������������������������

Cii�0� × Cjj�0�
p ; �13�

which is a multivariate analogy of equation (6). Accordingly,
the cross-semivariogram matrix Γ�h�, the covariance matrix
C�h�, and the correlation matrix R�h� for a vector IM with n
components are n × n matrices defined as follows:

Γ�h� � �γij�h�� �
γ11�h� � � � γ1n�h�

..

. . .
. ..

.

γn1�h� � � � γnn�h�

2
664

3
775;

C�h� � �Cij�h��;
R�h� � �ρij�h��: �14�

The correlation matrix R�h� contains the direct-
correlation coefficients along its major diagonal (i � j)
and the cross-correlation coefficients off that diagonal
(i ≠ j). As the normalized intraevent residuals of the vector
IM can be reasonably assumed to follow a multivariate nor-
mal distribution, their spatial distribution for an earthquake
event k can be fully characterized by the mean (zero vector in
this case) and the covariance matrix. Given an n-component
vector IM distributed at J sites from an earthquake event k,
the total covariance matrix Σ�event k� can be obtained by
assembling the n × n submatrix C�h� as follows:

Σ�event k� �
C�0� � � � C�h1J�
..
. . .

. ..
.

C�hJ1� � � � C�0�

2
64

3
75; �15�

in which hij represents the separation distance between site i
and site j�i; j � 1;…; J�. The dimension of the total covari-
ance matrix Σ�event k� is �J × n; J × n�.
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Figure 3. Fitting the empirical semivariogram data using differ-
ent functional forms and fitting schemes. (The empirical data is ob-
tained using the normalized intraevent residuals of PGA for the Chi-
Chi earthquake; the range and sill are marked for the exponential
model using WLS fit.) The color version of this figure is available
only in the electronic edition.
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Linear Model of Coregionalization
for the Vector IMs

Fitting the empirical cross-semivariogram data is not as
straightforward as the univariate case. It may be tempting to
apply the exponential model directly to fit the empirical
cross-semivariogram data as

γij�h� � aij�1 − exp�−3h=rij��; �16�

in which aij and rij are fitting parameters (i; j � 1;…; n).
However, the resulted covariance matrix C�h� usually cannot
guarantee positive definiteness for all h values, and the
model is not permissible.

The LMC is used in this study to build a permissible
cross-semivariogram model for multivariate analysis
(Goovaerts, 1997). The LMC model decomposes a cross-
semivariogram matrix into a combination of L linearly inde-
pendent components using

Γ�h� � �γij�h�� �
XL
l�1

Blgl�h�; �17�

in which gl�h� forms a set of permissible basic models
(l � 1; 2;…; L), Bl � �blij� (i; j � 1;…; n; l � 1; 2;…; L)
is termed as the coregionalization matrix, which is an
n × n matrix associated with each gl�h� and shall be deter-
mined by fitting the empirical semivariogram data. By the
LMC construction, all direct and cross semivariograms share
the same set of basic structures gl�h�. For example, using two
exponential functions with range values of r1 and r2 as the
basic functions, the cross-semivariogram matrix equa-
tion (17) can be expressed as

Γ�h��B1

�
1− exp

�
−3h
r1

��
�B2

�
1− exp

�
−3h
r2

��
: �18�

Following equation (12), the covariance matrix becomes

C�h� � lim
h→∞Γ�h� − Γ�h�

� B1

�
exp

�
−3h
r1

��
� B2

�
exp

�
−3h
r2

��
: �19�

The total covariance matrix in equation (15) is guaran-
teed to be positive semidefinite regardless of the number of
sites considered, if the coregionalization matrices Bl are all
positive semidefinite (Goovaerts, 1997). The coregionaliza-
tion matrices Bl can be obtained using the WLS method by
minimizing the weighted sum of squares of the difference
between the estimated and the empirical cross semivario-
grams between n IMs within K distance bins as follows
(Goulard and Voltz, 1992):

WSS �
XK
k�1

Xn
i�1

Xn
j�1

w�hk�
�~γij�hk� − γij�hk��2

σ̂iσ̂j
; �20�

in which γij�hk� is the estimated cross semivariogram by the
LMC model, ~γij�hk� is the empirical cross semivariogram, σ̂i
is the standard deviation of Zi, and w�hk� refers to the weight
for distance hk, taking as 1=hk to improve the goodness of fit
to data at close separation distances. An efficient algorithm
has been developed to achieve the positive semidefiniteness
of Bl by eliminating their negative eigenvalues during a min-
imization process (e.g., Goulard and Voltz, 1992; Loth and
Baker, 2013). The algorithm is implemented in this study to
obtain Bl for each event.

