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a b s t r a c t

Cavity expansion in finite or infinite media has important practical implications in many engineering
areas. In this study, we investigate the elastic unloading and reverse yielding behaviours of cylindrical
and spherical cavities in a bounded cohesive–frictional medium. Of particular interest is the critical state
when reverse yielding in the hollow cylinder/sphere is imminent in relation to the cavity pressure, the
cavity dimensions, as well as the material properties. The critical pressure and optimal thickness that lead
to strengthening of the hollow cylinder/sphere by so-called ‘‘overstrain” have been determined analyti-
cally. Both quantities are found to be explicit functions of the frictional angle of the material. The study
considers the Mohr–Coulomb criterion and the bounded medium, which include both Tresca and purely
frictional materials as special cases and, at the same time, can be readily extended to the case of an infi-
nite medium. Finally, the results are applied to the interpretation of pressuremeter tests in soils, weak
rocks and cemented sands.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of the expansion of cylindrical and spherical cavities in
finite or infinite media provides useful information for the study of
important practical problems in many engineering areas. Bishop
et al. [1] were among the first to apply the cavity expansion theory
to the prediction of the hardness of metals from indentation tests
(see also [5]). The analysis of cylindrically expanded cavities has
long been employed in practical applications such as autofrettage
of pressure vessels and gun barrels. In other areas such as geotech-
nical engineering, the theory of cavity expansion has been useful in
the prediction of the bearing capacity of deep foundations and the
pull-out capacity of earth anchors, the analysis of the stability and
deformation of underground excavation and tunnelling, the study
of borehole instability, and the interpretation of soil properties
through various in situ soil testing methods, such as the cone pen-
etration test (CPT) and pressuremeter tests (PMT). A systematic
summary of the cavity expansion theory may be found either in
the classic monograph by Hill [5], or the more recent and complete
book by Yu [19] with an emphasis on geotechnical/civil engineer-
ing applications.

Of particular interest here is the behaviour of elastic unloading
and reverse yielding of a previously plastically loaded hollow cyl-
inder/sphere of a finite cohesive–frictional medium. During the
process of elastic unloading, the contraction of the outer layers
of the hollow cylinder/sphere compresses the inner layers and
leaves the internal surface in a state of tangential compression.
A subsequent application of pressure less than the original maxi-
mum value strains the hollow cylinder/sphere elastically. In this
way, the hollow cylinder/sphere can be strengthened by an initial
overstrain. However, due to the accumulation of residual stresses,
the process of unloading could potentially stress an element in the
hollow cylinder/sphere to the yield point in the reverse direction
during the removal of the applied cavity pressure. Hill [5] investi-
gated the behaviour of a hollow sphere in Tresca materials un-
loaded from a partly plastic state, and determined the critical
loading condition as well as the optimal thickness of the hollow
sphere at which the reverse yielding was excluded in purely cohe-
sive materials such as metals. A thorough investigation of a simi-
lar problem with cohesive–frictional materials could be useful in
many other areas such as geotechnical engineering. For example,
the self-boring pressuremeter has been developed as one of the
best in situ tests for geotechnical investigations, and the results
of pressuremeter tests in soils are widely used to derive funda-
mental soil properties. Theoretical interpretation methods devel-
oped for pressuremeters are mostly based on the fundamental
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assumption that pressuremeter tests can be simulated as the
expansion and/or contraction of an infinitely long, cylindrical cav-
ity in soils, such that the cavity expansion theory can be conve-
niently employed in data interpretation. One of the important
soil properties that can be deduced from pressuremeter tests in
clay is its shear modulus. If the soil is assumed to behave as a lin-
ear elastic–perfectly plastic material, the shear modulus obtained
from the unloading–reloading loop of the test is not dependent on
the magnitude of the strain or pressure. As pointed out by Wroth
[13], it is important, however, to ensure that the unloading–
reloading loops remain in the elastic region when conducting
the loop tests. Analysis of the elastic unloading process to avoid
reverse yielding is therefore of practical importance. Meanwhile,
this study is useful in the shakedown analysis of a hollow cylin-
der/sphere as well. Shakedown is normally described as the phe-
nomenon when a structure subjected to cyclic loads can deform
plastically during the first few load cycles, but after that only elas-
tic deformation occurs in the structure. The maximum load the
structure can sustain for shakedown to occur is called the shake-
down limit, which can be used as an important index for the de-
sign of structures subjected to cyclic loads. The loading–unloading
behaviour and the resulting residual stress field can therefore pro-
vide useful information for shakedown analysis of an internally
pressured hollow cylinder/sphere.

