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Abstract: We study the generic problem of path opti-
mization for a critical infrastructure link between two
locations on the surface of the Earth in the vicinity of
earthquake-prone areas. The problem has two (conflict-
ing) objective functions, one for minimizing the construc-
tion cost of the link and the other for minimizing the
number of potential repairs along the link in the wake
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of earthquakes. In our model, the Earth’s surface is ap-
proximated by a triangulated manifold, and ground mo-
tion intensity data are used to provide a measure of repair
rate. We approach the multiobjective variational prob-
lem by first converting it into a single objective varia-
tional problem using the weighted sum method. Then, we
show that the problem can be further transformed into
an Eikonal equation and solved by a computationally
efficient algorithm based on the fast marching method.
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Extensive simulations are performed on real-world three-
dimensional geographical data, from which we obtain
Pareto optimal solutions that provide insight and guid-
ance to design trade-offs between cost effectiveness and
seismic resilience.

1 INTRODUCTION

Critical infrastructures such as electricity, oil, gas,
telecommunications, transportation, and water are
essential to the functioning of modern economies
and societies. As the world is increasingly intercon-
nected, long-haul trans-regional, trans-national, or
trans-continental links are playing a crucial role in
transporting critical resources and information from
one location to another. For example, it is known
that submarine telecommunications cables carry over
95% of the global voice and data traffic (Carter et al.,
2009). Russian gas that is delivered through the trans-
European pipeline accounts for over a quarter of the
total European consumption (Cobanli, 2014). Such
critical infrastructure links are vulnerable to disasters
(Neumayer et al., 2011) and, if broken, can have severe
social and economic consequences.

Among various natural disasters, earthquakes often
cause the most catastrophic effects. For example, in
1987, the Ecuador earthquake resulted in the dam-
age of nearly 70 km of the Trans-Ecuadorian oil
pipeline. Loss of the pipeline deprived Ecuador of
60% of its export revenue, and it took 5 months to
reconstruct the pipeline (Schuster, 1991). In 2006, the
Hengchun/Taiwan earthquake damaged eight subma-
rine cables with a total of 18 cuts. As a result, Internet
services in Asia were severely disrupted for several
weeks, affecting many Asian countries (Qiu, 2011). It
was estimated that, for a well-developed economy that
is largely reliant on the Internet, one week of Internet
blackout can cause losses of over 1% of annual GDP
(mi2g, 2005; Dübendorfer, 2005). These events signify
the impacts of earthquake hazards and the importance
of enhancing the seismic resilience of critical infrastruc-
ture links (Cao et al., 2013; Cao, 2015; Cao et al., 2016).

In this article, we study the generic problem of path
optimization for a critical infrastructure link between
two locations on the surface of the Earth that crosses
an earthquake-prone area. The focus is on infra-
structure links, such as undersea cables and long-haul
oil/gas/water pipelines, where surface distance is a
reasonable measure of the length of a link. For such a
practically important problem, where the topography
of the landform between the two locations is given, we
are not aware of any theoretically sound approach pro-
posed in the literature that takes into consideration both

cost effectiveness and seismic resilience. To address
this gap, we formulate the problem as a multiobjective
variational problem where we aim to find the set of
Pareto optimal paths for the infrastructure link with
two objective functions.

� The first objective is to minimize the cost associated
with the construction of the infrastructure link. Con-
necting the two locations by a geodesic, i.e., the route
with the shortest surface distance, may minimize the
construction cost but can increase the risk of damage
or break in the event of an earthquake if the route is
close to the hazard.

� The second objective is to minimize the number of
potential failures (hence repairs) along the infrastruc-
ture link in the wake of earthquakes, which may serve
as an index of the cost associated with the loss and re-
construction of the link in the event of failures.

Note that the second objective in our context is
related to the notion of seismic resilience (Bruneau
et al., 2003). According to Bruneau et al. (2003), two
key measures of resilience in general and seismic re-
silience in particular are “reduced failure probabilities”
and “reduced time to recovery.” Røstum (2000) and
Fragiadakis and Christodoulou (2014) have shown that
the larger the number of potential repairs, the greater
is the failure probability of a link. In this article, we
will reduce both the failure probability and the time to
recovery by minimizing the total number of potential
repairs for a given budget, and therefore improve
seismic resilience.

Our model is built on the state of the art in geographic
information systems (GIS) for terrain approximation
(Chang, 2013) and, ground movement-based risk
evaluation, the latest development in civil engineering
for seismic risk assessment of critical infrastructure
links (Jeon and O’Rourke, 2005; Fragiadakis and
Christodoulou, 2014). Specifically, the model considers
triangulated manifolds for representing the surface
of the Earth, and ground motion intensity measures
for estimating the link repair rate in the event of an
earthquake since the correlations between them can
be found statistically from past earthquakes (Jeon and
O’Rourke, 2005; Wang and O’Rourke, 2008; Pineda-
Porras and Najafi, 2010; Fragiadakis and Christodoulou,
2014). Based on this model, we approach the multi-
objective variational problem by first converting it
into a single objective variational problem using the
weighted sum method (Miettinen, 1999). Then, we
show that the problem can be further transformed into
an Eikonal equation and solved by a computationally
efficient algorithm based on the well-established fast
marching method (FMM) (Kimmel and Sethian, 1998;
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Sethian, 1999a). This enables us to obtain Pareto
optimal solutions that provide flexibility in path opti-
mization for a critical infrastructure link, taking into
consideration the fundamental trade-off between cost
effectiveness and seismic resilience. In summary, our
novelty here is twofold:

1. For the first time, we apply a repair rate model
based on ground motion intensities, a landform
model based on a triangulated manifold, and an
additive construction cost model for link construc-
tion optimization.

2. For the first time, we apply the FMM algorithm to
the multiobjective variational optimization prob-
lem of minimizing construction cost while mini-
mizing total number of repairs.

The rest of the article is organized as follows. In
Section 2, we discuss the related work. In Section 3, we
discuss the issues in constructing a link between two
nodes and the rationale for a multiobjective optimiza-
tion approach. In Section 4, we describe the models. In
Section 5, we provide details of the problem formula-
tion and solution. Simulation results are presented in
Section 6. Finally, we draw conclusions in Section 7.

2 RELATED WORK

Much work has been done on understanding the dam-
age of infrastructure links by past earthquakes. The
work of Chen et al. (2002) investigated the damage
patterns of natural gas and water pipelines in the 1999
Chi-Chi earthquake, and conducted statistical analysis
to understand the correlation between repair rates and
seismic parameters. Considering the same 1999 Chi-Chi
earthquake, Hwang et al. (2004) investigated damage
to natural gas pipelines due to ground shaking effects,
and performed regression analyses of pipe repair rates
to derive seismic vulnerability functions based on pipe
repair data and recorded strong motion data. The work
of Liu (2009) summarized main factors that impact sub-
marine cables based on their performance in three past
earthquakes, including the 2006 Hengchun earthquake,
the 2004 Sumatra earthquake, and the 1929 Grand
Banks earthquake. The work of Carter et al. (2014)
investigated the effect of damaging submarine flows on
submarine cables in the 2006 Pingtung earthquake, and
presented insights regarding the causes, frequency, and
behavior of submarine flows. The work of Kobayashi
(2014) reported the experience of infrastructure da-
mage caused by the 2011 Tohoku earthquake.

