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SUMMARY: 
Realistic prediction of earthquake-induced slope displacements is an important topic for evaluating and 
mitigating seismic hazards. Semiempirical predictive models are presented using multiple ground motion 
intensity measures (vector IMs) to improve the model performance. The predictive models are derived from 
statistical regression of empirical data using a fully-coupled equivalent-linear sliding mass model and the 
PEER-NGA strong motion database. The results show that using vector IMs can better characterize the ground 
motions and improve the efficiency of seismic displacement prediction for a wide range of slope conditions. 
Specifically, using PGA and the spectral acceleration value at 2 s can effectively improve the overall model 
performance in terms of efficiency, sufficiency and predictability. The model also has practical advantage since 
the vector-IMs are independent of the slope properties. An illustrative example is presented to compare the 
performance of the proposed models with a pervious study by Bray and Travasarou (2007).  
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1. INTRODUCTION 
 
Realistic prediction of permanent displacements of slopes under earthquake loading is an important 
topic for evaluating and mitigating seismic hazards. Since Newmark’s pioneering work on the rigid 
sliding block method (Newmark, 1965), extensive studies have been focused on developing empirical 
predictive models that can be reliably used to estimate the earthquake-induced displacements in earth 
dams, embankments and soil slopes (Jibson, 2011). The Newmark-type model assume that the slope 
behaves as a rigid-plastic material, and slope displacement is calculated by double integrating the part 
of the input acceleration that exceeds a critical value. The Newmark-type rigid sliding block model 
provides a simple index of dynamic slope performance. However, it is only appropriate for shallow 
landslides of stiff materials (e.g. rock blocks) that move along a well-defined slip surface. Prediction 
equations based on Newmark-type rigid sliding block often employs a single ground motion intensity 
measure (termed as a scalar IM), such as the peak ground acceleration (PGA) (Ambraseys and Menu, 
1988; Jibson, 2007; Saygili and Rathje, 2008), the dominant period of the ground motion and Arias 
Intensity (Ia) (Jibson, 1993, 2007; Romeo, 2000) etc. There are also a few studies using multiple 
intensity measures (termed vector IMs) (Watson-Lamprey and Abrahamson, 2006). 
 
Considering the deep sliding movement of earth slopes and earth embankments under earthquake 
loading, the simple equivalent-linear sliding mass model (Rathje and Bray, 2000; Bray and 
Travasarou, 2007) provides insights to account for the influence of soil nonlinearity on seismic slope 
response. In this model, the soil slope is simplified as a generalized single-degree-of-freedom system 
governed by the first modal shape of vibration. The dynamic characteristics of the slope are 
represented by the initial fundamental period of the slope (Ts, unit in s), and the nonlinear properties of 
soils are modeled using an equivalent-linear method similar to the well-known SHAKE analysis 
(Schnabel et al., 1972), such that the stiffness and damping ratio of the system is modified to be 
compatible with the induced strain level during shaking. Irreversible permanent displacements would 
occur if the base acceleration exceeds a prescribed yield acceleration (Ky, unit in g). Since soil 
nonlinearity causes elongation of the slope period during shaking, and the most efficient scalar IM for 



the earthquake-induced displacements has been found to be the spectral acceleration at 1.5 times the 
initial period of the system, Sa(1.5Ts). Therefore, Bray and Travasarou (2007) (referred to as BT07 
model thereafter) employs Sa(1.5Ts) as a scalar predictor in their predictive model. The standard 
deviation of the estimated displacement is chosen as 0.66 (in natural log units) for all slope conditions.  
 