Based on observation from selected earthquake events, a
combination of a short-range and a long-range exponential
function is proposed to approximate the cross semivariogram
of the vector IM [PGA, Ia, PGV]:

Γ�h� � B1

�
1 − exp

�
−3h
10

��
� B2

�
1 − exp

�
−3h
60

��
;

�21�

in which h is the separation distance in kilometers, the cor-
relation ranges of 10 and 60 km are specified for the short-
range and long-range function, respectively. The correlation
ranges 10 and 60 km are chosen because this combination
provides best overall fit to the empirical data than other com-
binations of functions we have experimented. The fitted
cross semivariograms by the above equation generally agree
well with the empirical data for all earthquake events.

Furthermore, the covariance matrix C�h� and the cross-
correlation matrix R�h� become

C�h� � B1

�
exp

�
−3h
10

��
� B2

�
exp

�
−3h
60

��
; �22�

R�h� � P1

�
exp

�
−3h
10

��
� P2

�
exp

�
−3h
60

��
; �23�

in which Pl � �pl
ij� (l � 1; 2) is the coregionalization matrix,

which can be obtained by standardizing the matrix Bl as
follows:

pl
ij �

blij

�
�����������������
b1ii � b2ii

p
� × �

�������������������
b1jj � b2jj

q
�
; l � 1; 2: �24�

The above expression can be readily derived using
ρij�h� � Cij�h�=

��������������������������������
Cii�0� × Cjj�0�

p
(equation 13) and

Cii�0� � b1ii � b2ii (equation 22). Again, the coregionaliza-
tion matrices P1 and P2 must be positive semidefinite to
guarantee the total covariance matrix equation (15) to be pos-
itive semidefinite.
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Figure 4 shows an example of the LMC fitting for the
Niigata event data. Two groups of GMPEs are used to gen-
erate the empirical cross-semivariogram data for intraevent
residuals for PGA, Ia, and PGV. The first group uses Camp-
bell and Borzorgnia (2008, 2012) GMPEs and the other group
uses Boore and Atkinson (2008) model for PGA, PGV, and
Foulser-Piggott and Stafford (2012) model for Ia. In general,
very similar results can be derived by using different GMPEs,
indicating that spatial correlations are not dependent on spe-
cific GMPEs. The influence of using different GMPEs is also
insignificant for the spatial correlation of spatial accelera-
tions (Du and Wang 2013a). Unless indicated otherwise,
the Campbell and Borzorgnia (2008, 2012) GMPEs are used
throughout this study.

LMC Model Considering Regional Site Conditions

Spatial Correlations of VS30 for Different Regions

The influence of regional geological conditions on the
spatial correlation of IMs has been investigated recently (e.g.,
Jayaram and Baker, 2009; Sokolov et al, 2012; Du and
Wang, 2013a). Because the regional geological conditions
strongly affect the travel path and frequency contents of
earthquake waves during propagation, the spatial correla-
tions of the intraevent residuals of IMs are dependent on
the spatial distribution of site conditions. For example, the
spatial correlation of the intraevent residuals of IMs over a
heterogeneous region usually decays faster than that of a

homogeneous region. Because VS30 values are commonly
used in GMPEs to represent local site conditions, it is chosen
as an indicator to describe the regional site features. Figure 5
shows empirical semivariograms obtained using the normal-
ized VS30 (the set is normalized to zero mean and unit stan-
dard deviation for easy comparison) of the Niigata and
Northridge earthquake, respectively. An exponential model
is used to fit the empirical semivariogram data, such that
γ�h� � a�1 − exp�−3h=RVS30

��, in which RVS30
is the corre-

lation range of VS30. A larger value of RVS30
implies a more

homogeneous regional site condition, such as the case for the
Niigata earthquake (RVS30

� 21:8 km). For the Northridge
event, the empirical cross semivariograms for VS30 imply
an almost independent distribution of VS30 values in this re-
gion (RVS30

� 0 km). Based on our previous work (Du and
Wang, 2013a), the ranges of VS30 are estimated for each
event and are summarized in Table 2. The RVS30

value varies
from 0 to 26 km from event to event, and the median VS30

value ranges from 348 to 425 m=s with a standard deviation
from 101 to 218 m=s.

