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ABSTRACT 
 

 Cyclic mobility occurs in a broader range of granular soils. It is characterized by progressive 

accumulation of shear deformations and progressive reduction in the effective pressure under 

cyclic loading, resulting in the triggering of liquefaction and large permanent displacements in 

the post-liquefaction stage. In this study, the micromechanical characteristics of the granular 

soils are investigated using the Discrete Element Method. It is observed that the cyclic mobility 

and post-liquefaction behaviors are closely related to the micromechanical structure, indicated by 

evolution of the coordination number, local strain measures, and non-affine displacements. A 

new index, termed as centroid distance, is proposed to quantify the change of the microscopic 

configuration of the granular packing. The index is found to have a strong correlation to the 

cyclic mobility of the granular packing in the post-liquefaction stage. The study provides 

significant insights into the fundamental mechanisms of cyclic mobility and liquefaction in 

granular soils from micromechanical perspectives. 
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ABSTRACT 
 
 Cyclic mobility occurs in a broader range of granular soils. It is characterized by progressive 

accumulation of shear deformations and progressive reduction in the effective pressure under 

cyclic loading, resulting in the triggering of liquefaction and large permanent displacements in the 

post-liquefaction stage. In this study, the micromechanical characteristics of the granular soils are 

investigated using the Discrete Element Method. It is observed that the cyclic mobility and post-

liquefaction behaviors are closely related to the micromechanical structure, indicated by evolution 

of the coordination number, local strain measures, and non-affine displacements. A new index, 

termed as centroid distance, is proposed to quantify the change of the microscopic configuration of 

the granular packing. The index is found to have a strong correlation to the cyclic mobility of the 

granular packing in the post-liquefaction stage. The study provides significant insights into the 

fundamental mechanisms of cyclic mobility and liquefaction in granular soils from 

micromechanical perspectives. 
 

 

Introduction 

 

Understanding the fundamental mechanism of liquefaction in granular soils is one of the major 

challenges in constitutive modeling of geomaterials. Here, liquefaction refers to a range of 

phenomena including flow liquefaction and cyclic mobility. Flow liquefaction often occurs in 

very loose sands, characterized by a sudden loss of the soil strength and is often associated with 

large deformations and a flow-type failure. On the other hand, cyclic mobility can occur in a 

much broader range of soils and site conditions than flow liquefaction. It is characterized by 

progressive accumulation of shear deformations and progressive reduction in effective stress 

under cyclic loading, and has the potential to result in unacceptably large permanent 

displacements. Both flow liquefaction and cyclic mobility can cause severe damage to civil 

structures during earthquakes. 

 Liquefaction of granular soil has been studied for more many years. Most studies have 

been focused on determining the triggering of the initial liquefaction and the liquefaction 

resistance of different soils under various loading conditions. Here, “initial liquefaction” is 
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termed to indicate the first time that the effective stress reaches zero during cyclic undrained 

loading (Seed and Lee, 1966). Soil behaviors before and after the initial liquefaction can be quite 

different. Many lab tests had shown that large deformation always occurred after initial 

liquefaction, i.e., the post-liquefaction stage. In this paper, discrete element simulation is 

performance to study the micromechanical behaviors of granular soils in the cyclic mobility and 

post-liquefaction process. The micromechanical study can provide significant insight into a 

deeper understanding of the fundamental mechanisms of soil behaviors. 

 

Discrete Element Simulation 

 

Discrete element method (DEM) has been a proven tool to effectively simulate the 

micromechanical behavior of soils during liquefaction (e.g., Ng and Dobry 1994; Sitharam et al. 