As earthquake records are complex transient time series, different ground motion intensity measures 
(IMs) can only represent certain aspects of ground motion characteristics. Using vector IMs allows for 
a better representation of different aspects of ground motions and thus is promising to improve the 
performance of the empirical prediction. However, in developing predictive models based on 
vector-IMs, it remains to be a great challenge to identify the suitable vector IMs and proper functional 
forms. In principle, the intensity measures should satisfy efficiency (Shome and Cornell, 1999), 
sufficiency (Luco and Cornell 2007) and predictability (Krammer and Mitchell 2006) requirements. 
Efficiency requires the empirical prediction minimizes the errors of the prediction; Sufficiency 
requires the model will not significantly depend on other ground motion parameters such as magnitude 
and distance of the earthquake; Predictability requires the ground motion IMs can be effectively 
predicted by GMPEs given a causal earthquake event. The BT07 model has to introduce earthquake 
magnitude as one of the predictors in order to correct the model bias, so it can not satisfy the 
sufficiency requirement. Using Sa(1.5Ts) as a scalar predictor in BT07 model is no doubt a sensible 
choice to optimize the overall efficiency of the model. On the other hand, it relies on a prior 
knowledge of the initial fundamental period of slope (Ts), which may be difficult to quantify 
accurately. The situation could result in increased uncertainty in seismic displacement prediction using 
these property-dependent IMs. The property-dependent IM is also not convenient in application if 
different types of slopes exist in a single portfolio, or the fundamental period of the slope itself is a 
design variable. It is therefore more desirable to have property-independent IMs so that they can be 
used for any slope condition. All these considerations prompt us to revisit the efficiency of scalar and 
vector IMs in predicting the seismic slope displacements. Based on this study, new predictive models 
is developed using vector IMs. The performance of the propose models are systematically evaluated 
and compared with BT07 model.  
 
2. EFFICIENCY OF SCALAR AND VECTOR INTENSITY MEASURES 
 
The input ground motion is the primary source of uncertainty in assessing the seismic performance of 
slopes. In this study, earthquake acceleration time histories are chosen from the PEER-NGA strong 
motion database (Chiou et al. 2008) (http://peer.berkeley.edu/nga/). The database contains a total of 
3551 three-directional acceleration time histories from California, Japan, Taiwan and other seismic 
active regions. Only horizontal recordings from free-field conditions are used in the analysis, resulting 
in a total of 1560 pairs of ground motions of two horizontal directions (Campbell and Bozorgnia, 
2008). The equivalent-linear sliding mass model (Rathje and Bray, 2000; Bray and Travasarou, 2007) 
is used in the present study. The permanent displacements of the sliding mass were computed using 
each of the as-recorded earthquake motions in the database. Two orthogonal recordings at the same 
station are treated as separate records. For each record, the permanent displacements were calculated 
by applying the record in the positive and the negative directions, and the maximum value of two 
directions was taken as the permanent displacement for that record. Figure 1(a) shows the computed 
permanent displacement using acceleration time history recorded during Superstition Hills Earthquake 
(1987) at USGS Station 286. The shear wave velocity of the soil is assumed to be 250 m/s. During 
shaking, the modulus reduction and damping ratio curves follow that for clays with plasticity index of 
30 (Vucetic and Dobry, 1992), as is illustrated in Figs. 1(b). The yield acceleration Ky is assumed to be 
0.1g and the initial fundamental period of the slope, Ts, varies from 0–2 s. If the slope is rigid (Ts =0 s), 
the estimated median slope displacement is 46 cm. The slope displacement reaches approximately 90 
cm if Ts falls into the range of 0.1-0.4 s due to the resonance of the slope with the concentrated 
shaking energy at that period range (note the mean period of the record 0.38 s). As the slope becomes 
more flexible (Ts increases), the permanent displacements decreases to negligible values if Ts are 
longer than 1 s. For each ground motion in the strong motion database, the seismic slope displacement 
can be computed. Figs. 2 and 3 present the scatter plots of computed seismic slope displacements 
against PGA, Sa(1.5Ts) and Ia for a stiff (Ts =0.1 s) and a flexible (Ts = 1 s) slope. The slope resistance 