Coregionalization Matrices for the Vector IM [PGA,
Ia, PGV]

In this study, coregionalization matrices for the vector
IM [PGA, Ia, PGV] for 11 events are computed. The influence
of regional site conditions on the correlation structure can be
further revealed by plotting each entry of the coregionaliza-
tion matrices P1 and P2 against RVS30

, as shown in Figure 6.
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In general, each of the 3 × 3 components of the short-range
matrix P1 decreases as RVS30

increases, while an opposite
trend can be observed for the long-range matrix P2. This
is not unexpected as the spatial correlation of IMs usually
becomes stronger when RVS30

increases (the site condition
becomes more homogeneous). Accordingly, the contribution
from the short-range function diminishes while the contribu-
tion from the long-range function becomes more pronounced
as RVS30

increases.
Based on Figure 6, the components of P1 and P2 matri-

ces can be assumed to vary linearly with RVS30
through the

following relationships:

P1 � P0 −K
�
RVS30

10

�
; P2 � K

�
RVS30

10

�
; �25�

in which RVS30
is in the unit of km; P0 and K are fitting ma-

trices to be determined. In order to construct a permissible
correlation model, both P0 and K must be positive semide-
finite, which is a necessary condition to guarantee the pos-
itive semidefiniteness of P1 and P2. First, linear regression
analysis is performed to determine P0 and K from the em-
pirical data. If the resulted matrices are not positive semide-
finite, they can be adjusted manually by slightly increasing
the diagonal terms and decreasing the off-diagonal terms.

The manual adjustment usually does not change the matrices
significantly. Finally, the following positive-definite P0 and
K matrices are obtained as follows:

P0 �
1 0:91 0:65

0:91 1 0:71

0:65 0:71 1

2
64

3
75 and

K �
0:28 0:24 0:17

0:24 0:22 0:16

0:17 0:16 0:31

2
64

3
75: �26�

It is obvious that P2 is always positive definite for any
value of RVS30

because it is simply K multiplying by a pos-
itive factor. However, P1 may not be positive definite for all
values of RVS30

. It is easy to check that for RVS30
� 25 km,

P1 �
0:30 0:31 0:225
0:31 0:45 0:31
0:225 0:31 0:225

2
4

3
5

is positive definite. In view of that
P1 � P1�RVS30

� 25� �K�25 − RVS30
�=10, P1 is guaranteed

to be positive definite for all RVS30
≤ 25 km following the

mathematical theorem that the summation of two positive-
definite matrices is always positive definite. For the cases
where RVS30

is greater than 25 km, it is recommended that
RVS30

� 25 km should be used to evaluate the matrices for
practical purposes. As is also shown in Figure 6, the linear
model equations (25) and (26) can reasonably approximate
the general trend of each of the 3 × 3 components of P1 and
P2. Finally, the spatial correlation matrix is expressed as a
function of h and RVS30

as follows:

R�h; RVS30
� � P0 exp

�
−3h
10

�
�K

�
RVS30

10

�

×
�
exp

�
−3h
60

�
− exp

�
−3h
10

��
: �27�

Because the coefficient exp�−3h
60
� − exp�−3h

10
� is always

positive for h > 0, the correlation coefficients will increase

Separation distance (km)

S
em

iv
ar

io
gr

am

0 20 40 60 80 100
0

0.5

1

1.5

Separation distance (km)

S
em

iv
ar

io
gr

am

0 20 40 60 80 100
0

(a) (b)

0.5

1

1.5

Figure 5. Empirical semivariograms for the normalized VS30. (a) The Niigata earthquake and (b) the Northridge earthquake. The color
version of this figure is available only in the electronic edition.