Through modeling and analyzing the vulnerability,
researchers have also worked on evaluation of potential

damage to current infrastructure links by earthquakes.
Lanzano et al. (2013) analyzed the interaction of
earthquakes with natural gas pipelines in terms of the
likelihood of the loss of containment with respect to
peak ground velocity (PGV). Esposito et al. (2015)
analyzed the vulnerability of gas networks via fragility
curves and evaluated their seismic performance via
computer-aided simulation. Wang and O’Rourke
(2008) and Wang and Au (2009) proposed methods to
identify critical links of water supply with a relatively
large damage probability under an earthquake. Adachi
and Ellingwood (2009) provided an evaluation of the
serviceability of the municipal water distribution system
in Shelby County, Tennessee, considering spatial cor-
relation in seismic intensity and demand. A case study
for a town in a suburb of Algiers has been presented
in Zohra et al. (2012) for a proposed method based on
the identification of parameters to assess the seismic
vulnerability of water pipeline network. Cavalieri
et al. (2014) presented a comparison of five seismic
performance assessment models for power networks.

The work mentioned above focused on modeling, an-
alysis, or evaluation of potential damages and vulnera-
bility for a given infrastructure link system, but not on
the path optimization for a critical infrastructure link
that is the problem considered in this article. Although
the former can provide insights and support for the
latter, the work mentioned above and the work done in
this article are much more distinct in methodologies.

A closely related problem in civil and infrastructure
engineering is pipeline route selection. Traditionally,
in practice, the route selection procedures of critical
infrastructure links have been achieved manually based
on expert experience (Burnett et al., 2013). In this
approach, engineers draw several relatively reasonable
paths on a large-scale topographical map using available
data, such as maps and aerial photographs, of the region
of interest. Then, to verify the availability and rational-
ity of the selected paths (Iqbal et al., 2006), a survey is
conducted along them. If the survey reveals constraints
or obstacles that cannot be eliminated or removed, new
paths have to be chosen manually and verified by survey
(Berry et al., 2004; Holmes and Squire, 2012). The final
path of the link is determined by detailed analyses and
comparisons. The traditional manual approach depends
on expert judgment and subjective analysis, which may
be far from optimal and especially when the decision
space is large and complex (Holmes and Squire, 2012).

State-of-the-art approaches are in general computer-
assisted heuristics utilizing GIS technology (Dey and
Ogunlana, 1999; Yildirim et al., 2007; Balogun et al.,
2012; Macharia, 2014). Specifically, they are based on
weighting factors considered to be affecting the route
and then applying raster-based path analysis to find the
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least accumulative cost path using the (discrete) Dijk-
stra’s shortest path algorithm (Chang, 2013). However,
the effects of earthquakes were not considered by these
publications. A similar approach was used by Zhao
et al. (2017) for cable route selection considering cost
minimization and earthquake survivability. A major
limitation of the raster-based path analysis is that a path
is restricted to use either a lateral link or a diagonal
link when moving from one cell to its adjacent cells.
For a given grid graph, even with very small grid/cell
size, this is an inherent limitation (Sethian, 1999a).
From a practical point of view, although using a finer
grid graph to model the configuration space of the
path analysis problem would reduce the shortcoming
of the raster-based method, it would also dramatically
increase the computational expense. Our approach in
this article suits a broader class of critical infrastructure
links including undersea cables and uses a theoretically
sound methodology with guaranteed optimality within
the approximations and the limitations of the available
data and link construction cost and failure models.

The use of multiobjective (or multicriteria) opti-
mization in infrastructure design is not new (Sarma
and Adeli, 2000b; Sirca and Adeli, 2005; Pérez et al.,
2015). There also exist studies on the topic of cost-
effectiveness or cost-benefit analysis, e.g., for mitigation
(Rose et al., 2007), restoration (Bocchini and Fran-
gopol, 2012), and health care intervention (Neumann
et al., 2014). These and other existing publications
on multiobjective optimization in the general area
of infrastructure design or cost-effectiveness analysis
did not consider the critical infrastructure link path
optimization problem developed in this article. In Cao
et al. (2013), Cao (2015), and Cao et al. (2016), there has
been an attempt to apply multiobjective optimization to
path planning of a telecommunication cable. However,
in these publications, it is assumed that the topology lies
on a two-dimensional (2D) plane. We address the path
optimization problem for infrastructure links based on
a more accurate model that represents the surface of
the Earth as a 2D manifold in three-dimensional (3D)
space; that is, we account for topography and terrain.

3 THE MULTIOBJECTIVE OPTIMIZATION
APPROACH

As discussed in the Introduction, the optimization
of the path of a link between two locations in an
earthquake-prone region is based on multiple objec-
tives. In particular, we consider the following two
objective functions. The first is the laying cost (applica-
ble to, e.g., a telecommunication cable), or construction
cost (for, e.g., an oil pipeline). For brevity, hereafter,

we will use the term construction cost to refer to both
laying and construction cost. The second objective
function is an index associated with the estimation of
future number of repairs (or failures) of the link in a
given time period (e.g., 100 years). Although the first
objective is about cost incurred during construction,
the second objective is about cost incurred in the
(potentially, long term) future.

3.1 Why multiobjective optimization?

There are various factors associated with estimation of
the first objective, namely, the construction cost. The
length of the link is clearly a factor here, but it is not
the only factor as the construction cost can vary from
one location to another based on ground/soil condition,
requirement for security arrangements, licensing, and
various other factors. The reason that we need to
address the problem as a multiobjective optimization is
the second objective function.

Although the dollar value of the first objective is rela-
tively clear, it is not so simple to assign a dollar value to
potential link failures, mainly because different stake-
holders have significantly different views of the cost of
link failures. Although for a telecom cable owner, ca-
ble breaks incur cost associated with the repair needed
minus any insurance payment received, for an insur-
ance company, the cost consequence may be higher, and
for the society, government, or public the cost of cable
failures can be much higher, as one week of Internet
shutdown has been estimated at 1.2% of annual GDP
(mi2g, 2005; Dübendorfer, 2005), which means billions
of dollars. In addition, failure of infrastructure links can
lead to loss of lives in various cases of natural disasters.
Given the multiplicity of stakeholders with different ex-
change rates between link failure risks and dollar values,
it is appropriate to use a methodology based on multiob-
jective optimization that leads to a set of Pareto optimal
solutions. Such optimal solutions provide for a given
budget for construction cost, the planned path that min-
imizes the risk (as measured by predicted number of re-
pairs), and for each given predicted number of repairs,
the planned path that minimizes the construction cost.

3.2 The second objective

Although the choice of the first objective is relatively
straightforward, the choice of the second objective of
the predicted number of repairs requires some dis-
cussion. Larger predicted number of repairs (failures)
indicates both potential costs of repairs, as well as link
downtime that may have significant societal cost. As
an illustration, after the 2006 Taiwan earthquake, eight
submarine cable systems were found to be damaged
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with a total of 18 cable cuts (Qiu, 2011). The repair
for each cable cut was expected to require around
7 days (LaPerrière, 2007). Although some repairs can
be done in parallel, it still took over a month to achieve
full restoration of connectivity following the Taiwan
earthquake.

Accordingly, we adopt the view that a reasonable
index to represent the level of damage caused by an
earthquake is the total number of repairs (or failures)
of the link. To estimate the number of repairs, we rely
on data of ground motion in the past during a certain
period of time, or simulations based on given geological
knowledge. We are, in fact, using past earthquake data
to predict seismic events in the future. Nevertheless,
this is considered reasonable, as the geology does not
change significantly over the service life of the link.

Since the relevant period of time the ground motion
data has been measured (or simulated) applies to all
points in the map equally, and since the data are based
on the past, we henceforth use the abbreviated term of
total number of repairs without mentioning the period
of time and the fact that it is “potential.” This is our
second objective to be optimized.