is assumed to be Ky =0.1 g in this example. From these plots, it is evident that some IMs are better 
correlated with the displacements than the others. However, the predictive capacity of an IM changes 
with the properties of the slopes, i.e., an IM that is closely correlated to the seismic displacements of 
stiff slopes (e.g. Ts = 0.1 s) may not be a good predictor for flexible slopes (e.g. Ts = 1 s).  
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Figure 1. (a) Computed Permanent Displacements (Ky=0.1 g). Insert: Acceleration Time History; 
                      (b) Modulus Ratio and Damping Curve for Nonlinear Soils. 
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Figure 2. Seismic displacements vs. IMs for a stiff sliding mass (Ky=0.1 g, Ts=0.1 s) 
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Figure 3. Seismic displacements vs. IMs for a flexible sliding mass (Ky=0.1 g, Ts=1 s) 
 
The efficiency of scalar and vector IMs can be systematically evaluated under various slope 
conditions. Using 1560 pairs of ground motions, earthquake-induced displacements are calculated for 
Ts ranging from 0.01 to 2 s, and Ky, ranging from 0.01 to 0.5g. It should be noted that Ts usually fall 
between 0.2–0.7 s, so there is little practical importance to consider Ts greater than 2 s. For each (Ts, 
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Ky) case, regression analysis was performed by assuming that the seismic displacements D (in natural 
log unit) are related to the scalar or vector IMs (in natural log unit) in a quadratic form as follows: 
 

( )2 ln
1 1

ln ln ln
n n

i i i i D
i i

D a b IM c IM ε σ
= =

= + + + ⋅∑ ∑   (2.1) 

 
where IMi (i=1,2,…n) represent a particular scalar IM that may be combined to form vector IMs, and n 
is the total number of IMs used (note n=1 for the special case when a scalar IM is used). Parameters a, 
bi, ci are fitting parameters to be determined for each (Ts, Ky) case. The standard deviation of residuals 
is ln Dσ , and ε is a random variable following the standard normal distribution. The adjusted 

coefficients of determination ( 2
adjR ) is used to evaluate the efficiency of IMs. 2

adjR  increases only if 
new term improves the model more than that would be expected by chance. In general, a larger value 
of 2

adjR  implies a smaller standard deviation of residuals, thus higher efficiency of the prediction.   
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Figure 4. Contours of adjusted coefficients of determination for scalar and vector IMs 
 
Using selected scalar and vector IMs as predictors, contours of 2

adjR  values were computed for slopes 
of different Ts and Ky are shown in Figure 4. It is worth mentioning that the analysis is based only on 
seismic displacements that are greater than 1 cm. Displacements smaller than 1 cm usually causes little 
engineering consequence. However, the scatter of these data in log space is much larger than these 
larger values. Therefore, it is necessary to only use data larger than 1 cm in regression analysis such 
that the result will not be biased by these small-valued data. Furthermore, 2

adjR  will not be calculated 
if the number of data is less than 30 to guarantee that the sample size is big enough for statistical 
analysis. The main observation is summarized as follows:  
 
(1) Due to elongation of slope period during shaking, the spectral acceleration at a degraded period, 



Sa(1.5Ts), is the overall most efficient scalar IM as was also pointed out by Travasarou and Bray 
(2003). Illustrated in Fig. 4, Sa(1.5Ts) is efficient ( 2

adjR >0.7) particularly for flexible slopes with Ts 

greater than 0.2 s. However, the efficiency of Sa(1.5Ts) greatly decreases ( 2
adjR <0.5) if the slope 

becomes stiffer (Ts < 0.2 s). 
 
(2) Compared with the spectral acceleration, Ia is derived from time integration of the square of the 
entire acceleration time history (Arias, 1970), and it implicitly consider the amplitude and the duration 
of the ground motion. Among all scalar IMs that have been considered in Wang (2012), Ia is the most 
efficient IM for stiff slope cases (Ts < 0.2 s).   
 