2009). In this study, an open source DEM code, Yade, is used to conduct the numerical 

simulations. 16,000 poly-dispersed clumped particles are randomly generated in a square 

representative volume element (RVE). Periodic boundary is prescribed on this RVE to eliminate 

the non-uniformity caused by RVE boundary. Each clumped particle consists of two partially 

overlapped disc-shaped particles as shown in Fig. 1. The radius of the particle equals to the 

radius of a disc-shaped particle having the same area as the clump. If the radius of the disc-

shaped particle is r, the radius of the clumped particle R=1.268r. The radius of particles ranges 

from 0.15mm to 0.45mm and the mean radius R50=0.3mm. A nonlinear Hertz-Mindlin model 

was used to describe the particle contact behavior. The following material properties are assigned 

to all the particles: Young’s modulus of 70GPa, Possion’s ratio of 0.3, friction coefficient of 0.5. 

Since the simulation is quasi-static, the density of particles is scaled by a factor of 2×10
5
 in order 

to reduce the computational time without affecting the solutions. After particles generation, the 

packing was isotropically consolidated under an initial confining pressure p=120 kPa to reach a 

void ratio of 0.228.  

 
Figure 1. Shape of a clumped particle. 

 

During undrained cyclic simple-shear test, a constant strain rate of 0.01/s was applied in 

order to ensure the quasi-static condition. The simulation was stress controlled with a cyclic 

stress ratio (CSR) of 0.2. The pore water pressure is determined by the difference of stress 

between the vertical total stress and the vertical effective stress. Fig. 2(a) shows the relationship 

between shear stress (τ) and shear strain (γ). Fig. 2(b) shows the evolution of shear stress (τ) with 

the effective vertical stress (σv). The soil sample reached initial liquefaction after 17 cycles. The 

simulation result is quantitatively similar to the laboratory test results of a dense granular soil 

sample. Typical behaviors can be observed from the DEM simulation, such as the gradual 

decrease of effective vertical stress σv in each load cycle till liquefaction, increase of shear strain 

γ with the number of load cycles, and phase transform from contraction to dilation in each load 

cycle.  



 For a granular packing, the effective stress is transmitted through particle contacts. The 

coordination number is defined as Z=2Nc/Np (where Nc is the total number of contacts and Np is 

the total number of particles). The coordination number is a good indicator of the 

micromechanical structure of the packing since it represents the average number of contacts for 

each particle. The coordination number initially progressively decreases from about 4.3 to about 

3 with each loading cycle, but then begins a pattern of alternating between incrementally 

decreasing and incrementally increasing. The cyclic variation in the contact number is 

qualitatively similar to the cyclic variation in the effective stress, and shows similar butterfly 

shaped loops in Fig. 2(c) after initial liquefaction is triggered. 

 

          
(a) Shear stress and shear strain relation         (b) Shear stress and effective vertical stress relation 

 

 
(c) Evolution of coordination number 

Figure 2. Macroscopic behavior of granular packing from DEM. 

 

 

Micromechanical Structure during Cyclic Loading and Post-liquefaction 

 
Evolution of the Contact Number 

 

Under undrained cyclic loading, liquefied sand experiences a flow stage and eventually regains 

its strength under shear deformation, which is regarded as shear-induced dilatancy, i.e., the 

tendency of the granular matter to dilate under shear deformation. Fig. 3 shows the evolution of 

the coordination number versus the shear stress during cycle No. 20. The shear stress remains 



almost zero at point 0 and starts to increase when the shear strain γ=0.92% at point 1, where the 

shear stress reaches 0.1kPa. This stage is denoted as the “flow stage”. The “flow stage” was 

followed by a “hardening stage” when the shear stress starts to grow substantially to 30 kPa and 

the coordination number reaches 3.04 from point 1 to 2. The number of contacts established at 

the end of the flow stage (i.e., point 1) is about 75% of the number established at the peak stress 

point (i.e., point 2). These contacts form a load-carrying structure that permits stress to increase 

during further shear deformation. Another interesting phenomenon observed from the Fig.3 is 

that upon unloading from point 2 to 3, the coordination number decreases dramatically to reach a 

minimum value (Z=0.1), implying that the load-carrying structure is completely destroyed upon 

unloading. 