To calculate total number of repairs for a link, we
will use the term repair rate (Jeon and O’Rourke, 2005;
Wang and O’Rourke, 2008; Esposito, 2011; Fragiadakis
and Christodoulou, 2014; Cimellaro et al., 2014) to
indicate the predicted number of repairs per unit
length of the link over a fixed time period into the
future. An alternative term, less used in the earthquake
literature, is failure rate. In addition, for a specific link,
the repair rate varies for different points on the link and
depends on various factors as well, such as the geology,
link material, and ground/soil conditions. In another
context considering earthquakes effects, the repair
rate has been widely used to assess reliability of water
supply networks (Jeon and O’Rourke, 2005; Wang and
O’Rourke, 2008; Fragiadakis and Christodoulou, 2014),
and to analyze the risk to gas distribution networks
(Esposito, 2011; Cimellaro et al., 2014).

To estimate the repair rate which we use for esti-
mating the total number of repairs of a link, we rely
on data of ground motion in the past during a certain
period of time, or simulations based on given geological
knowledge. As in Section 4, we also take advantage
of the extensive work of the United States Geological
Survey (USGS) analysts who develop models for the
potential effects of future earthquakes.

The total number of repairs (and repair rate) indi-
cates both the expected time period between the seismic
events that will result in repairs and their probability
of occurrence. The higher the probability of occurrence
and intensity of seismic events, the larger the ground
motion intensity and therefore the larger the repair rate.

In this article, we consider two objectives—construc-
tion cost and number of potential repairs. Other objec-
tives are easily integrated into our approach if they can
be computed as an integral of some quantity along the
path. Effectively this means the objectives are local and
additive across multiple path segments.

4 MODELING

In this section, we describe the models we introduce
for the landforms, construction cost, and the potential
required repairs. Table 1 lists the key notations used in
this article.

4.1 Landform model

We approximate the region of the Earth’s surface
(including the sea bed) under consideration as a closed,
connected (Greenspan, 2000), 2D manifold in 3D

Table 1
Key notations

R
n n-dimensional Euclidean space

M triangulated piecewise-linear two-dimensional
manifold in R

3

(x, y, z), z =
ξ(x, y)

coordinates of a point in M

h(x, y, z) construction cost at point (x, y, z)
A, B two nodes to be connected by a link in M

X A, X B coordinates of A, B
γ a link, a path or a curve representing the link
H(γ ) the construction cost of the link γ

S, X, X S points in M

g(X) repair rate at location X
G(γ ) total number of repairs of the link γ

l(γ ) length of the link γ

f (X(s)) weighted summation of construction cost and
repair rate at location X(s)

φ(S) minimal cumulative cost to travel from one
point to a point S

∇ gradient operator
‖ · ‖ 2-norm
�V V1V2 a triangle in M

φ̄(V ) value at V calculated by numerical method
� grid point set of M

N total number of discretized grid points of M

m earthquake magnitude
r epicenter distance from a site to a fault line

source
v PGV
c weight of construction cost
μ mean of ln v

fM (m) PDF of the earthquake magnitude m
fR(r), FR(r) PDF, CDF of the epicenter distance r
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Euclidean space R
3, uniquely represented by a contin-

uous, single-valued function z = ξ(x, y), where z is the
elevation and x and y are the Cartesian coordinates
(Florinsky, 2012). In particular, caves, grottos, tunnels,
etc., are ignored.

As information about the landforms is always avail-
able in a quantized form (discrete grid), we use a
triangulated piecewise-linear 2D manifold M to approxi-
mate the Earth’s landforms. Such triangulated manifold
models are widely used to represent topography and
terrain in GIS and other related fields, as they make it
easier than other available models (e.g., the regular grid
model) to consider rough surfaces and to accommodate
irregularly spaced elevation data (Peucker et al., 1978;
Lee, 1991). We further assume that the triangulated
manifold model is complete; that is, it is a connected
triangulated manifold surface in R

3 that consists of
faces, edges, and vertices and satisfies the following
conditions (Martı́nez et al., 2005):

� There are no isolated vertices.
� Each edge belongs to exactly one triangle or is shared

by just two triangles. Any two triangles intersect in a
common vertex or edge, or not at all.

� Any two points on the surface are connected by a
path (possible through the middle of a triangle) on
the surface connecting the two points.

These conditions do not pose significant modeling
limitations because areas that do not satisfy these
conditions, such as cliff faces, will be avoided by the
link in any case. The particular details of how to address
such areas in the model will be discussed below.

4.2 Construction cost model

As mentioned in Section 3, the construction cost is
affected by various factors and varies from one location
to another. For (x, y, z) ∈ M, we define a function
h(x, y, z) to represent the link construction cost at point
(x, y, z), where z = ξ(x, y). This function gives the path
planner the flexibility to consider different construction
cost for different locations. For example, there are
many areas that links (submarine telecommunications
cables) must avoid, or require high construction costs
(Yung, 2011). They include:

� areas that are of high ecological value (e.g., coral
communities),

� areas where special and costly licenses are required,
� incompatible seabed (e.g., rocky areas),
� big mountains and even man-made obstructions, and
� any other areas that must be avoided

Setting appropriately high values to the function
h(x, y, z), z = ξ(x, y) will enable avoidance of such
areas, or at least imposition of a high construction cost.
In areas where the construction cost of the link is only
its length, we set h(x, y, z) equal to a constant value,
e.g., h(x, y, z) = 1, where z = ξ(x, y).

Let node A and node B be two fixed points with co-
ordinates X A and X B in M, which have to be connected
by a link, defined as a Lipschitz continuous (Eriksson
et al., 2013) curve γ in M that connects the points A
and B. The assumption of Lipschitz continuity is nec-
essary to guarantee the existence of the solution of the
Eikonal equation introduced in Section 5. Fortunately,
in practice, this condition has negligible effect on the
accuracy of our solution. Lipschitz continuity requires
that the slope of the secant line joining two different
points on the link is always bounded by a finite number,
and is weaker in our context than differentiability with
continuous derivative. In other words, the link cannot
be infinitely steep at one point. This, in practice, implies
a very steep cliff (exactly vertical) that the link must
avoid in any case. Avoidance of such areas is part of
our optimization as discussed above. Let H(γ ) be the
construction cost of the link γ . We assume:

� The construction cost H(γ ) of the link γ is quantified
in terms of the cost per unit length at every point on
the link, and is location-dependent.

� For any particular point on the link, S, the construc-
tion cost per (arbitrarily) small length ds, dH(γ ), is
calculated as the product of the construction cost
h(X S) and length ds, i.e., h(X S)ds. Here, we use cap-
ital letters (e.g., S, X , X S , A, and B) to denote points,
but we use small letters (e.g., x, y, z) to denote the
actual coordinates.

Then the construction cost of the link γ is the integral
of the construction cost at each point along the path of
the link. That is,

H(γ ) =
∫

γ

h(X)ds (1)

where h(X) ∈ R
1
+ is the construction cost at location X .

Note that construction cost evaluation is a com-
plicated process. Real costs depend on the specific
application to be solved. Our model above can handle
many constraints that can be modeled by an additive
construction cost. However, it is unable to consider
constraints with nonadditive property (e.g., bulk dis-
count). More realistic infrastructure construction cost
models and analysis can be found in Adeli and Wu
(1998), Adeli and Sarma (2006), and Rui et al. (2011).
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Fig. 1. The shaded surface map of PGV of the contiguous United States (cm/s). Data are provided by USGS.

4.3 Link repair model

Now we discuss the correlation of ground movements
resulting from earthquakes with the repair rate.

Since the link is laid on the surface of the Earth, the
repair rate g(X) is defined on the surface introduced
previously, and therefore as a function of the coordi-
nates x and y: g(X) = g(x, y, z), z = ξ(x, y). Typically,
after an earthquake event, the area affected can be
subdivided into many cells, and in each cell, repair
rate of a link in the cell is determined by dividing the
number of repairs by the length of the link in the cell.