Table 2
Summary of Regional Site Conditions

Earthquake
Name

Median
VS30 (m=s)

Standard Deviation
VS30 (m=s)

Correlation Range
RVS30

(km)

Northridge 422 218 0
Chi-Chi 384 178 26
Tottori 425 174 18.8
Parkfield 395 131 3.5
Niigata 404 168 21.8
Anza 348 118 20.3
Chuetsu 415 167 20.8
Alum Rock 386 144 14.2
Iwate 407 176 8.7
Chino Hills 342 101 14.5
El Mayor–
Cucapah

422 180 20.3
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with an increasing RVS30
. For example, considering

RVS30
� 10 and 20 km, the correlation matrix for the vector

IM [PGA, Ia, PGV] at a separation distance h � 5 km can
be evaluated as

R�h � 5; RVS30
� 20� �

0:53 0:47 0:33

0:47 0:47 0:34

0:33 0:34 0:57

2
64

3
75 and

R�h � 5; RVS30
� 10� �

0:38 0:34 0:24

0:34 0:35 0:25

0:24 0:25 0:40

2
64

3
75: �28�

The intrinsic structure of the proposed model can be fur-
ther explored by considering several special cases. If h � 0,
the spatial correlation matrix is reduced to the local correla-
tion matrix R�0�, that is, the correlation matrix for the vector
IM [PGA, Ia, PGV] at an individual site, as follows:

R�h � 0�≜R�0� � P1 � P2 � P01

�
1 0:91 0:65

0:91 1 0:71

0:65 0:71 1

2
64

3
75: �29�

The above local correlation does not depend on RVS30
by

construction. In fact, the above matrix is consistent with that
obtained by Campbell and Bozorgnia (2012) (the difference
is within �0:04) using the PEER-Next Generation Attenua-
tion (NGA) database, which reads

R�0� �
ρPGA;PGA ρPGA;Ia ρPGA;PGV

ρPGA;Ia ρIa;Ia ρIa;PGV

ρPGA;PGV ρIa;PGV ρPGV;PGV

2
64

3
75

�
1 0:88 0:69

0:88 1 0:74

0:69 0:74 1

2
64

3
75: �30�
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Furthermore, for a heterogeneous site condition (RVS30

approaches zero), the spatial correlation matrix further re-
duces to a simple form:

R�h� � R�0� exp
�
−3h
10

�
; if RVS30

� 0 km: �31�

The above equation implies that all the components of
the local correlation R�0� of the vector IM decays exponen-
tially with increasing separation distance h at a constant rate,
which can be described using an exponential model with a
correlation range of 10 km. The results are consistent with
our previous study (Du and Wang, 2013a).

Considering the influence of site conditions, equa-
tion (25) assumes that both P1 and P2 vary linearly with
RVS30

by the same rate factors designated by K. This
assumption is proposed due to its mathematical simplicity
and its consistency with empirical data shown in Figure 6.
A larger K value implies the spatial correlation is more
strongly influenced by the site conditions. In general, the site
condition has the strongest influence on the direct correla-
tions of PGA and PGV, followed by the direct and cross cor-
relations of Ia. The site condition has less influence on the
cross correlations related to PGV. In the cases that the local
site information is not available, the following P1 and P2 ma-
trices averaged over 11 events can be used in equation (23):

P1
avg �

0:61 0:57 0:38

0:57 0:67 0:45

0:38 0:45 0:50

2
64

3
75;

P2
avg �

0:39 0:34 0:24

0:34 0:33 0:24

0:24 0:24 0:50

2
64

3
75: �32�

Finally, the accuracy of the model prediction is exam-
ined using the empirical cross-semivariogram data for all
11 events. Figures 7 and 8 show the predicted cross semivar-
iograms of the vector IM [PGA, Ia, PGV] using equations (25)
and (26) for the Northridge and Chi-Chi earthquakes, respec-
tively. These two events are selected to represent a hetero-
geneous and a homogeneous region, whose RVS30

values
are estimated as 0 km (Northridge) and 26 km (Chi-Chi),
respectively. Compared with the predicted curves using
the averaged coregionalization matrices equation (32), the
regional-dependent model using equations (25) and (26) bet-
ter matches the empirical data for most cases in both events,
demonstrating the model’s capability in capturing the influ-
ence of regional site conditions on the spatial correlation of
the vector IM. It is also to be noted that the site-dependant
LMC model does not always provide the best fit to the
empirical data, which can be observed in some plots (e.g.,
PGA–PGV cross semivariograms for the Chi-Chi earthquake
in Fig. 8). Because of considerable scatter of data shown in
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Figure 7. Comparison between the empirical cross semivariograms and model predictions for the Northridge earthquake. The color
version of this figure is available only in the electronic edition.