Yu [19] summarised previous studies of cavity expansion theo-
ries by various researchers, e.g., cavity expansion in a Tresca mate-
rial [6,9] and a Mohr–Coulomb material [7,10–12,16,18], as well as
cavity contraction from an in situ stress state in a Mohr–Coulomb
material [17]. Despite these in-depth investigations, existing stud-
ies have been largely limited to the relatively simple case of infinite
(or unbounded) media. It is surprising that there has been no de-
tailed discussion of the unloading behaviour of a finite cavity in a
bounded cohesive–frictional medium. A solution to this outstanding
problem should yield more general results that can be readily re-
duced to special cases of infinite media for both Tresca and purely
frictional materials. With such a general solution, we would be able
to verify under what conditions the infinite case can be reasonably
approximated by the finite solution. Such a solution, if available,
can be a useful foundation for many practical problems, e.g., the
interpretation of pressuremeter test data.

In this paper, we thoroughly investigate the elastic unloading
and reverse yielding behaviours of a finite cylindrical or spherical
cavity in a bounded Mohr–Coulomb material. First, we consider
the stress distribution in the hollow cylinder/sphere with gradual
relaxation of the internal cavity pressure. Then, we derive the crit-
ical pressure ratio between the internal cavity pressure and the
outer pressure and the optimal thickness for the hollow cylinder/
sphere, which together make strengthening by overstraining with-
out reverse yielding possible. The effects of material properties are
discussed. A minor error in Hill’s [5] classic work regarding the
optimal thickness of a Tresca hollow sphere is also corrected. We
show that the current study can recover results in infinite media
as an extreme case, which will be demonstrated through compar-
ison with the work by Wroth [13] for the interpretation of pres-
suremeter results in clays and sands. This study serves as a
useful supplement to cavity expansion theory, which can be used
in practical applications such as pressuremeter tests and shake-
down analysis.

2. Problem description

A cylindrical/spherical cavity is assumed to be expanded in a
bounded cohesive–frictional medium. The solid phase is in the
shape of a hollow cylinder/sphere, and it is modelled as an isotro-
pic elastic–perfectly plastic material. The elastic behaviour of the

material is governed by Hooke’s law until the onset of yielding.
The behaviour thereafter is governed by the Mohr–Coulomb crite-
rion. As displacement analysis is not the focus of this paper, no
assumption regarding the plastic flow rule is needed here. The hol-
low cylinder/sphere is assumed to be subjected to a uniform pres-
sure, p0, on both the internal and external surfaces, as shown in
Fig. 1. Note that in the case of self-boring pressuremeter tests, p0

has a value comparable to the in situ lateral stress, rh0 , in the soil,
which can be measured from a typical pressure–expansion curve of
the PMT test.

A cylindrical polar coordinate system ðr; h; zÞ is adopted for the
cylindrical case, while a spherical coordinate system ðr; h;uÞ is
used for the spherical case. From this initial state, the pressure at
the cavity surface is gradually increased from p0 to p, which leads
to an intermediate state as illustrated in Fig. 1. The current and ini-
tial radii of the cavity are denoted as a and a0 for the internal sur-
face and as b and b0 for the external surface. Since this paper mainly
deals with a state before the hollow cylinder/sphere enters a fully
plastic state, the deformation can be generally regarded as small. In
this case, we can safely assume that a ffi a0 and b ffi b0. However, as
has been shown in numerous past studies (see e.g., [19]), assump-
tions made about the deformation behaviour of the material affect
the cavity expansion prediction. Early studies on cavity expansion
always used a small strain assumption partly due to the simplicity
and the usefulness in some particular applications, such as in the
interpretation of pressuremeter tests where the strain is normally
not greater than 10% [8]. The assumption of large deformation was
considered later in cavity expansion analysis in infinite media (e.g.,
[2,15]). In particular, it has been assumed that the total deforma-
tion might be large whereas the deformation in the elastic zone
is infinitesimal. The limiting case of large deformations around a
cylindrical cavity can be useful in the installation of driven piles
in sands. In this paper, we do not attempt to seek closed-form solu-
tions for the stresses and deformations in an entire space. We thus
restrict our analysis up to the point of a fully plastic state with
infinitesimal strain. Indeed, as suggested by Hill [5], for cylinders
with a not too large ratio of external and internal radii, n ¼ b0=a0

(say, n is less than 4 or 5), the strains and the displacements of
the inner surface are relatively small so long as the fully plastic
state has not been reached. Prior to this state, the variation in a0

can be neglected when computing the stresses. While the large
deformation solution remains interesting, it will be left for future
study.