Some publicly available information on the repair
rate and its correlation with ground movement can
be found in the context of water and gas pipelines
(Jeon and O’Rourke, 2005; Wang and O’Rourke, 2008;
Fragiadakis and Christodoulou, 2014). Many ground
motion parameters have been used for relating repair
rate with seismic intensity (Pineda-Porras and Najafi,
2010). In this article, PGV is adopted to derive the
repair rate since a significant correlation has been
found between the two (O’Rourke et al., 1998; Toprak,
1998; Toprak and Taskin, 2007) and PGV is widely
used for deriving repair rate in the literature (Alliance,
2001; Jeon and O’Rourke, 2005; Pineda-Porras and
Najafi, 2010). Note that Newmark (1968) developed
a theoretical model for seismic wave interaction with
pipelines and showed that the seismic wave induced
strain along the pipeline is proportional to the ground
velocity. An example of PGV map of the contiguous
United States, derived based on Peak Ground Accel-
eration (PGA) (http://www.usgs.gov/) data provided

by USGS, is shown in Figure 1. For specific details on
how we convert data from PGA to PGV, see Section 6
below. In Figure 1, different colors represent different
levels of PGV. We can read the value of PGV (in cm/s)
for a site from the color bar on the right of Figure 1.
The gradual change of the color of the color bar, which
is from blue to red, corresponds to increase of the PGV
from the minimum value to the maximum value.

Note that the application of our method is not limited
to PGV and other information on ground motion can
be used to estimate the repair rate. It is apparent that
the more accurate the estimation of repair rate is, the
more reliable are the path planning results.

As we mentioned in the description of modeling
of construction cost, assigning high positive repair
rate values to the function g(x, y, z), z = ξ(x, y) will
force the link to avoid high-risk areas. For example, as
discussed by Yung (2011), the following are high-risk
areas for submarine telecommunications cables:

� areas with wind or underwater turbines,
� marine vessel fairways,
� marine borrow area (e.g., gazetted dredging and sed-

iment disposal area and sand deposit area), and
� anchorage areas and fishery areas.

Other adjustments can be made to the repair rate
function to consider particular link attributes.

Let G(γ ) be the total number of repairs of the link γ .
The assumptions we made previously for the con-
struction cost of the link H(γ ), apply also for the total
number of repairs; namely, we assume
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� The total number of repairs G(γ ) of the link γ is
quantified in terms of the repair rate at every point
on the link, and is location-dependent.

� For any particular point on the link, S, the number
of repairs per (arbitrarily) small length ds, dG(γ ), is
calculated as the product of the repair rate g(X S) and
length ds, i.e., g(X S)ds.

Then the total number of repairs of the link γ is the
integral of the repair rate at each point along the path
of the link. That is,

G(γ ) =
∫

γ

g(X)ds (2)

where g(X) ∈ R
1
+ is the repair rate at location X .

Note that many influencing factors may affect fail-
ures of critical infrastructure links although mainly
earthquake hazard is considered in this article. Our
methodology can be extended to include other factors,
for example, landslides, if the corresponding repair rate
models can be provided. Equivalently, as discussed in
our cost model description, our repair rate model can
include influencing factors, provided that they are local
and additive in nature.

5 PROBLEM FORMULATION AND SOLUTION

In this section, we first provide a rigorous formulation
of our multiobjective optimization problem with ob-
jective functions—the construction cost and the total
number of repairs, based on the models of landforms,
construction cost, and the potential required repairs.
Then, we describe in detail the algorithm that obtains a
set of path planning alternatives, each of which achieves
optimal construction cost for each value of required
repairs, and the least number of required repairs for
a given budget. These sets of alternatives form the
so-called Pareto optimal set. We note that our use of
terms “optimal” and “least” here represents the best we
can do given a grid size of the topographic data and any
discrepancy that may be introduced by the manifold
M relative to the real landform. As this grid size is
reduced, potentially, better solutions may be obtained.
The advantage of this approach is that it provides the
true optimal results given the resolution level, the data,
the construction cost model, and the failure model.

First, considering the functions of construction cost
and repair rate defined on the manifold M that repre-
sents the real landform of the area under consideration,
we formulate path planning as a multiobjective varia-
tional optimization problem, called Problem 1. In this
optimization problem, the objective functions are (1)
the total construction cost and (2) the total number of

repairs accumulated for any given path. The values of
these objective functions are obtained by line integrals
over each path. Then, we transform our multiobjective
variational optimization problem to a single combined
objective problem, called Problem 2, where at each
point on the manifold, a single function based on a
fixed weighted average of the construction cost and
the repair rate is considered. According to Bector and
Husain (1992), Problem 2 provides a Pareto optimal set
as the weights are varied in the calculation of the single
combined objective function.

Problem 2 is transformed to the so-called Eikonal
equation; a nonlinear partial differential equation
(PDE) encountered in problems of wave propagation.
Intuitively, given the Start Point A, a propagated wave
front from this point represents a set of points that
achieve the same value for the minimal line integral
from Start Point A (to the point of the wave front)
of the single combined objective function. A solution
of the Eikonal equation provides fronts of the waves
where the front most distant from Start Point A includes
End Point B. Then the desired optimal path is obtained
by moving from End Point B toward Start Point A
through all the wave fronts by always choosing the
steepest decent.

Recall that the proposed solution of Problem 2 re-
quires a continuous manifold M, and that we only
have the discretized topographical data used to define
the triangulated manifold. We still need an algorithm
that obtains the optimal path over the triangulated
manifold. This is achieved by adopting the FMM, a con-
tinuous version of the Dijkstra shortest path algorithm.
Different from the “discrete” Dijkstra’s algorithm that
imposes the path to travel exclusively on the edges of
triangles in M, this “continuous” version of Dijkstra’s
algorithm enables the path to traverse through the
interiors of triangles to find better solutions. The FMM
is known to be optimal for solving the Eikonal equation
(and therefore Problem 2) as the grid size of the trian-
gulated manifold approaches zero (Sethian, 1999b).

In the following, we provide the detailed mathemat-
ical formulation of the link path planning problem and
then introduce our methodology.

Based on the models of landforms, construction cost,
and the potential required repairs, our multiobjective
optimization problem of minimizing the construction
cost and the total number of repairs is as follows:

Problem 1 minγ �(γ ) = (H(γ ), G(γ ))

s.t. γ (A) = X A, γ (B) = X B

To calculate the construction cost and the total
number of repairs of the link γ , we parameterize the
curve γ as functions of arc length, s; that is, every point
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X ∈ γ can be represented by arc length s as X = X(s).
Such a parameterization is also known as the natural
definition of a curve (Burago et al., 2001). Then the
construction cost and total number of repairs of the link
γ are rewritten as

H(γ ) =
∫ l(γ )

0
h(X(s))ds, G(γ ) =

∫ l(γ )

0
g(X(s))ds (3)

where h(X(s)), g(X(s)) ∈ R
1
+ are the construction cost

and the repair rate at location X(s), respectively, and
l(γ ) is the length of the link γ .

This problem can be formulated as a multiobjective
variational optimization problem for which calculus of
variations approaches are applicable. In the following,
we describe the path planning methodology we use to
solve Problem 1.

Since Problem 1 has multiple objectives, in general,
it is impossible to simultaneously optimize both the
construction cost and the total number of repairs.
Therefore, Pareto optimal solutions are sought. A
standard method to solve Problem 1 is to formulate
it as a single objective function optimization problem
through the weighted sum method, i.e.,

Problem 2 minγ �(γ ) =
∫ l(γ )

0
f (X(s))ds,

s.t. X(0) = X A, X(l(γ )) = X B

where f (X(s)) = c · h(X(s)) + g(X(s)) and c ∈ R
1
+.