3198 G. Wang and W. Du



Figure 6, it is difficult to precisely fit the empirical data using
the proposed model for each event.

Coregionalization Matrices for Spectral Acceleration
at Multiple Periods

Similar analysis is also performed to study the influence
of regional site conditions on the spatial cross correlations for
SAs at multiple periods. First, empirical cross semivariograms
of SAs at nine periods (namely, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 7.5,
and 10 s) are obtained. Based on the empirical data, the fol-
lowing LMC structure is proposed:

R�h� � P1 exp
�
−3h
10

�
� P2 exp

�
−3h
70

�
; �33�

in which h is in kilometers, the correlation ranges are chosen
as 10 and 70 km, the combination provides an overall best fit
to the empirical data. Considering the influence of regional
site conditions, it is further postulated that the components
of P1 and P2 matrices vary linearly with RVS30

through the fol-
lowing relationships:

P1 � P01
SA −KSA

�
RVS30

10

�
;

P2 � P02
SA �KSA

�
RVS30

10

�
; �34�

in which RVS30
is in the unit of kilometers; the matrices P01

SA,
P02
SA,KSA need to be determined from the empirical data. Sim-

ilar to the previous discussion, matrices P01
SA, P02

SA, KSA

are required to be positive semidefinite as they are the neces-
sary condition to construct a permissible correlation model.
Furthermore, equation (33) reduces to R�0� � P01

SA � P02
SA

if h � 0. Therefore, P01
SA and P02

SA can be regarded as partition
of the local-correlationmatrix, and the summation of diagonal
elements of P01

SA, P
02
SA must equal unity. Based on regression

analysis from the empirical cross-semivariograms data fol-
lowed by manual adjustment, P01

SA, P
02
SA, and KSA matrices

are obtained and listed in Tables 3–5. It is easy to verify that
all thesematrices are positive definite. Furthermore,P1 andP2

are guaranteed to be positive definite for RVS30
≤ 25 km.

Similar to the previous case, it is recommended that if
RVS30

> 25 km, the results forRVS30
� 25 km should be used.

Finally, the regional-dependent LMC model becomes

R�h;RVS30
��P01

SA exp
�
−3h
10

�
�P02

SA exp
�
−3h
70

�

�K
�
RVS30

10

��
exp

�
−3h
70

�
− exp

�
−3h
10

��
: �35�

It is worthwhile to discuss some interesting features of
the proposed model. First, all spatial cross-correlation coef-
ficients increase with an increased RVS30

value. The diagonal
element in P01

SA matrix generally decreases as the period be-
comes longer and vice versa for P02

SA matrix. The correlations
for short periods (T ≤ 0:5 s) are mostly controlled by the
short-range basic function. Contribution from the long-range
basic function becomes more pronounced when periods be-
comes longer. Relatively small values appear in the lower left
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block of P01
SA and P02

SA matrices, implying that the cross cor-
relations between SA at the short periods (T ≤ 0:5 s) and
long periods (T > 1 s) are relatively weak. KSA matrix con-
trols the rate of influence of the regional site conditions. In
general, SA at the short periods is more influenced by the
regional site condition than that at the long period range.
As observed through empirical data, RVS30

will not signifi-
cantly influence the cross correlations between SA at short
periods and those at long periods. Therefore, the correspond-
ing elements of KSA are assigned to zeros for simplicity.

The current model is different from the previous study
(Loth and Baker, 2013) in a couple of ways. First, the Loth
and Baker model does not consider the influence of site con-
ditions. Second, three basic exponential functions have been
used to construct the LMC model for SA in Loth and Baker

(2013), in which the correlation ranges of the basic functions
are chosen as 0 km (i.e., the nugget effect), 20 km, and
70 km. In our study, a relatively small correlation range
(i.e., 10 km) is specified for the short-range basic function
based on trials of several combinations. We found that inclu-
sion of the nugget effect component is not particularly
advantageous. On the other hand, the relative nugget effect
may be associated with lack of data. It may decrease as more
and better data become available (Goovaerts, 1997). There-
fore, the current LMC model is adopted due to its simplicity
and ability to capture the major spatial features of the vector
IMs. Finally, Loth and Baker (2013) used the GMPE pro-
posed by Boore and Atkinson (2008) to compute the pre-
dicted SA values, while the Campbell and Bozorgnia
(2008) model is adopted in this study. As stated before,