Tension is taken as positive in this paper. Following the classic
cavity expansion theory, we simplify cylindrical expansion as a

a
o

r

b

Plastic regime 

Elastic regime 

0p

Fig. 1. Schematic of cylindrical/spherical cavity expansion in a finite cohesive–
frictional medium. The cavity is denoted by the circle with a radius a; the outer
surface radius is b. The plastic regime is denoted by an annulus with a radius of q. At
the initial state a uniform pressure, p0, is applied on the internal and external
surfaces of the hollow cylinder/sphere. At the interim elastic plastic state, an
increment of pressure, Dp ¼ p� p0, is applied to the internal surface of the cavity.
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plane strain problem where rhh and rrr are, respectively, the max-
imum and minimum principal stresses (when p is large enough to
make it so). In the spherical case, the axisymmetric nature of the
problem makes it simpler to have rhhð¼ ruuÞ be the maximum
principal stress and rrr be the minor one. It is readily found that,
in the absence of body forces, the equilibrium equation for the ra-
dial direction of the cavity can be expressed in the following uni-
fied form for both cases:

drrr

dr
þ k

r
ðrrr � rhhÞ ¼ 0 ð1Þ

where k ¼ 1 for the cylindrical case and k ¼ 2 for a spherical case.
The boundary conditions on the internal and external surfaces

of the hollow cylinder/sphere take the following form:

TrðaÞ ¼ �rrr jr¼a ¼ p

TrðbÞ ¼ rrr jr¼b ¼ �p0

�
; ð2Þ

where Tr is the surface traction.
The Mohr–Coulomb criterion governing the yielding behaviour

of the cohesive–frictional material is (see also [3,2]):

f ¼ Nrhh � rrr � 2c
ffiffiffiffi
N
p
¼ 0; ð3Þ

where N ¼ 1þsin /
1�sin /, with / being the friction angle, c is the cohesion of

a material. Eq. (3) can be easily simplified to the case of purely fric-
tional materials when the cohesion is set to zero ðc ¼ 0Þ:
Nrhh � rrr ¼ 0; or to the Tresca criterion by setting the frictional an-
gle to / ¼ 0 (so that N ¼ 1): rhh � rrr ¼ 2c. It is well known that the
latter is a special case of importance to most metals and saturated
soils, which exhibit no internal friction when deformed under un-
drained conditions.

3. Elastic unloading, residual stresses and reverse yielding

In this section, we present a unified closed-form solution for
elastic unloading of a cylindrical/spherical cavity in a finite cohe-
sive–frictional medium and determine the optimal thickness that
leads to strengthening of the material by overstrain and the critical
pressures below which reverse yielding can be avoided during the
unloading. Following the procedure outlined by Hill [5], if the hol-
low cylinder/sphere is unloaded from a partly plastic or fully plas-
tic state, we can calculate the residual stresses (if a possible
Bauschinger effect can be neglected) by subtracting the stresses
of the current state from the elastic stresses.

The elastic stresses in a finite hollow cylinder/sphere are (c.f.
[19])

rrr ¼ �p0 þ wðp� p0Þ 1� b
r

� �ðkþ1Þ
h i

;

rhh ¼ �p0 þ wðp� p0Þ 1þ 1
k

b
r

� �ðkþ1Þ
h i

9>=
>; ða 6 r 6 bÞ; ð4Þ

where

w ¼ aðkþ1Þ

bðkþ1Þ � aðkþ1Þ
: ð5Þ

In a partly plastic stage, the stresses in the elastic region are

rrr ¼ �p0 þ n 1� b
r

� �ðkþ1Þ
h i

;

rhh ¼ �p0 þ n 1þ 1
k

b
r

� �ðkþ1Þ
h i

9>=
>; ðq 6 r 6 bÞ; ð6Þ

whereas those in the plastic region are

rrr ¼ 2c
ffiffiffi
N
p

N�1 þ v q
r

� �kðN�1Þ
N ;

rhh ¼ 2c
ffiffiffi
N
p

N�1 þ
v
N

q
r

� �kðN�1Þ
N

9=
; ða 6 r 6 qÞ; ð7Þ

where

n ¼ 2c
ffiffiffi
N
p
þðN�1Þp0

ðN�1Þþ N
kþ1ð Þ b

qð Þðkþ1Þ ;

v ¼ � Nð1þkÞn
ðN�1Þk

b
q

� �ðkþ1Þ
:

8><
>: ð8Þ

Since the cavity pressure, p, and the plastic radius, q, are not
independent of each other, the following relation between the
two can be found:

p ¼ �2c
ffiffiffiffi
N
p

N � 1
� v q

a

� �kðN�1Þ
N
: ð9Þ

It is readily observed that the critical pressure for initial yielding
ðq ¼ aÞ is

pa ¼ p0 þ
2c

ffiffiffiffi
N
p
þ ðN � 1Þp0

ðN � 1Þ þ N
k þ 1
� �

b
a

� �ðkþ1Þ
b
a

� 	ðkþ1Þ

� 1

" #
: ð10Þ

while the critical pressure at the fully plastic state ðq ¼ bÞ is

pb ¼ p0 þ p0 þ
2c

ffiffiffiffi
N
p

N � 1

 !
b
a

� 	kðN�1Þ
N

� 1

2
4

3
5: ð11Þ

We assume that the unloading is induced by a monotonical re-
moval of the internal cavity pressure from its current value, p, to
the value p� ~kðp� p0Þ, where the unloading factor is 0 6 ~k 6 1.
Therefore, the change of pressure is �~kðp� p0Þ, which is assumed
to induce only elastic deformation in the material. To examine
the possibility of material strengthening by overstrain as well as
the condition to avoid reverse yielding during the removal of the ap-
plied load in the calculation of residual stresses, we superimpose
the elastoplastic stresses at the initial pressure, p, in Eqs. (6) and
(7) by the elastic stress (4) caused by this pressure difference:

For q 6 r 6 b,

rrr ¼ �p0 þ n 1� b
r

� �ðkþ1Þ
h i

� ~kðp� p0Þw 1� b
r

� �ðkþ1Þ
h i

;

rhh ¼ �p0 þ n 1þ 1
k

b
r

� �ðkþ1Þ
h i

� ~kðp� p0Þw 1þ 1
k

b
r

� �ðkþ1Þ
h i

9>=
>;: ð12Þ

For a 6 r 6 q,

rrr ¼ 2c
ffiffiffi
N
p

N�1 þ v q
r

� �kðN�1Þ
N � ~kðp� p0Þw 1� b

r

� �ðkþ1Þ
h i

;

rhh ¼ 2c
ffiffiffi
N
p

N�1 þ
v
N

q
r

� �kðN�1Þ
N � ~kðp� p0Þw 1þ 1

k
b
r

� �ðkþ1Þ
h i

9>=
>;: ð13Þ

To check for reverse yielding, it follows from Eqs. (12) and (13)
that

Nrrr �rhh ¼ ð1�NÞp0þ n ðN�1Þ� Nþ 1
k

� �
b
r

� �ðkþ1Þ
h i

þ~kðp�p0Þw ð1�NÞþ Nþ 1
k

� �
b
r

� �ðkþ1Þ
h i

; ðq6 r6 bÞ

Nrrr �rhh ¼ 2c
ffiffiffiffi
N
p
þ N� 1

N

� �
v q

r

� �kðN�1Þ
N

þ~kðp�p0Þw ð1�NÞþ Nþ 1
k

� �
b
r

� �ðkþ1Þ
h i

; ða6 r6qÞ

9>>>>>>>>>>=
>>>>>>>>>>;
:

ð14Þ

It is easy to verify that the numerical magnitude of Nrrr � rhh is
greatest at the internal surface with the following unloading
factor:

~kr ¼
1
N � N
� �

v q
a

� �kðN�1Þ
N

wðp� p0Þ ð1� NÞ þ N þ 1
k

� �
b
a

� �ðkþ1Þ
h i ; ð15Þ

where the superscript r denotes ‘‘reverse yielding”. Utilizing Eqs. (8)
and (10), (15) can be further written as:
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~kr ¼ pa� p0

p� p0

� 	 ð1þ kÞð1þNÞ ðN�1Þþ N
k þ1
� �

b
a

� �ðkþ1Þ
h i

q
a

� �kðN�1Þ
N

k ðN�1Þ q
b

� �ðkþ1Þ þ N
k þ1
� �h i

ð1�NÞþ Nþ 1
k

� �
b
a

� �ðkþ1Þ
h i :