We call f (X(s)) the weighted cost. By the theory
of multiobjective variational optimization (Bector
and Husain, 1992; Smale, 2000), if γ ∗ is an optimal
solution for Problem 2, then it is Pareto optimal for the
construction cost H and the total number of repairs G.
With different weights c in Problem 2, distinct Pareto
optimal solutions are produced.

In consequence of the formulation of Problem 2 as a
single objective variational problem, the solution paths
that minimize the integral are the minimum weighted
cost paths. We emphasize here that Problem 2 is a con-
tinuous problem. FMM, a consistent and computation-
ally efficient numerical algorithm proposed by Sethian
(Sethian, 1999a,b, 1996; Kimmel and Sethian, 1998),
for solving the Eikonal equation, is adopted here to
solve Problem 2 in a continuous space. Comparing with
discrete optimization methods such as the Dijkstra al-
gorithm that compute the weighted cost on a discretized
grid of the region of interest, on the one hand, FMM
can be proved to converge to the continuous physical
(viscosity) solution as the grid step size tends to zero,
i.e., achieving global optimality. On the other hand,
FMM has the same computational complexity as Dijk-
stra algorithm, which is O(N log N), where N is the total
number of discretized grid points of M (Sethian, 1999b).

For a PDE, a solution is required to be continuous
and differentiable over the entire domain according
to the classical definition. Continuous physical (viscos-
ity) solutions are weak solutions that generalize the
classical definition which means they are not neces-
sarily everywhere differentiable. These appear to be
meaningful solutions to PDEs representing physical
problems (Bardi and Capuzzo-Dolcetta, 2008). For the
mathematical definition of the viscosity solution, the
reader is referred to Crandall and Lions (1983).

5.1 Derivation of the Eikonal equation

The first step in applying FMM is to transform the
variational Problem 2 to the Eikonal equation. For any
point S ∈ M, a cost function φ(S) that represents the
minimal cumulative weighted cost to travel from End
Point B of the link to point S is defined as

φ(S) = min
β

∫ l(β)

0
f (X(s))ds (4)

where β ∈ Lip([0,+∞); M) is a Lipschitz continuous
path parameterized by its length, ‖β ′(s)‖ = ‖ dβ(s)

ds ‖ = 1,
X(0) = X B , and X(l(β)) = X S . By Equation (4) and the
definition of f , and applying the fundamental theorem
of the calculus of variations, Kimmel and Sethian (2001)
have shown that φ(S) is the viscosity solution of the fol-
lowing Eikonal equation:

‖∇φ(S)‖ = f (S) = c · h(S) + g(S), φ(B) = 0 (5)

where ∇ is the gradient operator and ‖ · ‖ is the 2-norm.
For any point S, φ(S) is called the level set function;
that is, {S ∈ M : φ(S) = a} is a curve composed of all
the points that can be reached from point B with mini-
mal cost equal to a. The optimal path(s) is (are) along
the gradient of φ(S); i.e., orthogonal to the level curves.
More precisely, we can construct the optimal path(s) by
tracking backward from S to B, solving the following
ordinary differential equation (Sethian, 1999b)

dX(s)
ds

= −∇φ, given X(0) = XS (6)

until point B, is reached, where X ∈ M. That is, the
optimal path(s) from A to B for Problem 2 is (are)
obtained by setting S = A and then using a gradient
descent of the level set function φ. A finite-difference
approximation, for example, the first-order Euler
method (Peyré et al., 2010) or a second-order Heun’s in-
tegration method (Sethian, 1999b) can be used to com-
pute (6) approximately. The former is adopted in this
article. For details, the reader can refer to Peyré et al.
(2010).

Note that Problem 2 may have multiple solutions.
All the optimal solutions are Pareto optimal for the
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same construction cost H and the total number of
repairs G. However, they represent different paths
on the manifold. The designer may select one path
by his/her preferences considering other factors be-
yond the construction cost and the total number of
repairs.

5.2 The update scheme

The partial differential Eikonal equation cannot
be solved analytically for an arbitrary nonnegative
weighted cost function f . In fact, its solution does
not necessarily need to be differentiable. Therefore,
we adopt a numerical method to solve the Eikonal
equation.

In Section 4, we have approximated landforms by
a complete 2D triangulated manifold, deriving a dis-
cretized grid model of the region under consideration.
Accordingly, an update scheme to calculate the value of
φ at each grid point is required. In Kimmel and Sethian
(1998), to compute a geodesic path on triangulated
manifolds, Kimmel and Sethian propose a monotone
update procedure on a triangulated mesh to ap-
proximate the gradient in (5), from which the viscosity
solution is obtained. The resulting path converges to the
exact minimum weighted cost path as the triangulation
is refined. Here, we apply it to Equation (5).

For acute triangles of the triangulated landform man-
ifolds, the update procedure is as follows. We aim first
to update the value of a center vertex, such as vertex
V shown in Figure 2, which is the intersection point
of several triangles. For each of these triangles, for
example, the triangle �V V1V2 (assuming φ̄(V2) > φ̄(V1)
without loss of generality) in Figure 2, the solu-
tions of the following quadratic equation derived by
representing Equation (5) are calculated (Kimmel and
Sethian, 1998):

a′ϕ2 + b′ϕ + c′ = 0 (7)

θ

Fig. 2. Illustration of acute triangulation around center
vertex on landform manifolds.

where

ϕ = φ(V ) − φ̄(V1)

a′ = (a2 + b2 − 2ab cos θ)

b′ = 2b(φ̄(V2) − φ̄(V1))(a cos θ − b)

c′ = b2((φ̄(V2) − φ̄(V1))2 − f 2(V )a2 sin2 θ)

(8)

For detailed derivation of Equation (7), the reader
can refer to Kimmel and Sethian (1998). The triangle
�V V1V2 is used to update the value of φ̄ for vertex V as
follows. If ϕ > φ̄(V2) − φ̄(V1) and

a cos θ <
b(ϕ − (φ̄(V2) − φ̄(V1)))

ϕ
<

a

cos θ
(9)

that is, the solution ϕ is updated from within the triangle
�V V1V2, then

φ̄(V ) = min{φ̄(V ), ϕ + φ̄(V1)} (10)

which means that the value for vertex V is updated
by taking the minima of the current value φ̄(V ) and
ϕ + φ̄(V1). Otherwise, ϕ is not updated from within the
triangle �V V1V2. Only vertex V1 or vertex V2 is used
to update the value for vertex V , in which case Equa-
tion (5) is rewritten as φ(V )−φ̄(V1)

b = f (V ) or φ(V )−φ̄(V2)
a =

f (V ). Thus, the value for vertex V is updated by the
following equation:

φ̄(V ) = min{φ̄(V ), bf (V ) + φ̄(V1), af (V ) + φ̄(V2)} (11)

In other words, the value for vertex V is updated by
taking the minima of the current value φ̄(V ), b f (V ) +
φ̄(V1), and a f (V ) + φ̄(V2). Since each triangle contain-
ing the vertex V can produce a possible update value φ̄

for that vertex, to meet the upwind criterion (Sethian,
1999b), the smallest new value φ̄ for V is chosen.