Table 3
P01
SA Matrix

Period (s) 0.01 0.1 0.2 0.5 1 2 5 7.5 10

0.01 0.96
0.1 0.9 0.96
0.2 0.8 0.81 0.93 Symmetric
0.5 0.5 0.36 0.44 0.76
1 0.15 0.08 0.1 0.25 0.62
2 0.09 0.04 0.05 0.17 0.45 0.54
5 0.1 0.05 0.09 0.14 0.34 0.42 0.47
7.5 0.09 0.05 0.08 0.13 0.37 0.42 0.46 0.57

10 0.04 0.02 0.05 0.07 0.31 0.35 0.39 0.4 0.56

Table 4
P02
SA Matrix

Period (s) 0.01 0.1 0.2 0.5 1 2 5 7.5 10

0.01 0.04
0.1 0 0.04
0.2 0.01 0.01 0.07 Symmetric
0.5 0.04 0 0.08 0.24
1 0.08 0.01 0.08 0.28 0.38
2 0.02 0 0.01 0.2 0.22 0.46
5 0.02 0 0 0.15 0.23 0.32 0.53
7.5 0 0 0 0.13 0.18 0.25 0.43 0.43

10 0.02 0 0 0.13 0.19 0.25 0.42 0.41 0.44

Table 5
KSA Matrix

Period (s) 0.01 0.1 0.2 0.5 1 2 5 7.5 10

0.01 0.28
0.1 0.26 0.27
0.2 0.2 0.21 0.2 Symmetric
0.5 0.13 0.1 0.1 0.11
1 0 0 0 0 0.14
2 0 0 0 0 0.11 0.11
5 0 0 0 0 0.08 0.09 0.11
7.5 0 0 0 0 0.1 0.11 0.12 0.14

10 0 0 0 0 0.1 0.12 0.12 0.13 0.17
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the choice of GMPEs would not influence the spatial corre-
lation significantly.

Figures 9 and 10 show the performance of model
prediction for the Northridge and the Chi-Chi earthquake,
respectively, compared with the empirical cross-
semivariogram data and model prediction by Loth and Baker
(2013). Because regional site conditions usually have rela-
tively strong influence on SAs at short periods, the proposed
model improves the cross-semivariogram prediction espe-
cially at the short-period range (0.01–0.5 s, the upper left
subplots). However, the improvement is rather limited for
SAs at long periods. For a number of cases, the model does
not give improved performance over Loth and Baker model,
especially for the correlations at the long-period range of the
Chi-Chi earthquake.

Discussions and Conclusions

This study investigates a new spatial cross-correlation
structure for two sets of vector IMs. The first set includes
the PGA, Ia, and PGV, while the second set consists of the

SA at nine different periods. Eleven recent earthquakes that
occurred in California, Japan, Taiwan, and Mexico are used
to obtain the empirical cross semivariograms of the vector
IMs. The LMC model is utilized to construct a permissible
spatial correlation model, which is the combination of a
short-range and a long-range exponential function with dif-
ferent decaying rate. The correlation range of VS30, RVS30

, is a
good indicator to characterize the regional geological condi-
tions. Although some other geological features such as the
azimuthal path may also influence the spatial correlation
structure, they are reserved for a future study.

The study found that the coregionalization matrices P1

and P2 vary significantly with RVS30
. Specifically, a linear

model has been proposed such that the short-range matrix
P1 increases and the long-range matrix P2 decreases linearly
with RVS30

, as shown in equations (25) and (34). The pro-
posed model has a distinctive advantage that it can quanti-
tatively analyze the spatial cross correlations for the vector
IMs based on the characteristics of regional geology, mean-
while the model guarantees a positive-definite covariance
matrix for any reasonable value of RVS30

(no larger than
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available only in the electronic edition.
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25 km)—a mathematical condition required for stochastic
generation of the spatially correlated random fields. Com-
pared with the averaged model, the site-dependent LMC
model can better approximate the empirical cross semivario-
grams for the vector IM [PGA, Ia, PGV], although it does not
always provide the best fit to the empirical data. On the other
hand, the site-dependent LMC model only improves the
cross-semivariogram prediction of SAs at the short-period
range (0.01–0.5 s) compared with Loth and Baker model,
and the improvement is rather limited for SAs at long
periods.