ð16Þ

When the plastic radius is q, no reverse yielding will occur dur-
ing the unloading process when the unloading magnitude is less
than the value presented in Eq. (16). It is also easy to verify that
if the hollow cylinder/sphere is unloaded from the fully plastic
state (i.e., q ¼ b) to the initial pressure value p0 (i.e., ~kr ¼ 1), the
above equation gives the following maximum safe unloading pres-
sure ratio:

p� p0

pa � p0

� 	
max

¼
ð1þ NÞ ðN � 1Þ þ N

k þ 1
� �

b
a

� �ðkþ1Þ
h i

N ð1� NÞ þ N þ 1
k

� �
b
a

� �ðkþ1Þ
h i b

a

� 	kðN�1Þ
N

: ð17Þ

By using Eqs. (10), (11) and (16), the optimal thickness of a hol-
low cylinder/sphere can be given by the nontrivial solution to the
following equation:

N ð1� NÞ þ N þ 1
k

� 	
b
a

� 	ðkþ1Þ
" #

1� a
b

� �kðN�1Þ
N

" #

¼ ðN2 � 1Þ b
a

� 	ðkþ1Þ

� 1

" #
: ð18Þ

4. The optimal thickness of a hollow cylinder/sphere for
overstrain

The hollow cylinder/sphere cannot be too thin for it to be
strengthened by overstrain. Eq. (18) gives the optimal thickness
for a general Mohr–Coulomb material. It is interesting to first
investigate the special case of a Tresca material, where N ¼ 1.
Applying a limit analysis in Eq. (18) leads to the following expres-
sion for the optimum thickness of a hollow cylinder/sphere in a
Tresca medium:

ln
b
a

� 	
¼ 2

kþ 1
1� a

b

� �kþ1

 �

: ð19Þ

The optimal thickness is independent of any material parame-
ter. In the case of a Tresca hollow cylinder ðk ¼ 1Þ, Eq. (19) gives
an optimal thickness of ðb=aÞopt ¼ 2:22, which implies that a Tresca
hollow cylinder cannot be strengthened by overstrain if its outer
radius is less than 2.22 times its inner cavity radius. It is also read-
ily found that for the spherical case ðk ¼ 2Þ, Eq. (19) presents an
identical form to that obtained by Hill [5, p.103]. From this equa-
tion the optimal thickness of the hollow sphere is found to be
ðb=aÞopt ¼ 1:70. It is interesting to note that despite the fact that
he expressed the correct form of Eq. (19) for the optimal thickness
of a Tresca hollow sphere, Hill [5] unfortunately provided an erro-
neous value of 4.92 as the solution in his classic monograph.

For a general Mohr–Coulomb hollow cylinder/sphere, the opti-
mal thickness ratio, as can be readily observed from Eq. (18), is
dependent upon the frictional property of the material only. By
solving Eq. (18) using a numerical iteration scheme, the optimal
thickness ratios of a hollow cylinder/sphere at various friction an-
gles can be obtained, and they are shown in Fig. 2. For both cylin-
drical and spherical cases, Fig. 2 shows that the corresponding
optimal thickness ratio increases with the friction angle of the
material. The increase in the cylindrical case appears to be more
significant, as compared with the spherical case. It is also observed
that at the same friction angle, the corresponding optimal thick-
ness ratio for the spherical case is always smaller than the cylindri-
cal case. The difference between the two cases increases with the
friction angle, and it can be as great as 116% of the smaller quan-

tity. This observation implies that, in general, the frictional prop-
erty makes it difficult to strengthen a material by overstrain, and
the cylindrical case demonstrates a stronger trend in this direction
than the spherical case because the stress field in the former case is
relatively more inhomogeneous than in the latter case.

5. Maximum safe unloading pressure to avoid reverse yielding

Given the dimensions, the maximum safe pressure for a hollow
cylinder/sphere to avoid reverse yielding during unloading can be
easily determined from Eq. (17). It is interesting to have further
discussion on the implications of the maximum safe unloading
pressure.

5.1. Safe pressure at optimal thickness

If the hollow cylinder/sphere has an optimal thickness as de-
fined in Eq. (18), it is readily found from Eq. (17) that the maximum
safe pressure ratio is dependent on the frictional angle only. In con-
nection with the results presented in Fig. 2, the variation in the
maximum safe pressure ratio is plotted against the internal fric-
tional angle in Fig. 3.