 

          
       (a) Shear stress and shear strain relation                 (b) Evolution of coordination number 

 

Figure 3. Shear stress and coordination number evolution during cycle 20 

 

Fig. 4 shows the relation between coordination number Z and shear stress in all loading 

cycles. It is observed that a minimum coordination number (Z=2.28) is required for stress 

hardening in each cycle. The threshold Z value can thus be defined as the microscopic criterion 

for stress hardening in the post-liquefaction stage. When Z is below the threshold, the packing is 

under the flow liquefaction state and the load-carrying structure cannot be fully formed.  

 

 
Figure 4. Relation between coordination number and shear stress 

 
Local strain measurement   

 

Although the coordination number is a good indicator to quantify the overall structure of 



granular packing, it cannot explain how such a structure is formed. To answer this question, we 

measure the local strain change during the shear deformation to investigate the change of local 

structure. In the 2D DEM simulation, we use Delaunay tessellation to divide the granular 

packing into triangle elements. The local strain is calculated using these triangle elements. For 

triangular element i, the local strain tensor 
( )i

 can be calculated from the position and 

displacement vectors of the element’s nodal particles: 

 

                                          ( ) ( )( ) 1

2

i ii e e                                                                            (1) 

( ) ( ) ( )

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

i i i

i
i

i i i

i i i i

S S S

u
e e ds ds u n dl

S S x S


   

 


  

                               (2) 

 

One can refer to Bagi (1996) for detailed information of the above formulation. 

Accordingly, the deviatoric local strain 
( )i

q for element i can be defined in Eq. (3).  
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In order to have a better comparison, the deviatoric local strain is normalized by the 

averaged deviatoric local strain in the packing: 
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During the loading cycle number 20, the shear strain increases from 0% to 2.25%. 

Correspondingly, the packing evolves from a flow stage at the initial point γ=0% to reach a shear 

stress of 30 kPa at the end point γ=2.25%. To investigate the change in local strain measures, the 

shear strain is divided into five intervals with a strain increment Δγ=0.45% as shown in Fig. 5.  

The first two intervals belong to the flow stage and the last two intervals below to the hardening 

stage. The 3
th

 interval is a transition stage when the stress just starts to grow. The displacement 

of each particle in the local strain calculation is based on particle position difference during the 

current strain increment. Fig. 6 shows the contour of normalized deviatoric local strain increment 

for each strain increment. During the first strain increment Δγ1, the distribution of strain 

increment is quite uniform. Similar pattern is also observed in the second strain increment Δγ2. 

However start from the third strain increment, large change in the local strain begins to 

concentrate in some positions, implying that particle adjustment gradually becomes localized. 

This kind of pattern is also shown in the following strain increments.  

 

In the discussion about the evolution of the coordination number, we mentioned that the 

load-carrying structure is primarily formed during the “flow stage”. From the emergence of 

strain localization, we can deduce the morphology of the load-carrying structure: during the 

beginning of the flow stage, particles are dispersed with few local contacts. Adjustment of 

particle is not restricted and change in local strain during this stage is uniformly distributed. 

However continuing shear deformation will organize some particles to form bigger clusters. 



Relative displacement between particles in the cluster is restricted. Adjustment of relative 

positions mainly occurs between these clusters. That can explain why local strains will be 

gradually localized.  

 

 
Figure 5. Five strain increments 

 

   
 

Figure 6. Contours of normalized deviatoric local strain increment 
( )i

q  in each strain increment.  

 
 
 
Evolution of the non-affine displacement field 

 

The micromechanical structure can also be further demonstrated using non-affine displacement 

(Goldenberg et al. 2007). The non-affine displacement is calculated by subtracting the affine 

displacement from the total displacement. Denoting the center position vector of particle i as 
( )i

nx  

if the global strain  is 
nε  , and 

( )

1

i

nx when the global strain is 
1nε , the displacement increment of 

particle i is ( ) ( ) ( )

1 1

i i i

n n n   u x x . The affine displacement of particle i is defined as ( )

1

i

n n ε x , 

where 
1nε  is the global strain increment (

1 1n n n   ε ε ε ). The non-affine particle 

displacement for particle i is defined as: 
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 Fig. 7 shows the non-affine displacement field for the first and the last strain increment.   