For the update procedure described above, an acute
triangulation is required, because the values of both
vertex V1 and vertex V2 are needed to update the
value of vertex V simultaneously. Although there is a
guarantee for the existence of acute triangulations for a
general polyhedral surface (Saraf, 2009), no polynomial
algorithm for constructing such triangulations has been
found. For a given specific initially triangulated land-
form manifold with nonacute triangles, we may split
every obtuse triangle into acute ones. If not, an “unfold-
ing” step is necessary for the remaining obtuse angles
(Kimmel and Sethian, 1998). A refinement for the
splitting of obtuse angles is provided in Xin and Wang
(2007). Details can be found in Kimmel and Sethian
(1998), Sethian (1999a), and Xin and Wang (2007).
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5.3 Algorithm for path planning

Given the update scheme described above, and the
initial value φ(B) = 0, the next step is to calculate the
value of φ at each point S on the triangulated grid of M.
From the nonnegativity of f and the upwind difference
structure, it is useful to imagine φ as a wave function,
and note that the wave propagates “one way”; that is,
from B outward, and the value of φ at any point de-
pends only on adjacent vertices having smaller values.
Based on these observations, Sethian (1996) proposed
to update the values of the grid points in a way similar
to the Dijkstra shortest path algorithm, and named it
the FMM. The algorithm is described as follows:

1. Initialization. All end points (e.g., B) are tagged
as Frozen. Their nearest neighbors (one grid point
away) are then tagged as Near and the value of
these nearest neighbors is updated by solving (7)
using Frozen points. The remaining grid points are
tagged as Far.

2. The point with minimum value φ among all points
with the tag Near is retagged to Frozen. If there
are no such points, the algorithm is terminated. If
there is exactly one such point, return to Step 3.
If there are more than one such point, pick one
arbitrarily and return to Step 3.

3. Find the nearest neighbors that are either Far or
Near of the Frozen point found in Step 2, and up-
date their values by solving Equation (7) using the
Frozen points and change their tag to Near if they
are Far.

4. Go back to Step 2.

Based on the above procedure, the status of points
can only change from Far to Near or from Near to
Frozen. The tags of points cannot be changed in an
opposite direction, i.e., from Near to Far or from Frozen
to Near. In Step 3, each updated point is assigned a new
value that is less than its previous value. If the point is
Far, it is tagged Near. In Step 2, the tag of one and only
one point is changed in each loop. Therefore, the FMM
is a one-pass algorithm; it does not have to “go back and
correct an accepted value (of a Frozen point).” Since
we can locate the grid point with minimum value φ

among all points with tag Close (in Step 2) using a heap
algorithm with time complexity O(N), it is easily seen
that FMM can be implemented with time complexity
O(N log N) if N is the total number of points in the grid
(Sethian, 1999a).

Based on the landforms model, the construction cost
model and the potential required repairs model given in
Section 4 and the FMM introduced above, we provide
an algorithm, called Algorithm 1, for path planning on a
topographic surface. As we said at the beginning of this

section, by setting different values of c in Problem 2,
we can obtain different Pareto optimal solutions of the
construction cost and the total number of repairs. How-
ever, since FMM is a numerical method to solve the
Eikonal Equation (5), computational numerical errors
arise in running Algorithm 1, one source of which is
the approximate computation of the Eikonal Equation
(5) through solving Equation (7). The approximate
solution has first-order accuracy, i.e., the size of the
error is proportional to the grid size. The other source
of the numerical errors is the approximate computation
of Equation (6), done here by Euler’s method, and
this again has first-order accuracy. For more accurate,
higher order approximation, the reader can refer to
Sethian (1999b). Because of these numerical errors,
erroneous results may occur, which can be identified
by checking the dominance of the solutions. If one
solution is dominated by other solutions, then it is
not Pareto optimal and therefore be ignored. At the
end, only the nondominated results are presented to
obtain the approximate Pareto front that is also called
nondominated front. Examples of such nondominated
optimal solutions will be provided in the next section.

Algorithm 1.
Algorithm for path planning in the region of interest D.

Input: Region D (modelled as M), spatially dis-
tributed PGV data and construction cost data on D,
mesh size 
x ,
y , Start Point A, End Point B, c, step
size τ ;

Output: Path γ with minimum weighted cost;

1: Discretize D rectangularly with 
x in x and 
y in
y, and denote the set of points on the grid by �;

2: Based on the PGV data on D, calculate the repair
rate g(i, j) for each grid point (i, j) ∈ �;

3: For each grid point (i, j) ∈ �, let f (i, j) = c ·
h(i, j) + g(i, j);

4: Create edges, faces and obtain a complete triangu-
lation (i.e., M) of D based on �;

5: Denote the approximate value of φ by φ̄ satisfy-
ing φ̄(i, j) 
 φ(i
x + xB, j
y + yB). Let φ̄(0, 0) =
0 and set the End Point B to Near. Define the
neighbors of a grid element (i, j) to be the set
�(i, j).

6: While Near list is not empty do

7: Find a point (i, j) with the minimum value φ̄ in
Near list, and set it to be Frozen.

8: For each point (i ′, j ′) ∈ �(i, j), if (i ′, j ′) is not
Frozen, for each face ς ∈ ,  = {ς, (i ′, j ′) ∈ ς},
calculate φ̄(i ′, j ′) and update its value with the
minimum one using Equations (10) or (11).
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9: If (i ′, j ′) is Far, update its value by φ̄(i ′, j ′) and
add it in the Near list; otherwise update its value
by minimum of φ̄(i ′, j ′) and its current value.

10: end while

11: Let γ0 = X A and k = 0.

12: While ||γk − X B ||2 > ε do

13: Compute the gradient G(γk) using finite-
difference based on Equation (6).

14: Compute γk+1 = γk − τG(γk), where γk is an ap-
proximation of γ (t) at time t = kτ .

15: end while

16: return γ .

We summarize the approach we used to solve the
problem of how to find the optimal path of a link to
connect two points across an earthquake prone area in
Figure 3.

We emphasize that, in general, Problem 2, being
a continuous problem, does not have an analytical
solution except that the integrand f (X(s)) is very
special. As we mentioned above, Kimmel and Sethian
(2001) have shown that intuitively, the (continuous)
solution(s) of Problem 2 (i.e., path(s)) is (are) per-
pendicular to the solution of the (continuous) Eikonal
Equation (5). Again, in general, we cannot derive the
analytical solution of Eikonal Equation (5). Therefore,
we have to resort to numerical methods. FMM, which
has been proved to be a consistent and computationally
efficient numerical method, is used to solve Eikonal
Equation (5) in this article. The (discrete) approximate
solution derived by FMM converges to the continuous

Fig. 3. Framework of our approach.

physical (viscosity) solution of Eikonal Equation (5)
as the grid step size of the topographic data tends
to zero (Kimmel and Sethian, 1998). As a result, the
(discrete) approximate solutions (i.e., paths) converge
to the (continuous) solutions of Problem 2 as well when
the grid step size approaches to zero. Nowadays, high-
resolution (30 m or 90 m) topographic data are freely
available online. In future, with technological advances,
and the consequent reduction in grid step size, our
approach will provide increasingly accurate solutions.

6 APPLICATIONS

In this section, we illustrate the applications of Algo-
rithm 1 to scenarios based on 2D and 3D landforms.
We start with a simple case of 2D topography, where
the PGV data are obtained by simulations by the
Probabilistic Seismic Hazard Analysis (PSHA) method
(Baker, 2008). Then, we apply the algorithm to two
scenarios of 3D landforms based on earthquake hazard
assessment data from the USGS. Let δ (U.S. dol-
lars/km) be the construction cost per km. We assume
δ = 1 in the following examples. We acknowledge
that the construction cost of a link is more than US
$1 per km, but if we normalize all the costs to unit
cost per kilometer, then the path we obtain will be
the correct path. The construction cost and the total
number of repairs of different links are estimated. We
take advantage of the low complexity of FMM, and
generate many runs for different c values to obtain the
set of nondominated optimal solutions.