(3) Since Sa(1.5Ts) and Ia are the most efficient scalar IMs for flexible (Ts > 0.2 s) and stiff slopes (Ts < 
0.2 s) respectively, the vector IM that incorporates both of them (termed as “Sa(1.5Ts) + Ia”) can 
improve the overall efficiency for all slope conditions. As is shown in Fig. 4, 2

adjR >0.8 is achieved for 
slope conditions with Ky < 0.1 g and Ts < 2 s. It should be noted that Bray and Travasarou (2007) 
recommended using Sa(1.5Ts) for Ts >0.05 s and PGA for Ts <0.05 s in their predictive model. 
However, their approach is slightly less efficient than using the “Sa(1.5 Ts) + Ia” scheme.  
 
(4) Considering the limitation of using property-dependent IMs, it is therefore more desirable to have 
property-independent IMs. A promising option is to use multiple spectral accelerations at short to long 
periods to form the vector IMs, which samples a range of frequency content of the ground motions and 
thus can better describe their overall characteristics. As a special case, the vector IM using PGA and 
Sa(2s) (termed as “PGA+Sa(2s)” scheme in Fig. 4) is the most efficient one if only two IMs should be 
used. Of course, the efficiency can always be improved by using more spectral acceleration ordinates.  
 
3. PREDICTIVE MODELS USING SCALAR AND VECTOR INTENSITY MEASURES 
 
3.1. Bray & Travasarou (BT07) model  
 
For comparison, Bray & Travasarou (2007) predictive model (BT07) is briefly summarized. The 
model consists of two steps: (1) estimate the probability of negligible “zero” displacement (smaller 
than 1 cm), and (2) estimate the median nonzero displacement (greater than 1 cm). By doing so, these 
very low values of displacements that are of no engineering significance do not bias the results. 
 
Using probit regression analysis, the probability of “zero” displacement can be expressed as a function 
of IMs, Ky and Ts as follows: 
 

( 0) 1 ( 1.76 3.22ln( ) 0.484 ln( ) 3.52ln (1.5 ))y s y sP D K T K Sa T= = −Φ − − − +  (3.1) 
 
where Φ is the standard normal cumulative distribution function. The nonzero displacement can be 
estimated by regression analysis using non-zero displacement data (greater than 1cm),  
  

( )
( ) ( )

2

0

2

ln 2.83ln 0.333 ln 0.566ln ln (1.5 )

3.04 ln (1.5 ) 0.244 ln (1.5 ) 0.278 7

y y y s

s s

D b K K K Sa T

Sa T Sa T M

= − − +

+ − + −
       (3.2) 

 

where 0

0.22 if 0.05
1.10 1.5 if 0.05

s

s s

T s
b

T T s
⎧− <⎪⎪= ⎨⎪− + ≥⎪⎩

; D is the predicted median nonzero displacement in cm; 

M is moment magnitude of earthquakes; Ky is the yield acceleration in g; Ts is the initial period of the 
sliding mass in s. When Ts<0.05s, lnSa(1.5Ts) will be replaced by lnPGA in Eq.(3.2). Note that IMs in 
the above equations are in natural logarithmic scale, since modern seismology found that IMs usually 
follow lognormal distributions. Consequently, the residual (error) of Eq. (3.2) can be evaluated as: 



ˆln lnr D D= −          (3.3) 
 
where D̂ is empirical data obtained from the fully-coupled sliding mass model, D is the predicted value, 
r is error (residual) of the model prediction, which usually follows a normal distribution. BT07 model 
provides the standard deviation of residuals σ =0.66. 
 