As can be seen from Fig. 3, the cylindrical and spherical cases
have identical curves for the safe pressure ratio with respect to
the frictional angle. The maximum safe pressure ratio increases
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nonlinearly with the frictional angle of the soil. For / ¼ 45�, this ra-
tio could reach a value as high as 6:83, in contrast with a much
smaller value of 2 for a purely cohesive soil. In connection to
Fig. 2, however, we can see that this increase in the safe pressure
threshold is achieved at a cost of a considerable increase in the
thickness of the cylinder or sphere. This is more obvious for the
case of a hollow cylinder. The safe pressure at / ¼ 45� is 2.14 times
higher than that at / ¼ 0. To have such an increase in the safe pres-
sure, a hollow cylinder has to have a thickness 3.69 times that of a
purely cohesive hollow cylinder, as compared with a much smaller
value of 2.23 in the spherical case.

5.2. Purely cohesive solids ð/ ¼ 0Þ

It is of particular interest to have a detailed discussion on the
special case of purely cohesive solids where / ¼ 0 hence N ¼ 1
and therefore the Tresca criterion applies. In this case, the right-
hand side of Eq. (17) gives a constant ratio of 2 for the safe pressure
ratio:

p� p0

pa � p0

� 	
max
¼ 2: ð20Þ

This result is consistent with that given by Hill [5] for the case of
a finite hollow Tresca sphere. We further note that the above result
indeed holds universally for purely cohesive solids, regardless of
the cavity types or the dimension of the host medium. Though
the derivation has been started from a finite cavity in a finite med-
ium, this safe pressure ratio has no dependence on the cavity size
or the thickness of the hollow cylinder/sphere. We therefore expect
that the same conclusion can be drawn for the case of finite cavity
expansion in an infinite Tresca medium. Indeed, in an early study
of unloading of a cylindrical cavity in an infinite Tresca soil, Wroth
[13] (see also Wroth [14]) confirmed that the maximum cavity
pressure reduction must be less than 2 times the undrained shear
strength of the soil:

ðDpÞmax ¼ 2su; ð21Þ

where su is the undrained shear strength of the soil (su ¼ c here).
Simple manipulation of Eq. (20) will prove that Wroth’s finding is
consistent with ours. Indeed, from the theory of cavity expansion
[19], the initial yielding of a finite cavity in an infinite Tresca med-
ium occurs at an pressure pa ¼ p0 þ c. As such, pa � p0 ¼ c ¼ su.
Using this relation in Eq. (20) and setting Dp ¼ p� p0, we immedi-
ately observe that Eq. (20) leads to an identical form of Wroth’s re-
sult in Eq. (21). While Wroth [13] confined his results to the special
case of a cylindrical cavity in an infinite Tresca medium, we can
hereby extend his conclusion to a more general case as follows:
for any finite cavity expanded in a Tresca medium, either bounded or
unbounded, the maximum reduction of cavity pressure must not exceed
2 times the undrained cohesion of the soil, in order to ensure that the
unloading–reloading process is purely elastic.

5.3. The special case of an unbounded cohesive–frictional medium
ðb ¼ 1Þ

We further note that the results developed in Section 3 can be
easily degenerated to the case of a finite cavity in an infinite cohe-
sive–frictional medium. In order for the results to be applicable to a
finite cavity expanded in an infinite Mohr–Coulomb soil, we first
recast Eq. (16) into the following form:

~kr ¼ ðpa �p0Þ
ðp� p0Þ

ð1þ kÞð1þNÞ ðN�1Þ a
b

� �ðkþ1Þ þ N
k þ1
� �h i

q
a

� �kðN�1Þ
N

k ðN�1Þ q
b

� �ðkþ1Þ þ N
k þ1
� �h i

ð1�NÞ a
b

� �ðkþ1Þ þ Nþ 1
k

� �h i :
ð22Þ

By setting 1=b ! 0, the above equation becomes

~kr ¼ ðpa � p0Þ
ðp� p0Þ

ð1þ kÞð1þ NÞ
ðkN þ 1Þ

q
a

� �kðN�1Þ
N
: ð23Þ

From Yu [19],

q
a

� �kðN�1Þ
N ¼

ðkþ NÞ 2c
ffiffiffiffi
N
p
þ ðN � 1Þp

� �
Nð1þ kÞ 2c

ffiffiffiffi
N
p
þ ðN � 1Þp0

� � : ð24Þ

Using Eq. (24) in Eq. (23) gives

~kr ¼ ðpa � p0Þ
ðp� p0Þ

ð1þ NÞðkþ NÞ
NðkN þ 1Þ

2c
ffiffiffiffi
N
p
þ ðN � 1Þp

� �
2c

ffiffiffiffi
N
p
þ ðN � 1Þp0

� � : ð25Þ

In the infinite case, by setting 1=b! 0 again in Eq. (10), the crit-
ical pressure at initial yielding is obtained as:

pa � p0 ¼
k 2c

ffiffiffiffi
N
p
þ ðN � 1Þp0

� �
kþ N

: ð26Þ

Substitution of Eq. (26) into (25) leads to the following result:

~kr ¼ kð1þ NÞ
NðkN þ 1Þ

2c
ffiffiffiffi
N
p
þ ðN � 1Þp

� �
ðp� p0Þ

: ð27Þ

In an infinite Mohr–Coulomb medium when a finite cavity is ex-
panded to a plastic state with plastic radius q and then unloaded,
Eq. (27) gives the safe unloading magnitude at which reverse yield-
ing can be avoided. Note that for the case of a spherical cavity in an
infinite Mohr–Coulomb medium, where k ¼ 2, Eq. (27) is consis-
tent with that obtained by Chadwick [3] (Eq. (46) therein), except
that p in his equation is replaced by p� p0 as we have assumed
here that the monotonic unloading can reach a value of
p� ~kðp� p0Þ rather than ð1� ~kÞp as assumed by Chadwick [3].

With a cohesionless material such as sand where c ¼ 0, Eq. (27)
can be further simplified to

~kr ¼ kðN2 � 1Þ
NðkN þ 1Þ

p
ðp� p0Þ

: ð28Þ

It is noteworthy that the above result covers another finding by
Wroth [13] regarding the maximum cavity pressure reduction in a
cylindrical cavity in a infinite sand as a special case. Wroth [13] ex-
pressed his results in terms of the effective stress quantities:

ðDp0Þmax ¼
2 sin /0

1þ sin /0
p0ini; ð29Þ

where ðDp0Þmax is the maximum reduction of the effective pressure
allowed for elastic unloading of a cylindrical cavity in an infinite
sand, p0ini is the effective cavity pressure at the start of pressureme-
ter unloading and /0 is the drained angle of internal friction of the
material. By simply letting k ¼ 1;Dp ¼ ~krðp� p0Þ in Eq. (28), and
meanwhile disregarding the difference between the effective stress
and the total stress terms in Eq. (29) such that all the primes are
dropped, it is readily found that these two equations become
identical.

We would like to further illustrate Eq. (27) with a diagram by
employing the idea of Wroth [13]. Fig. 4 shows the theoretical limit
of elastic unloading behaviour in pressuremeter test in an un-
bounded cohesive–frictional medium. Compared with Wroth [13,
p. 160, Fig. 9] for the case of purely frictional sands, it is clear from
Fig. 4 that the cohesion of soils (which is the case at least for ce-
mented sand, for example, if not for all in situ soils) can provide
a greater range for the soil to be within the elastic limit if unloaded
from a previously plastic state, which is typically experienced in
pressuremeter test (if k is set to be 1). This contribution could be

J. Zhao, G. Wang / Computers and Geotechnics 37 (2010) 239–245 243



Author's personal copy

significant when the pressure level (say, rrr) is relatively low.
Wroth’s [13] results therefore provide a rather conservative esti-
mate of the allowable amplitude of the stress cycle. It becomes less
so, however, with the increase in rrr and hence the mean stress le-
vel as the test progresses to later stages if the cohesion and fric-
tional angle can be taken as constants of the soil. Meanwhile, it
is also possible to construct a curve such as T 0TT 00 as shown in
Fig. 4c, which serves as theoretical boundary to the elastic behav-
iour during unloading, for the general case of an unbounded cohe-
sive–frictional soil. This is demonstrated in the following
subsection for pressuremeter tests in weak rock and cemented
sand.

5.4. Application to weak rock and cemented sand

Though it was originally developed for use in clays, the pres-
suremeter has also been used to test weak rocks and cemented
sands (see, e.g., [4]). In weak rocks, the rate of the porewater pres-
sure dissipation can be much quicker than in clays, although some
rocks may have the same order of magnitude of permeability as

clays. In this case, undrained analysis can lead to significant errors
in the estimation of the rock strength. As such, Haberfield [4] sug-
gested that a drained analysis method for weak rock or cemented
sand is more appropriate in interpreting pressuremeter tests. For
weak rocks or cemented sands under drained conditions, both
cohesion and friction will contribute to the overall strength of
the material, such that the general results in the preceding sections
can be useful. Some of the pressuremeter test results obtained by
Haberfield [4] for a siltstone are used here as an example.