For a better comparison, the non-affine displacement field is normalized by its mean value:  
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(a)    (b)  
 

Figure 7. Non-affine displacement field of the first and the last strain increment 
 

 It can be observed that the non-affine displacement field is quite random during the first 

strain increment (Fig. 7(a)), which implies that the particle movement is not significantly 

constrained from its surrounding particles. However, in the last strain increment, many 

distinctive ‘flow bands’ and ‘vortex’ can be observed. Particles within the ‘flow bands’ will 

normally have similar velocity with its surrounding particles. In order to characterize the non-

affine displacement field, a spatial correlation function C is used.  The function C is defined as:  
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where ( ) ( )i j

ijD  x x  is the center-to-center distance between particle i and j, 
( )ir  and 

( )jr are 

the radius of particle i and j.  ( ) ( ),i j  u u is the correlation between two vectors. 

 ( ) ( ),i j  u u =1 only if ( ) ( )i j u u . If 
( )iu is normal to ( )ju ,  ( ) ( ),i j  u u =0. The 

minimum correlation -1 is achieved only if ( ) ( )i j  u u .  ijD R   specifies a bin to include 

particle pairs  ( ) ( ),i j
x x  for a given R value. Particle pairs are counted into C(R) calculation only 



if    ( ) ( ) ( ) ( )0.5 0.5i j i j

ijR r r D R r r      . Fig. 8 shows the spatial correlation C(R) of the 

non-affine displacement increases from the flow stage to the hardening stage.  

 

 
Figure 8. Spatial correlation during each stage 

 

 

Evolution of Microscopic Configuration in Post-Liquefaction 

 
Definition of Centroid Distance (Dc) 

 

For 2D simulation, Voronoi cell can be conveniently used to divide the void space around each 

particle. As shown in Fig. 9, the Voronoi cell for particle i is a convex polygon enclosed by C1-

C2-C3-C4-C5. The mass center of the Voronoi cell and the mass center of the particle are denoted 

as O
i
 and P

i
, respectively. The centroid distance Dc for particle i can be defined as: 
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where R50 is the average radius of particles.   

 

             
(a) Voronoi cell                   (b) large i

cD                           (c) small i

cD  

 

Figure 9. Definition of Dc 

 

Accordingly, the centroid distance (Dc) of the whole packing can be defined as the 

average of  
i

cD  for all particles: 



1 N i

c ci
D D

N
                                                             (11) 

 

where N is the number of particles. Fig. 8(a) and Fig. 8(b) illustrate two typical cases to 

demonstrate the physical meaning of Dc. From this figure, the particle with a large i

cD  is 

surrounded by a larger void space, which means a loose local configuration. The particle with a 

small i

cD  is more likely to be located in a dense configuration. It is worth pointing out that an 

individual particle within a loose local configuration may also attain a small i

cD . However, the 

probability of such a case is rather low. This observation demonstrates that i

cD  can be used to 

represent the local configuration of the packing.  

 

Two undrained cyclic simple tests are conducted under strain-controlled condition, where 

the prescribed shear strain is constant (3% and 4.5%) during each cycle. In the DEM simulation, 

disk-shaped particles are used for convenience of calculating Dc. Fig. 10 shows evolution of Dc 

value evaluated at the zero strain in each loading cycle. The Dc decreases during the first several 

cycles and oscillate around a constant value after 50 loading cycles. The influence of the 

prescribed strain level to the evolution of Dc can also be observed in Fig. 10. The strain levels 

only affect the decreasing rate of Dc but do not affect the asymptotic value of Dc. Snapshots of 

particle configurations before the first and during the 100
th

 loading cycle are demonstrated in Fig. 

11. In these figures, red color is used to highlight particles whose i

cD  value decreases between 

two configurations, while green color highlights particles with a decreased i

cD . The majority of 

particles are in gray color, whose i

cD  values are almost unchanged during cyclic loading. 