In summary, BT07 model specifies the probability of zero displacement ( 0)P D= via Eq. (3.1), and 
the nonzero displacement D is assumed to follow a lognormal distribution with the median value 
provided in Eq. (3.2) and the standard deviationσ (in natural log unit). The model results in a full 
probabilistic description of the slope displacements suitable for Ts = 0 – 2s, and Ky = 0.02g – 0.5g. 
Accordingly, the predicted displacement according to a specified percentile p (in decimal form, i.e. 
p=0.25 for the 25th percentile) can be determined as 
 

 1 ( 0)ln ln
1 ( 0)p
p P DD D

P D
σ − ⎛ ⎞− = ⎟⎜= + ⋅Φ ⎟⎜ ⎟⎜ ⎟− =⎝ ⎠

      (3.4) 
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Figure 5. The distribution of (a) median and (b) standard deviation of residuals of Eq. (3.2) 
 
It is worth noticing that, the predictive equation Eq. (3.2) is derived from regression analysis of all 
nonzero displacement data. The model performance should be checked for each individual case of Ky 
and Ts. In this study, the medians and standard deviations of residuals in Eq.(3.3) is computed using 
the strong motion database for a large number of Ts and Ky combinations (a total of around 600 
combinations for 0.01 2ss T s≤ ≤  and 0.01 0.5yg K g≤ ≤ ). As is plotted in Fig. 5(a), BT07 
model has considerable negative bias in the median residuals when Ts is from 0.1 to 0.3s. The bias can 
reach as much as -0.5, indicating the predicted displacements via BT07 model can be overestimated as 
much as 60% for these cases. Although BT07 model specifies a standard deviation of 0.66, the actual 
distribution is in fact dependent on the range of Ts. Shown in Fig. 5(b), the standard deviation falls 
between 0.7-1.1 when Ts <0.2s, and it is reduced to 0.5–0.7 when Ts>0.2s.  
 
3.2. “Sa(1.5Ts)+Ia” model  
 
Based on the efficiency study of the vector IMs in the previous section, a predictive model is 
developed based on Sa(1.5Ts) and Ia following similar analytical framework of BT07 model. The 
probability of “zero” displacement is derived as: 
 

( 0) 1 ( 1.861 2.782 ln 2.05ln (1.5 )
1.127 ln (1.5 ) 0.703ln 1.312 ln )

y s

s s s

P D K Sa T
T Sa T Ia T Ia

= = −Φ − − +
+ + −

 (3.5) 

 
or, we can simply use Eq.(3.1). The estimated median nonzero displacement can be expressed as: 

(a) (b) 
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( )

2
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0.607 ln 0.339 7
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where Ia is in the unit of g⋅s. Considerable efforts have been spent to select a suitable function form 
for a wide range of Ts and Ky conditions. The above equation is a quadratic function of lnSa(1.5Ts) and 
a linear function of ln Ia, respectively. A piecewise continuous function 0( , )s yb T K is adopted to 
minimize the model bias instead of using a complicated higher order function of Ts and Ky. All the 
constant coefficients in Eqs. (3.5) (3.6) are obtained from nonlinear regression analysis of empirical 
data, and they are all statistically significant. Again, the distribution of medians and standard 
deviations of residuals for Eq. (3.6) is plotted in Fig. 6. Compared with Fig. 5, the “Sa(1.5Ts)+Ia” 
model has more uniform distribution of the median errors. The standard deviations (in log scale) of 
residuals is also more uniformly distributed and slightly reduced. It is proposed a constant σ＝0.64 
should be used for all cases. Like BT07, dependency of model prediction on earthquake magnitude is 
still observed in this model. Therefore, a magnitude term is incorporated in the predictive equation. 
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 Figure 6. The distribution of (a) median and (b) standard deviation of residuals of Eq. (3.5) 
 
3.3. “PGA+Sa(2s)” model  
 
To eliminate the limitation of property-dependent IMs, two property-independent IMs are used to 
develop the predictive equation. Using PGA and the spectral acceleration value at 2s, the probability 
of “zero” displacement can be evaluated as: 
 

( 0) 1 (3.224 2.454 ln( ) 4.41 2.415
1.356ln( ) 1.591ln (2 ) 0.345ln( ) ln (2 ))

y y s s

s

P D K K T T
PGA Sa s T Sa s

= = −Φ − − −
+ + −

   (3.7) 

And the median predicted nonzero displacement is: 
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= − + +

+ − +
  (3.8)  
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Figure 7: The distribution of (a) median, (b) standard deviation of residuals of Eq. (3.8).  
(c) The residuals versus magnitude 