The test site Haberfield [4] chose was located at the bottom of
the Nubrik brick pit, in Scoresby, Australia. High capacity
(20 MPa) pressuremeter tests were carried out at a depth of
2.5 m within a drilled borehole of 3 m deep. In his data fitting
and drained analysis, the weak rock was assumed to be an elastic,
perfectly plastic homogeneous and isotropic Mohr–Coulomb mate-
rial. The following drained parameters were obtained from one of
the pressuremeter tests labeled as PMT1(N–S): Secant Young’s
modulus, E ¼ 1470 MPa; Poisson’s ratio, m ¼ 0:18; Cohesion,
c ¼ 1:23 MPa; peak frictional angle, /m ¼ 44�; and residual fric-
tional angle, /r ¼ 24�. The in situ horizontal stress was
p0 ¼ 0:2 MPa. He has also carried out an undrained analysis for
comparison and obtained an undrained strength of su ¼ 8:8 MPa
for PMT1(N–S).

The cavity expansion–pressure curve along with three unload-
ing–reloading cycles is presented in Fig. 5. In the same figure, we
provide two unloading bound curves using Eq. (27) (also Fig. 4c)
by using the peak and residual frictional angle of the siltstone,
respectively. Theoretically, a bigger unloading–reloading loop is
preferred to provide more reliable interpretation of the soil/rock
shear modulus than a smaller loop, and it offers extra flexibility
in equipment control for a field test at the same time. We note that
the use of the peak frictional angle offers a greater elastic range
than that created by the residual frictional angle. However, discre-
tion has to be exercised here as the use of the peak frictional angle
may overestimate the soil’s strength in some cases.

In the meantime, if we use the undrained analysis result in con-
junction with Eq. (20) or (21) for another prediction, the safe pres-
sure reduction in this case will be 2su ¼ 17:6 MPa. This means that
at any point of the PMT curve in Fig. 5, the cavity pressure can be
totally unloaded to zero without causing reverse yielding, which is
usually not in agreement with the test data. This again supports
our observation that undrained analysis could lead to an overesti-
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mate of the rock’s strength in this case, and a drained analysis is
more appropriate for weak rocks/cemented sands.

6. Conclusions

A unified analytical solution has been derived for the problem of
elastic unloading of a cylindrical/spherical cavity in a bounded
cohesive–frictional medium that was previously loaded to a
fully/partly plastic state. Major conclusions from the study are
summarised as follows:

� The optimal thickness ratio (the external radius of the bounded
medium over the cavity radius) required for the material to be
strengthened by the process of overstrain depends only on the
frictional angle of the material. For a Tresca material, this ratio
remains a constant that is independent of the material parame-
ters, the cavity types, or the bounded/unbounded nature of the
host medium.

� The maximum safe pressure that the hollow cylinder/sphere can
sustain to avoid reverse yielding in the process of unloading is a
function of the frictional angle, the cohesion of the material, as
well as the dimensions of the hollow cylinder/sphere. If the hol-
low cylinder/sphere is at its optimal thickness, this safe pressure
ratio is further found to depend on the frictional angle of the
material only (note that such a pressure ratio is defined by Eq.
(17) and the dependence of cohesion has been included in the
expression of the critical pressure on initial yielding, as in Eq.
(10)).

� The results obtained in this paper can be generalised to the case
where the medium is unbounded, which is more useful for such
practical applications as the interpretation of pressuremeter
tests. In particular, the current study has been shown to be able
to include Wroth’s [13] solution as a special case.

� For a finite cavity (either cylindrical or spherical) expanded in a
Tresca medium, the maximum reduction of cavity pressure must
not exceed 2 times the (undrained) cohesion of the medium to
ensure that the unloading–reloading process is purely elastic.
This conclusion holds whether or not the medium is bounded.
The conclusion is a more general finding than that drawn by
Wroth [13], which is only applicable to the special case of a
cylindrical cavity in an unbounded medium.

� If both cohesive and frictional properties of the host medium can
be characterized, which is typically the case for weak rocks or
cemented sands, the safe allowable magnitude for the load-
ing–unloading cycle can be greater than in cases where the
material is assumed to be either purely cohesive (i.e., as in the
case of metals or saturated clays) or purely frictional (i.e., as in
the case of sands). The reverse loading threshold has been quan-

titatively determined in this paper for a general cohesive–fric-
tional material (bounded or unbounded), with demonstrated
application to pressuremeter tests in weak rocks.

This study contributes to the completeness of the current the-
ory of cavity expansion and can be useful in practical applications
such as in situ soil tests, shakedown analysis as well as indentation
tests in material sciences.
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