6.1 Application of the algorithm to a 2D landform

We generate PGV data based on PSHA for a simple
example in which the path of the link is planned on a
planar (2D) region. A single line source (e.g., a fault
line where earthquake epicenter may occur) of earth-
quakes of length 20 km located in a 2D landform region
[0, 100 km] × [0, 100 km] is shown in Figure 4a. The co-
ordinates of the two end points (xE , yE ) and (xF , yF ) of
the line source are (50 km, 40 km) and (50 km, 60 km),
respectively. Following the bounded Gutenberg-Richter
model (Baker, 2008), this source produces earthquakes
of magnitude between mmin = 5 and mmax = 6.5 with
the probability density function (PDF)

fM (m) = b · 2.3026 · 10−b(m−mmin)

1 − 10−b(mmax−mmin)
, m ∈ [mmin, mmax] (12)

Note that the magnitude m is dimensionless (as it is
given in Richter scale). We assume b = 1 and show the
PDF (12) in Figure 5.
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Fig. 4. (a) Illustration of an example line source with length
20 km and the shaded surface map of mean PGV. (b) The

shaded surface map of repair rate.

We also assume that the spatial distribution of
the epicenter of earthquakes is uniform along the
line source. The geometry of the source as shown in
Figure 6 yields that the cumulative distribution function
(CDF) of the epicenter distance r from a site (x, y) to
the source is (Kramer, 1996; Baker, 2008)

FR(r) = P(R ≤ r) = r ′

yF − yE
(13)

where r ′ is the length of the source within distance r
and yF − yE is the length of the source. Specifically,
when y < yE , for example, as shown by the site with
circle (red color) in Figure 6, if dE ≤ r ≤ dF , then r ′ =√

r2 − (x − xE )2 − (yE − y), where dE and dF are the
distances from the site to E and F , respectively. Oth-
erwise, FR(r) = 0 if r < dE and FR(r) = 1 if r > dF . The
CDF of r when yE ≤ y ≤ yF and y > yF can be derived
in a similar way. The complete CDF of r is as follows:

5 5.5 6 6.5
0

0.5

1

1.5

2

2.5

Magnitude

Fig. 5. PDF (12) for the case b = 1.

Fig. 6. Illustration of derivation of the CDF in Equation (14).

FR(r) =

⎧⎪⎨
⎪⎩

y1, y < yE , dE ≤ r ≤ dF

y2, yE ≤ y ≤ yF , |x − xE | ≤ r ≤ dmax

y3, y > yF , dF ≤ r ≤ dE

(14)

where y1 = rE −(yE −y)
yF −yE

, y2 = min(yF ,y+rF )−max(yE ,y−rE )
yF −yE

,

y3 = rF −(y−yF )
yF −yE

, dE =
√

(x − xE )2 + (y − yE )2,

dF =
√

(x − xF )2 + (y − yF )2, rE =
√

r2 − (x − xE )2,
rF =

√
r2 − (x − xF )2, and dmax = max(dE , dF ). The

PDF fR(r) for r is obtained by taking the derivative of
the above CDF.

Given potential earthquake magnitudes and loca-
tions, ground motion measures, such as PGV, have
been observed to be well represented by a log-normal
distribution, i.e., ln v ∼ N (μ(m, r), σ 2), where μ(m, r)
and σ are the mean and standard deviation of ln v given
by the attenuation relationship (Baker, 2008). In this
case, we use the following dimensionally homogeneous
version of the empirical formula in Cornell et al. (1979)
for the mean of ln v

μ(m, r) = ln
μ′(m, r)

a1
= 2.11 + 1.07m−1.55 ln

r + a2

a3
(15)
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Table 2
Different optimal paths taking into account the construction cost and the total numbers of repairs in the case of the example line

source

c(×10−3) 0.1 0.5 1 2.5 5 7.5 10 25

Cost (U.S. dollars) 154.03 147.63 134.68 113.05 99.80 93.70 90.15 80.00
Total number of repairs 0.630 0.632 0.641 0.675 0.720 0.756 0.787 0.981

where a1 = 1 cm/s, a2 = 25 km, and a3 = 1 km. For how
to rewrite dimensionally nonhomogeneous empirical
formulas as homogeneous ones, the reader can refer
to Sonin (2001) and Castillo et al. (2014). Note that
the original version of Equation (15) in Cornell et al.
(1979) has been widely used in various applications
(e.g., Arango, 1996; Baker, 2008; Douglas, 2012).

We let σ = 0.64. By law of total probability, the PDF
of PGV for a site (x, y) is

p(vx,y) =
∫

M

∫
R

p(vx,y |m, r) fM (m) fR(r)dmdr (16)

and then the mean PGV is v̄x,y = ∫ +∞
0 vx,y p(vx,y)dv.

Note that the magnitude m and the epicenter distance
r in the PSHA framework are usually assumed inde-
pendent (Cornell, 1968; Petersen et al., 2014). Since
there is no analytical expression for v̄x,y , we numeri-
cally compute the PDF of the PGV. In this computa-
tion, we quantize the PGV, magnitude, and distance
into equal bins with sizes 0.1 cm/s, 0.1, and 0.1 km,
respectively.

The shaded surface map of the mean PGV derived
based on above procedure is shown in Figure 4(a). Then
the PGV is converted to repair rate by the following
dimensionally homogeneous version of the empirical
formula from Jeon and O’Rourke (2005):

ln
g(x, y)

a4
= 1.30 · ln

vx,y

a5
− 7.21 (17)

where a4 = 1 km−1 and a5 = 1 cm/s. The resulted repair
rate is presented in Figure 4(b).

We plan a path of the link from the site
(10 km, 50 km) to the site (90 km, 50 km). In or-
der to see how the construction cost of the link affects
the results of the path planning, we set the weight of the
construction cost to different values, and then calculate
the construction cost and the total number of repairs
of the resulting optimal links obtained by the method
given in Section 5. The results are shown in Table 2 and
the corresponding paths are shown in Figure 7a. From
Table 2 and Figure 7a, we can observe the trade-off be-
tween the total number of repairs and the construction
cost of the link. Reducing the total number of repairs
requires a higher construction cost link.

Fig. 7. (a) Nondominated optimal solutions (i.e., paths) when
c = 10−4, 5 × 10−4, 10−3, 2.5 × 10−3, 5 × 10−3, 7.5 × 10−3,
10−2, and 2.5 × 10−2. (b) Nondominated front for the two

objectives: (1) link construction cost and (2) total number of
repairs. The red squares are the nondominated optimal

values of the paths in (a).

To derive the nondominated front and the set of
nondominated optimal solutions for the two objectives:
link construction cost and total number of repairs, we
vary the weight of the construction cost (c) in the range
from 10−4 to 10−1, and then calculate the optimal paths
increasing c by ε in each path planning optimization.
One can refer to Das and Dennis (1997) on how to
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Fig. 8. An illustration of avoiding high construction cost
areas.

produce a uniform distribution of points from all parts
of the Pareto set. Figure 7b shows the nondominated
front. This nondominated front and the corresponding
nondominated optimal solutions provide us with the
results of the optimization problems of minimizing link
construction cost subject to a constraint on the total
number of repairs (or equivalently, on the level of sur-
vivability) and minimizing the total number of repairs
(or maximizing survivability) subject to a constraint on
the link construction cost.

To verify the ability of Algorithm 1 to avoid high
construction cost areas listed in Section 4, we set up
two areas, [20, 60 km] × [40, 75 km], and [20, 25 km] ×
[40, 40 km], which the link must avoid. For each
location in these two areas, we let the construction cost
function h(x, y) = 1,000. Figure 8 shows the path of
the link in the case c = 5 × 10−3. We can see that the
link successfully avoids the two high construction cost
areas.

Fig. 10. The shaded surface maps of the PGV (cm/s): (a)
Region D1 and (b) region D2. Data are provided by USGS.

6.2 Application of the algorithm to 3D landforms
based on USGS seismic hazard map

In the next example, we use the earthquake hazard
assessment data (PGA) from USGS (http://www.usgs.
gov/) that is widely applied in seismic provisions of
building codes, insurance rate structure, risk assess-
ment, and other public policy.