 
Compared with previous two models, the “PGA+Sa(2s)” model has several distinctive advantages. 
Firstly, as shown in Fig.7(a), the medians of residuals of Eq. (3.8) are uniformly small for a wide 
range of Ky and Ts. For most cases, the median values are between -0.1 and 0.1. Secondly, the standard 
deviations of the residuals are rather uniform for a wide range of Ky and Ts. A constant standard 
deviation of residuals (in natural log unit) can be adopted as σ =0.72, which is only slightly larger 
compared with the previous models. Finally, the residuals show very little bias when plotted against 
earthquake magnitude. As shown in Fig. 7(c), considerable negative bias only occurs when M is 
smaller than 5.5. It is not a critical issue since sliding displacements from a smaller earthquake is less 
significant, and the equation is conservative (overestimating the results) for these cases. Therefore, the 
model does not need to incorporate a magnitude term, and it satisfies the sufficiency requirement.  
 
 
4. MODEL COMPARISION AND CONCLUSIONS 
 
An illustrative example is presented in this section to compare the performance of three predictive 
models. Assuming an earthquake event of moment magnitude of 7 occurs on a strike-slip fault, and the 
slope under study is located at a rupture distance of 10 km. Based on recently developed ground 
motion prediction models for spectral accelerations (Campbell and Bozorgnia, 2008) and Ia (Campbell 
and Bozorgnia, 2010), the median predicted Arias intensity for this scenario earthquake is Ia=0.123 
g⋅s=1.2 m/s, and the median predicted spectral accelerations are shown in Fig. 8. Specifically, the 
median predicted PGA=0.26 g and Sa(2s)=0.2 g.  
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Figure 8. The predicted median spectral accelerations of the scenario earthquake  
 
The predicted seismic displacements are plotted in Fig. 9 for Ts from 0 – 2s and Ky equals 0.05g, 0.1g, 
0.2g, respectively. Fig. 9(a) compares the predicted median nonzero displacements computed via Eqs. 
(3.2) (3.6) and (3.8). The probabilities of nonzero displacements are shown in Fig. 9 (b) using Eqs. 
(3.1) (3.5) and (3.7). The median (50th percentile) displacements, computed via Eq. (3.4), are also 

(a) (b) (c) 



plotted in Fig. 9(c). Furthermore, Fig. 9 (d) compares the 16th, 50th and 86th percentile displacements 
obtained from Eq. (3.4). In general, three predictive models result in rather consistent results, even 
though different functional forms and IMs are used. The results are not unexpected since the empirical 
data for these predictive equations are derived from the same sliding mass model using similar strong 
motion databases. Close inspection also reveals that the overestimation of BT07 model at long periods, 
as was reported in Bray and Travasarou (2007), are rectified in the proposed “Sa(1.5Ts)+Ia” and 
“PGA+Sa(2s)” model.    
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Figure 9. Comparison of model predictions 

 
In conclusion, using the PEER-NGA strong motion database and an equivalent-linear sliding mass 
model, predictive equations are developed to estimate the seismic slope displacements using vector 
IMs. The new models yield comparable results with BT07 model, and are applicable for a wide range 
of Ts and Ky conditions. However, Sa(1.5Ts) used in BT07 and “Sa(1.5Ts)+Ia” model is dependent on 
the properties of the slopes. Sometimes, such a property-dependent IM may not be desirable in 
engineering application. Instead, “PGA+Sa(2s)” model employs property-independent vector IMs and 
the model demonstrates superior overall performance. The model has additional advantage in that it is 
the only model that satisfies all the requirements of efficiency, sufficiency and predictability. Finally, 
it is worth mentioning that all of these predictive models are based on empirical data derived from 



simplified mathematical models, they are in fact “models of models”. The results should merely be 
considered as an index of the expected seismic performance of slopes. Eventually, comprehensive case 
studies are necessary steps to further validate these predictive models.  
 