Although the LMC matrices for SAs are provided only
for nine periods, these matrices can be linearly interpolated
to derive the spatial cross correlations for other periods. In
the case that the interpolated coregionalization matrix are not
positive definite, the negative eigenvalues of the coregional-
ization matrix should be set to zero in order to obtain an
admissible model. One may refer to Loth and Baker (2013)
for more details. The above modification usually does not
change the coregionalization matrix significantly. For a
majority of cases we have experimented using three or four
interpolating periods, the maximum absolute change in the

components of the coregionalization matrix is less than 0.05,
which is insignificant for practical purposes.

Finally, an example is presented to illustrate the perfor-
mance of the spatial correlation model. Considering a
30 km × 30 km hypothetical region divided into 900 1 km ×
1 km cells, a point source is located at the origin. For sim-
plicity, it is assumed that a scenario earthquake with moment
magnitude 7 occurs at the point source. A heterogeneous and
a homogeneous site conditions are considered for this region.
The VS30 values follow a normal distribution with a mean
value of 400 m=s and a standard deviation of 150 m=s over
the region. The spatial correlation of VS30 follows the expo-
nential model with correlation ranges assumed as 0 and
25 km, respectively, for each case. Campbell and Bozorgnia
(2008, 2012) GMPEs are used to calculate the median pre-
dicted PGA, PGV, and Ia fields for this earthquake scenario.
Then, the intraevent residuals are generated by Copula func-
tions (Nelson, 2006) at each site given the mean (zero) and
the covariance matrix.

Figure 11 compares two realizations of the jointly distrib-
uted fields of PGA, Ia, and PGV. Apparently, the spatial cor-
relation of ground-motion residuals affects the distribution of

0 50 100
0

0.5

1

γ
γ

γ
γ

γ
γ

(h
)

0 50 100
0

0.5

1
(h

)

0 50 100
0

0.5

1

(h
)

0 50 100
0

0.5

1

(h
)

0 50 100
0

0.5

1

(h
)

0 50 100
0

0.5

1

h (km)

(h
)

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

h (km)

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

h (km)

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

h (km)

0 50 100
0

0.5

1

0 50 100
0

0.5

1

h (km)
0 50 100

0

0.5

1

h (km)

Empirical cross-semivariograms
Predicted by this study
Predicted by Loth and Baker (2013)

T1 = 0.01s T1 = 0.1s T1 = 0.5s T1 = 1s T1 = 2s T1 = 5s

T2 = 0.01s 

T2 = 0.1s 

T2 = 0.5s 

T2 = 1s 

T2 = 2s 

T2 = 5s 
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vector IM fields, as a larger RVS30
corresponds to more uni-

formly distributed IM fields. The spatial correlation model
and realization of vector-IM fields such as Figure 11 can
be conveniently used in regional-specific seismic-hazard
analysis and loss estimation of spatially distributed infrastruc-
ture. Recently, many empirical models have been developed
to predict the earthquake-induced slope displacements using a
single or a combination of PGA, Ia, and PGV. Using the pro-
posed spatial correlation model for the vector IM [PGA, Ia,
PGV], a fully probabilistic seismic-hazard analysis framework
has been developed for spatially distributed slopes (Du and
Wang, 2013b). It is also interesting to mention that the vector
IM [PGA, Ia, PGV] can be used to develop useful proxy for
characterizing cyclic structural response. For example, the
spatial correlation model will be useful in conditional hazard
analysis of spatially distributed structures by extending the
methodology developed by Iervolino et al. (2010). All these
examples demonstrate that the spatial cross-correlation mod-
els proposed in this study can be conveniently used in
regional-specific seismic-risk analysis and loss estimation
of spatially distributed infrastructure using vector IMs.

Data and Resources

Strong-motion data used in this study are obtained from
resources in the public domain, including the CESMD strong-
motion database (http://strongmotioncenter.org/; last ac-
cessed September 2011), the COSMOS strong-motion data-
base (http://www.cosmos-eq.org/; last accessed September
2011), the K-NET strong-motion database (http://www
.kyoshin.bosai.go.jp/; last accessed September 2011), and
the PEER NGA database (http://peer.berkeley.edu/nga/; last
accessed September 2011). The VS30 values for Taiwan sites

are obtained from TSMIP (http://egdt.ncree.org.tw/; last ac-
cessed August 2012).
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