Fig. 9. Geography: (a) Region D1 and (b) Region D2. Black points show the cities to be connected and the black lines illustrate
the fault lines. Source: Google Earth.
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It contains space-delimited, rectangularly gridded
data in 0.05◦ increments in longitude and latitude.
We plan paths of links in two different regions D1

[40.23◦,−124.30◦] × [32.60◦,−114.30◦] and D2 [40.54◦,
−95.00◦] × [32.75◦, −85.50◦], as shown in Figure 9.

The land of region D1, including almost the whole
state of California and a large part of Nevada, is located
on the west coast of the United States close to the
Pacific Ocean. There are several fault lines throughout
D1, of which the famous San Andreas fault line is a
major one. Northeast D1 is a large desert. Widely flat
land of southeastern D1 is punctuated by some irregular
mountain peaks such as Mt. Whitney at 14,494 ft.
The famous Central Valley, which is close to the San
Andreas fault line, is located in the center of D1.

Region D2 is in the central U.S. and consists of sev-
eral states such as Missouri, Illinois, Indiana, Kentucky,
Tennessee, Alabama, Mississippi, and Arkansas. Most
of region D2 is plain, especially the central areas. A
basin landform is located on the common border of
Missouri, Arkansas, Mississippi, and Tennessee. The
New Madrid fault line is located in region D2.

To calculate the repair rate of the link, we first down-
load the PGA data (2% probability of exceedance in 50
years, Vs30 = 760 m/s) for each gridded geographical
point and then convert it to PGV by the following
dimensionally homogeneous version of the empirical
equation from Wald (1999):

log10
v

a6
= 1.0548 · log10

PGA
a7

− 1.1556 (18)

where a6 = 1 cm/s and a7 = 1 cm/s2. The shaded surface
maps of PGV of the two regions are shown in Figure 10.
Then, the PGV is converted to repair rate by Equation
(17).

To calculate geodesic distance, we downloaded
the elevation data of the corresponding areas from
the National Oceanic and Atmospheric Admin-
istration (http://maps.ngdc.noaa.gov). It contains
space-delimited, rectangularly gridded data with the
same resolution as the repair rate data in latitude and
longitude. Coordinate transformation is applied for
both the repair rate data set and the geographic data to
convert them from latitude and longitude coordinates
to Universal Transverse Mercator (UTM) coordinates.
Using the landform model described in Section 4,
60,800 faces are created for region D1 and 58,900
faces are created for region D2, and the triangulated
manifold approximation of the landforms is shown in
Figures 11 and 12.

In region D1, we aim to plan the path of a link
from Los Angles (34.05◦,−118.25◦) to Davis (38.53◦,
−121.74◦). From Figures 9 and 10a, we can see that
the link connecting the two cities should pass through
the San Andreas fault line unavoidably and that it
extends more than 1,000 km through California. By
letting g(S) = 0 and h(S) = 0 in Problem 2, we can
calculate the construction cost of the minimum cost
path without considering repairs and the construction
cost of the path with minimum total number of repairs,
which are US $598.03 and US $637.47, respectively.
Figure 11 shows the optimal paths when the weights
of the construction cost of the link are equal to 0.0252,
0.2188, and 10. From Figure 11, we can see that to
reduce the total number of repairs through minimizing
the number of points on the link that may be affected
by an earthquake, the angle between the optimal link
and the San Andreas fault line increases gradually
around Los Angles. It then moves away from the San
Andreas fault line until it approximates the one with
the minimum total number of repairs.

Fig. 11. Illustration of triangulation in the UTM coordinate system, repair rate, and nondominated optimal solutions (i.e., paths)
when c = 0.0252 (solid circle), 0.2188 (triangle), and c = 10 (cross). The color represents repair rate.
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Fig. 12. Illustration of triangulation in the UTM coordinate system, repair rate, and nondominated optimal solutions (i.e., paths)
when c = 3.8905 × 10−4 (diamond), 6.6 × 10−3 (triangle), 6.8 × 10−3 (cross), 0.1514 (solid circle), and c = 10 (square). The color

represents repair rate.

Fig. 13. Nondominated front for the two objectives: (1) link
construction cost and (2) total number of repairs. The red

squares are the nondominated optimal values of the paths in
Figure 11.

As in the previous example, we set the weight of
the construction cost to be from 10−3 to 10, and then
calculate the set of nondominated optimal solutions
and the nondominated front. Figure 13 shows the
nondominated front.

In the next and final example, we aim to plan the
path of a link from Little Rock (34.66◦,−92.29◦) to
Louisville (38.24◦, −85.76◦) in region D2. Since the New
Madrid fault line is not as long as the San Andreas
fault line, a link connecting the two cities can avoid
the hazard zone if it is long enough. To calculate the
nondominated optimal solutions and the nondominated
front, we set the weight of the construction cost to
be in the range between 10−4 and 10 again. Figure 14
presents the nondominated front. The construction
cost of the minimum cost path without considering
repairs and the construction cost of the path with

Fig. 14. Nondominated front for the two objectives: (1) link
construction cost and (2) total number of repairs. The red

squares are the nondominated optimal values of the paths in
Figure 12.

minimum total number of repairs are US $696.2 and US
$1,628, respectively. Figure 12 shows the nondominated
optimal paths when the weights of the construction
cost of the link are equal to 3.8905 × 10−4, 6.6 × 10−3,
6.8 × 10−3, 0.1514, and 10. As in the first example, to
reduce the total number of repairs, the link will be
very far away from the fault line in which case the
construction cost of the link will increase signifi-
cantly. From Figure 14, we can see that increasing
the construction cost of the link from US $700 to US
$800 can reduce the total number of repairs signifi-
cantly (around 100 repairs). However, increasing the
construction cost of the link from US $1,000 to US
$1,600 will lead to very limited reduction in the number
of repairs. This provides valuable insight to design
trade-offs between construction cost-effectiveness and
survivability.
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7 CONCLUSIONS AND DISCUSSIONS

We have developed a new method for path planning of
a critical infrastructure link based on the minimization
of two objectives: construction cost and potential num-
ber of required repairs. In this way, we trade-off cost
and risk (especially from earthquakes) and provide the
near optimal path in terms of cost for any given level
of risk, and in terms of risk for any given budget. Our
methodology is based on multiobjective optimization
using the FMM algorithm and real data including PGV,
topography, and other relevant information on the area
under consideration. By a 2D landform application and
two 3D landform applications, we have demonstrated
that our methodology can provide a path that achieves
near-minimal total number of potential repairs for
a given construction cost budget, reducing both the
failure probability and the time to recovery and there-
fore improved seismic resilience. On the other hand,
given the seismic resilience required (as measured by
expected number of repairs), our methodology can pro-
vide the path that achieves a cost-effective path. In this
work, we did not consider other ways to improve the
seismic resilience of a link by adding certain support sys-
tems, special shielding, or armored components when it
passes through high-risk areas. Such considerations are
important, but they are beyond the scope of this article.
Nevertheless, the methodology presented in this article
can be extended to include such considerations and it
is planned as future work and publications. Recently,
we considered shielding for the simpler method of path
planning based on the label setting algorithm (Wang
et al., 2017). The work in this article and in Wang et al.
(2017) can also be used in a mesh network optimization
for a disaster-aware design (Msongaleli et al., 2016).
Other future research directions may include develop-
ing more realistic construction cost models and repair
models for specific applications.
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Dübendorfer, T. P. (2005), Impact analysis, early detection
and mitigation of large-scale Internet attacks. Ph.D. thesis,
Swiss Federal Institute of Technology Zürich.
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