Consistent with the observation that the global Dc is decreasing, the number of red particles is 

significant greater than the green particles. Relative large pores are found surrounding the red 

particles in the initial configuration (marked by circles). However, these large pore space 

diminishes in the final configuration. So the effect of undrained cyclic loading is to redistribute 

these relative large pores. On the other hand, large pores are occupied by particles and are 

reduced by densification of granular packing under a drained cyclic loading. 

 

 
Figure 10. Evolution of Dc with different strain level 

 

The presence of relative large pores can be regarded as source of inhomogeneity for the 

granular packing. Due to the friction between granular particles and complex particle shape, 



local arching can be formed during the phase of initial consolidation. The local arching preserves 

relative large pores. Under the same stress condition, more relative large pores can be observed 

in the loose pacing compared with the dense or medium packing. However, the arching structure 

is not stable and can be easily destroyed by the cyclic loading. Large pores are redistributed and 

the packing is more homogeneous as a result. The decreasing trend of Dc implies that the effect 

of cyclic loading progressively transforms the packing into a more homogenous configuration.  

 

 
(a) Before cyclic loading                            (b) Cycle number 100 

 

Figure 11. Change of packing configuration 

 

 

Evolution of Dc and Cyclic Mobility in Post-liquefaction Stage 

 

In a load-controled cyclic simple shear test, the maximum strain developed in the soil continues 

to accumulate with increasing number of cycles (cf. Fig. 1(a)). Through the DEM simulation, we 

observed that the cyclic mobility of the granular packing is strongly corrected to the evolution of 

Dc. Here, we use γc to measure the mobilized maximum strain in each load cycle. For example, γc 

is calculated as the shear strain between point 2 and 4 in Fig. 3(a) for load cycle No. 20. 

However, the continued increase of γc with increasing load cycles can only be observed in dense 

or medium dense packing under a limited number loading cycles. It is interesting to ask: whether 

γc can reach an ultimate value and will no longer increase with further loading cycles?   

 

Fig. 12(a) shows the DEM simulation result of shear stress τ and shear strain γ behaviors 

under 60 loading cycles. The evolution of γc and Dc with the number of cycles are shown in Fig. 

12(b). Similar to the previous strain-controlled case, Dc decreases with increasing number of 

cycles and it reaches a lower limit after 30 cycles. Interestingly, when Dc reaches its lower limit, 

the mobilized maximum shear strain γc also stabilizes around a constant value. The maximum 

shear strain ceases to increase under further loading cycles, and the stress-strain behavior of the 

soil is saturated. It implies that the mobilized maximum shear strain is closely related to the 

packing configuration. The ultimate stage of cyclic mobility exists and it can be reached.  



   
  

Figure 12. Simulation result of stress-control test with CSR=0.2: (a) stress-strain relation  

(b) evolution of γc and Dc with the number of cycles 

 
Conclusions 

 
In this paper, the micromechanical behavior of granular materials during the cyclic loading 

and post-liquefaction stage is investigated using DEM. The post-liquefaction stress-strain 

behavior is characterized by an initial flow stage, followed by stress hardening. In the flow stage, 

although the effective stress is almost zero, a load-carrying is gradually formed. However, the 

load carrying structure can be easily destroyed by unloading. During the formation of such load-

carrying structure, particle deformation tends to localize. Relative position adjustment will be 

concentrated between bigger clusters of particles. Furthermore, an index for the packing 

configuration is defined using centroid distance Dc. During cyclic loading, it is observed that Dc 

will decrease and eventually reaches around a lower limit. Through the DEM simulation, we 

observed that the cyclic mobility of the granular packing in the post-liquefaction is strongly 

corrected to the evolution of Dc. When Dc reaches to the final value, the cyclic mobility in the 

granular packing also reaches to its ultimate state. The maximum shear strain will stop to 

accumulate with further cyclic loading. Finally, it should be noted that all presented results are 

based on 2D DEM simulations. One may expect similar behaviors in a true 3D system, and it 

will be the subject of our future study.  
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