 
AKCNOWLEDGEMENT 
The research is supported by Hong Kong Research Grants Council (grant No. 620311), which is greatly 
acknowledged.  
 
 
REFERENCES  
 
Ambraseys, N.N. and Menu, J.M. (1988). Earthquake-induced ground displacements. Earthquake Engineering 

and Structural Dynamics 16: 985–1006. 
Arias, A. (1970). A measure of earthquake intensity. In Seismic Design for Nuclear Power Plants, Hansen RJ 

(ed.), MIT Press, Cambridge, MA, 438–483. 
Bray, J.D. and Travasarou, T. (2007). Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope 

Displacements. Journal of Geotechnical and Geoenvironmental Engineering 133:4, 381-392. 
Campbell, K.W. and Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal 

component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 
0.01 to 10 s. Earthquake Spectra 24: 139–171. 

Campbell, K.W. and Bozorgnia, Y. (2012). A comparison of ground motion prediction equations for Arias 
Intensity and cumulative absolute velocity developed using a consistent database and functional form. 
Earthquake Spectra, in press.   

Chiou, B., Darragh R., Gregor, N., Silva, W. (2008). NGA project strong-motion database. Earthquake Spectra 
24(1): 23–44. 

Jibson, R.W. (1993). Predicting earthquake-induced landslide displacements using Newmark’s sliding block 
analysis. Transportation Research Record 1411. 

Jibson, R.W. (2007). Regression models for estimating coseismic landslide displacement. Engineering Geology 
91:209–218. 

Jibson, R.W. (2011). Methods for assessing the stability of slopes during earthquakes – A retrospective. 
Engineering Geology 122: 43-50. 

Luco, N. and Cornell, C.A. (2007). Structure-specific scalar intensity measures for near-source and ordinary 
earthquake ground motions, Earthquake Spectra 23: 357-392. 

Kramer, S. L. and Mitchell, R.A. (2006). Ground motion intensity measures for liquefaction hazard evaluation, 
Earthquake Spectra 22: 413-438. 

Newmark, N.M. (1965). Effects of earthquakes on dams and embankments. Géotechnique 15:2, 139–160. 
Romeo, R. (2000). Seismically induced landslide displacements: a predictive model. Engineering Geology 58: 

337-351. 
Rathje, E.M. and Bray, J.D. (2000). Nonlinear Coupled Seismic Sliding Analysis of Earth Structures. Journal of 

Geotechnical and Geoenvironmental Engineering 126:11, 1002-1014. 
Saygili, G. and Rathje, E.M. (2008). Empirical Prediction Models for Earthquake-induced Sliding Displacements 

of Slopes. Journal of Geotechnical and Geoenvironmental Engineering 134:6, 790–803. 
Schnabel, P.B., Lysmer, J., Seed, H.B. (1972). SHAKE - A Computer Program for Earthquake Response 

Analysis of Horizontally Layered Sites, Earthquake Engineering Research Center, Report No. 
UCB/EERC-72/12. University of California, Berkeley. 

Shome, N. and Cornell, C.A. (1999). Probabilistic seismic demand analysis of nonlinear structures. Report No. 
RMS-35, RMS Program, Stanford University, Stanford, CA, 357pp,. 

Travasarou, T. and Bray, J.D. (2003). Optimal ground motion intensity measures for assessment of seismic slope 
displacements. Pacific Conf. on Earthquake Engineering, Christchurch, New Zealand. 

Vucetic, M. and Dobry, R. (1992). Effect of soil plasticity on cyclic response. Journal of Geotechnical 
Engineering 117:89-107 

Wang, G. (2012). Efficiency of Scalar and Vector Intensity Measures for Seismic Slope Displacements, 
Frontiers of Structural and Civil Engineering 6:1, 44-52.  

Watson-Lamprey, J. and Abrahamson, N. (2006). Selection of ground motion time series and limits on scaling. 
Soil Dynamics and Earthquake Engineering 26: 477–482 

 


